ER@CEBAF: A Test of 5-Pass Energy Recovery at CEBAF

Todd Satogata
Seminar Outline

• Background
 – History and current state of energy recovery (ER)
 – Jefferson Lab’s role and leadership
 – Motivations, advantages, challenges

• ER@CEBAF
 – Collaboration with BNL and proposal
 – **Layout**: new chicane and new beam dump
 – **Optics**: longitudinal match, transverse match
 – **Diagnostics**: multi-pass BPMs, decelerating emittance
 – **BBU**: beam breakup instability studies, scaling

• Summary and path forward
Energy Recovery: History

• **February 1965**: Maury Tigner, Nuovo Cimento

 * So energy recovery is almost exactly one year older than your presenter

- **How to make high power electron colliders?**
 - 100+ MW accelerating power anticipated
 - **Option 1**: Throw lots of power into the RF system
 - Maury: “Although in principle it may be possible to produce and handle this large power, the sheer brutishness of the scheme robs it of all appeal.”
Energy Recovery: History

- **February 1965**: Maury Tigner, Nuovo Cimento

 - **Option 2**: Decelerate beam through same RF system
 - Decelerating beam power goes back into cavity fields
 - “Constant” CW beam requires very little net RF drive
 - Ultimately want beam power >> drive power

 - Paper: $L=3 \times 10^{30} \text{ cm}^{-2} \text{ s}^{-1}$ for 3 GeV 120 mA collider
 - Maury: “A low-density target such as liquid hydrogen might be placed in the return leg of the magnet system”!

 \[360 \text{ MW!} \]
 \[1 \text{ kW}=3 \times 10^{-6}! \]
Energy Recovery Linacs: CEBAF

- CEBAF (a traditional recirculating linear accelerator)

 - Applied RF power in linacs drives beam power
 - Up to MW of beam power at A/C beam dumps

 - Disadvantages:
 - Cost / contamination of MW class beam dumps
 - MW of power: RF → beam → dump full power
 - Very high power beam operation cost prohibitive
Energy Recovery Linacs: CEBAF

- CEBAF (a traditional recirculating linear accelerator)

- Applied RF power in linacs drives beam power
 - Up to MW of beam power at A/C beam dumps

- Disadvantages:
 - Cost / contamination of MW class beam dumps
 - MW of power: RF \Rightarrow beam \Rightarrow dump full power
 - Very high power beam operation cost prohibitive
Energy Recovery Linacs: ER@CEBAF

• ER@CEBAF: 1-Pass Energy Recovery at CEBAF

- Decelerating beam provides part of RF drive power
 • Can be very efficient with superconducting RF

- Advantages
 • MW of power: RF \rightarrow beam \rightarrow dump injector power
 • RF drive power nearly independent of beam current
- A prerequisite for multi-MW electron coolers
Energy Recovery Linacs: ER@CEBAF

- ER@CEBAF: 5-Pass Energy Recovery at CEBAF

- Decelerating beam provides part of RF drive power
 - Can be very efficient with superconducting RF

- Advantages
 - MW of power: RF \rightarrow beam \rightarrow dump injector power
 - RF drive power nearly independent of beam current
 - A “prerequisite” for multi-MW electron coolers
ER is Timely

- ICFA Beam Dynamics Newsletter (Dec 2015)

<table>
<thead>
<tr>
<th>Year</th>
<th>April</th>
<th>August</th>
<th>December</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>No. 66 (Radiation Damage of Accelerator Components)</td>
<td>No. 67 (Future e+e- Colliders)</td>
<td>No. 68 (ERL and Beam Dynamics Challenges)</td>
</tr>
<tr>
<td>2014</td>
<td>No. 63 (Microbunching Instability)</td>
<td>No. 64 (Beam Cooling I)</td>
<td>No. 65 (Beam Cooling II)</td>
</tr>
</tbody>
</table>

http://icfa-usa.jlab.org/archive/newsletter.shtml

- ERL ICFA Advanced Beam Dynamics Workshops

ERL2015: Proceedings of the 56th ICFA Advanced Beam Dynamics Workshop on Energy Recovery Linacs

