

ER@CEBAF: A Test of 5-Pass Energy Recovery at CEBAF Todd Satogata

Accelerator Physics Seminar Jan 12 2017

Seminar Outline

- Background
 - History and current state of energy recovery (ER)
 - Jefferson Lab's role and leadership
 - Motivations, advantages, challenges
- ER@CEBAF
 - Collaboration with BNL and proposal
 - Layout: new chicane and new beam dump
 - **Optics**: longitudinal match, transverse match
 - Diagnostics: multi-pass BPMs, decelerating emittance
 - BBU: beam breakup instability studies, scaling
- Summary and path forward

Energy Recovery: History

• February 1965*: Maury Tigner, Nuovo Cimento

- How to make high power electron colliders?
 - 100+ MW accelerating power anticipated
 - **Option 1**: Throw lots of power into the RF system
 - Maury: "Although in principle it may be possible to produce and handle this large power, the sheer brutishness of the scheme robs it of all appeal."
 - * So energy recovery is almost exactly one year older than your presenter

ER@CEBAF Seminar

З

Energy Recovery: History

• February 1965: Maury Tigner, Nuovo Cimento

- Option 2: Decelerate beam through same RF system
 - Decelerating beam power goes back into cavity fields
 - "Constant" CW beam requires very little net RF drive
 - Ultimately want beam power >> drive power
- Paper: *L*=3x10³⁰ cm⁻² s⁻¹ for 3 GeV 120 mA collider

360 MW! 1 kW=3e-6!

 Maury: "A low-density target such as liquid hydrogen might be placed in the return leg of the magnet system"!

ER@CEBAF Seminar

Jan 12 2017

Energy Recovery Linacs: CEBAF

• CEBAF (a traditional recirculating linear accelerator)

accelerating

Linac RF voltage (1 pass) Beam only removes power from RF

- Applied RF power in linacs drives beam power
 - Up to MW of beam power at A/C beam dumps
- Disadvantages:
 - Cost / contamination of MW class beam dumps
 - MW of power: RF → beam → dump full power
 - Very high power beam operation cost prohibitive

Energy Recovery Linacs: CEBAF

• CEBAF (a traditional recirculating linear accelerator)

- Applied RF power in linacs drives beam power
 - Up to MW of beam power at A/C beam dumps
- Disadvantages:
 - Cost / contamination of MW class beam dumps
 - MW of power: RF → beam → dump full power
 - Very high power beam operation cost prohibitive

Energy Recovery Linacs: ER@CEBAF

• ER@CEBAF: 1-Pass Energy Recovery at CEBAF

- Decelerating beam provides part of RF drive power
 - Can be very efficient with superconducting RF
- Advantages
 - MW of power: RF → beam → dump injector power
 - RF drive power nearly independent of beam current
- A prerequisite for multi-MW electron coolers

Energy Recovery Linacs: ER@CEBAF

ER@CEBAF: 5-Pass Energy Recovery at CEBAF

- Decelerating beam provides part of RF drive power
 - Can be very efficient with superconducting RF
- Advantages
 - MW of power: RF → beam → dump injector power
 - RF drive power nearly independent of beam current
- A "prerequisite" for multi-MW electron coolers

ER is Timely

• ICFA Beam Dynamics Newsletter (Dec 2015)

Year	April	August	December
2016			<u>No. 69</u> (Collective Effects)
2015	<u>No. 66</u> (Radiation Damage of Accelerator Components)	<u>No. 67</u> (Future e+e- Colliders)	<u>No. 68</u> (ERL and Beam Dynamics Challenges)
2014	<u>No. 63</u> (Microbunching Instability)	<u>No. 64</u> (Beam Cooling I)	<u>No. 65</u> (Beam Cooling II)

http://icfa-usa.jlab.org/archive/newsletter.shtml

• ERL ICFA Advanced Beam Dynamics Workshops

ERL2015: Proceedings of the 56th ICFA Advanced Beam Dynamics Workshop on Energy Recovery Linacs

- 2015, 2013, 2011, 2009, 2007
- ERL'17 to be held at CERN, 18-23 June

9

Alex Bogacz on program committee

http://www.jacow.org/Main/Proceedings?sel=ABDW

ER@CEBAF Seminar

Shameless Promotion

HIGH-CURRENT ENERGY-RECOVERING ELECTRON LINACS

T. Satogata

Annu. Rev. Nucl. Part. Sci. 2003. 53:387–429 doi: 10.1146/annurev.nucl.53.041002.110456 Copyright © 2003 by Annual Reviews. All rights reserved

Lia Merminga, David R. Douglas, and Geoffrey A. Krafft

http://uspas.fnal.gov/materials