- ERL’17 to be held at CERN, 18-23 June
- Alex Bogacz on program committee

http://www.jacow.org/Main/Proceedings?sel=ABDW
Shameless Promotion

HIGH-CURRENT ENERGY-RECOVERING ELECTRON LINACs

Lia Mermoinga, David R. Douglas, and Geoffrey A. Krafft

5. SCALING OF ENERGY-RECOVERING LINACs TO HIGHER ENERGIES
 5.1. Injection Energy .. 410
 5.2. Number of Passes ... 411
 5.3. General Features of Machine Topology 412
 5.4. Phase-Space Matching .. 413
 5.5. Phase-Space Preservation ... 415
 5.6. Beam Halo ... 416
 5.7. CEBAF-ER Experiment .. 416
 6. SCALING OF ENERGY-RECOVERING LINACs TO HIGHER CURRENTS ... 418
 6.1. Generation and Preservation of Low-Emittance, High-Current Beams .. 419
 6.2. Multibunch Instabilities .. 419
 6.3. Superconducting RF Issues and HOM Power Dissipation 423
 6.4. RF Coupling Optimization and RF Control 424

http://uspas.fnal.gov/materials/05UCB/Mermoinga-Douglas-Krafft.pdf
Shameless Promotion Admission

HIGH-CURRENT ENERGY-RECOVERING ELECTRON LINACS

Lia Merninga, David R. Douglas, and Geoffrey A. Krafft

5. SCALING OF ENERGY-RECOVERING LINACS TO HIGHER ENERGIES
 5.1. Injection Energy
 5.2. Number of Passes
 5.3. General Features of Machine Topology
 5.4. Phase-Space Matching
 5.5. Phase-Space Preservation
 5.6. Beam Halo
 5.7. CEBAF-ER Experiment

6. SCALING OF ENERGY-RECOVERING LINACS TO HIGHER CURRENTS
 6.1. Generation and Preservation of Low-Emittance, High-Current Beams
 6.2. Multibunch Instabilities
 6.3. Superconducting RF Issues and HOM Power Dissipation
 6.4. RF Coupling Optimization and RF Control

http://uspas.fnal.gov/materials/05UCB/Merninga-Douglas-Krafft.pdf
World ERL Landscape

Average Current (mA)

Beam Energy (MeV)

Existing
Commissioning
Proposed

This Proposal

CEBAF-ER

CEBAF-FET

LANL

HEPL

IR Demo

IR FEL

UV FEL

MESA

Bates

eRHIC II

LHeC

eRHIC I

Cornell

KEK

"Tigner-tron"

cRL II

cBeta

BERLinPRO

JLEIC

BNL

Light Sources

Free Electron Lasers

Electron Coolers

C. Tennant
World ERL Landscape: Power

![Graph showing the world ERL landscape with various facilities and power levels.](image)

- **Beam Energy (MeV)**
 - Existing
 - Commissioning
 - Proposed

- **Average Current (mA)**
 - 1 kW~10^{-3}

- **Beam Power**
 - 1 kW
 - 10 kW
 - 100 kW
 - 1 MW
 - 10 MW
 - 100 MW

- **Facilities**
 - CEBAF-ER
 - CEBAF-FET
 - LANL
 - HEPL
 - Peking
 - MESA
 - UV FEL
 - IR FEL
 - IR Demo
 - IHEP
 - ALICE
 - Chalk River
 - JAERI
 - BINP
 - BERLinPRO
 - BNL
 - JLEIC
 - "Tigner-tron"
 - KEK
 - LHeC
 - eRHIC I
 - eRHIC II

- **Categories**
 - Electron-Ion Colliders
 - Light Sources
 - Electron Coolers
 - Free Electron Lasers

- **This Proposal**

T. Satogata
ER@CEBAF Seminar
Jan 12 2017
13
World ERL Landscape: Energy Frontier

Tigner-tron

[Diagram showing a scatter plot with various points representing different energy levels and currents. The plot includes labels for Electron-Ion Colliders, Existing, Commissioning, Proposed, Light Sources, Free Electron Lasers, and Electron Coolers.]

This Proposal
owns ER energy frontier

Jefferson Lab

Electron-Ion Colliders

Existing
Commissioning
Proposed
ERLs at Jefferson Lab

- Jefferson Lab has a history of world leadership in ERLs
 - 1993: CEBAF front end ERL test
 - 1998-2001: IR FEL demo
 - First demonstration of ERL-based light source
 - 2002-3: CEBAF one-pass energy recovery expt
 - Remains world leader in ERL beam energy
 - 2002-10: UV FEL
 - Remains world leader in beam power (2 MW)
 - Present: Electron-ion collider ERL collaborations
 - LHeC, BNL

- ER@CEBAF will make Jefferson Lab a world leader in high energy ERL beam and RF studies
LHeC Electron-Ion Collider ERL

- Collides 6.4 mA 60 GeV e- with LHC protons ➔ 384 MW!

Meeting on PERLE test ERL demonstrator Orsay Feb 2017

S.A. Bogacz (JLab), D. Pellegrini, A. Latina, D. Schulte (CERN) Dec 2015
2003 CEBAF-ER Measurements

- Injector energies: $E_{\text{inj}} = 20$ MeV and 56 MeV
- Viewers and harps discriminated multiple pass beams
- 12 GeV era emittance measurements much improved
 - Dispersion control and matching also much improved

2003 2-pass harp scan (2L24)

RF Drive Power: ER on and Off

Note RF transients even with ER on!
Collaboration

ER@CEBAF: A Test of 5-Pass Energy Recovery at CEBAF

Jefferson Lab, Newport News, VA 23606, USA

Brookhaven National Laboratory, Upton, NY 11973, USA

* Co-spokesperson

A collaboration between Jefferson Lab and BNL
(Also an amusing football game)

Meetings (on and off) since July 2015
ER@CEBAF Again

- ER@CEBAF: 5-Pass Energy Recovery at CEBAF

 - Decelerating beam provides part of RF drive power
 - Can be very efficient with superconducting RF

 - Advantages
 - MW of power: RF \rightarrow beam \rightarrow dump injector power
 - RF drive power nearly independent of beam current

- A “prerequisite” for multi-MW electron coolers
Add pathlength chicane
Add low energy dump line

Do not interfere with existing
CEBAF 12 GeV capabilities

Failure of new magnets does
not affect 12 GeV capability

A. Bogacz
Energy gain per pass limited by disruption of beam energy spread σ_E due to synchrotron radiation

$$\sigma_E \propto \gamma^{7/2}$$

A. Bogacz
ER@CEBAF: Slip Half RF Wavelength

\[\Delta s = \lambda/2 \]
ER@CEBAF: Decelerating

Challenge: decelerating beam (and synchrotron radiation-driven energy spread) adiabatically anti-damps

Small energy losses to synchrotron radiation

A. Bogacz
CEBAF Hardware Modifications

- **λ/2 pathlength chicane**: Add four 3m dipoles in AE region
 - Optics solution designed, only magnet strength changes
- **Low energy dump**: Add quadrupole girder, low energy dump
 - Located at end of south linac next to SL spreader
 - Maintains vacuum isolation
- Use existing CEBAF designs, spares
 - Small costing uncertainty
 - Summer SAD installation
Pathlength Chicane

Match with bypassed MQNAE02 quadrupole
Pathlength Chicane: AE02 region

- Use established BA dipole magnets
- No cryomodule passthrough clearance necessary

C. Dubbe
• Existing area has corrector / BPM / quad downstream of 2L27 C100 cryomodule
 – No additional apertures or points of failure created
 – Dump line diagnostics angled away from C100 cone
 – BL magnet failure only affects ER@CEBAF capability
Dump Traffic Clearance

- Dump line maintains clearance for magnet carriage clearance
 - Cryomodule carriage clearance not required in this area
 - ER@CEBAF would not interfere with expected tunnel traffic
Longitudinal Simulations and Match

• Collaboration with BNL using four accelerator simulation codes to verify optics design
 – Manipulate bunch length and compression
 – Collaborative benefits to CEBAF parity quality program, CEBAF energy spread control

Beam energy/longitudinal position distributions after energy recovery

Y. Roblin
Optimized Linac Optics

$M = \begin{bmatrix} \beta_x \\ -\alpha_x \\ \beta_y \\ -\alpha_y \end{bmatrix}$

A. Bogacz: APS SLC 2016 Talk
Optimized Linac Optics

‘Drift Linac’

\[
\begin{aligned}
M_1^{in} & \quad M_2^{out} & \quad M_3^{in} & \quad M_4^{out} & \quad M_5^{in} & \quad M_6^{out} & \quad M_7^{in} & \quad M_8^{out} & \quad M_9^{in} \\
BETA_X & \quad BETA_Y & \quad DISP_X & \quad DISP_Y
\end{aligned}
\]

\[
\begin{aligned}
E_{inj} & \quad E_1 & \quad E_2 & \quad E_3 & \quad E_4 & \quad E_5 & \quad E_6 & \quad E_7 & \quad E & \quad E_9 & \quad E_{10}
\end{aligned}
\]

\[
\begin{aligned}
60^0 \text{ FODO}
\end{aligned}
\]

\[
\begin{aligned}
M_1^{in} & \quad M_2^{out} & \quad M_3^{in} & \quad M_4^{out} & \quad M_5^{in} & \quad M_6^{out} & \quad M_7^{in} & \quad M_8^{out} & \quad M_9^{in} \\
BETA_X & \quad BETA_Y & \quad DISP_X & \quad DISP_Y
\end{aligned}
\]

\[
\begin{aligned}
E_{inj} & \quad E_1 & \quad E_2 & \quad E_3 & \quad E_4 & \quad E_5 & \quad E_6 & \quad E_7 & \quad E_8 & \quad E_9 & \quad E_{10}
\end{aligned}
\]

\[
\langle \frac{\beta}{E} \rangle = \left(\frac{1}{L} \int \frac{\beta}{E} \, ds \right)_{\text{min}}
\]
Diagnostics and Measurements: BPMs

• Linac SEE BPM extension
 – Current linac SEE BPMs temporally multiplex 5-6 passes of beam
 – Feasible to extend to 10 passes with software and beam pulse structure modification

• 3 GHz BPMs
 – Six modified SEE BPMs (3 each Arcs 1 and 9)
 – Establishes accelerating/decelerating energy ratios
 – Wire scanners resolve both accelerating and decelerating beams
 – No other decelerating arc BPMs
 • no steering degrees of freedom
Diagnostics and Measurements: Dump

- Extraction beam measurements
 - Leverage well-calibrated Hall A dipole system
 - IHA1C12 and viewer provide energy spread
 - Emittance measurements in zero-dispersion 2C line
 - All measurements feasible each even pass up/down

- Dump line includes full diagnostics suite
 - Three BPMs for steering
 - Two quadrupoles for focus/emittance measurements
 - MPS BCM for total beam transmission
 - Viewer for dump beam images
Phased Hardware Commissioning

• ½ pass: NL accelerating, SL decelerating
 – Commission dump line extraction, diagnostics
 – Compare injection / dump line beam characterization
 – 1-2 days

• 1 pass: reproduce 2003 ER experiment results
 – Requires first pass beam passing through Arc A
 – Commission pathlength chicane, Arc 1 3 GHz BPMs
 – Demonstrate intermediary beam diagnostics
 – Evaluate MOMOD pathlength control tolerances
 – 3-4 days (took 1.5 days in 2003 experiment)
 – Preferably $E_{\text{inj}} = 56$ MeV (same as 2003), $E_{\text{linac}} = 500$ MeV
 – Does not require changes to arc optics
Phased Hardware Commissioning

• 5 pass (E_{linac} up to 750 MeV, E_{inj} up to 85 MeV)
 – Commission new arc optics, longitudinal beam manipulations
 – Commission Arc 9 3 GHz BPMs, 10-beam BPM software
 – Further demonstrate intermediary beam diagnostics
 • Use 500 MHz separators at start of west arcs
 – Perform tuning tolerance studies
 – Demonstrate full decelerating beam transport
 – Perform RF tuning studies
 – Demonstrate CW energy recovery
 – ~14 days of tuning and characterization
Recirculating Beam Breakup (BBU)

• Recirculating beam breakup
 – Positive feedback loop between beam power and higher order mode RF power
 – Couples through beam transport
 – Many RF higher order modes communicate with beam, each other in near-exponential complexity
 – Limits total beam current

• Open questions in current literature
 – Hofstaetter/Bazarov PRST:AB: Scale as N_{pass} or N_{pass}^2 ?
 – May only be answerable experimentally
 – ER@CEBAF SRF scale is ideal test bed
 • E.g. C100 warm HOM damper loads accessible

BBU Mechanism: TM110 mode

- Recirculating beam breakup RF cavity HOM
 - TM110 mode shown here: illustrates mechanism
- High Q HOM modes are most dangerous
 - Deposited power rings for longer time
 - More chance for positive feedback with later bunches
BBU Measurements: C100 Warm HOM Loads

- C100 HOM, BBU experiment: Ilkyoung Shin’s PhD thesis
- Surveyed HOMs using warm coupler ports in CMTF, tunnel
 - With and without beam loading, varying recirculation optics
- Based on techniques described in Chris Tennant’s thesis
- HOM power and BBU measurements are accessible
- Can we drive BBU instability in ER@CEBAF with existing beam?
Summary

• High energy ERLs are a required technology for affordable, high-quality, high power electron beams
 – Required for future high-energy EIC designs
 – Energy frontier exploration requires large facility

• CEBAF is a unique facility to study energy recovery of high energy, disrupted beams in a large installation
 – Synchrotron radiation: graceful energy scaling
 – Design in hand to add capability to CEBAF 12 GeV facility without affecting base program
 – Optics optimization, BBU studies accessible

• ER@CEBAF will make Jefferson Lab a world leader in high energy ERL beam and RF studies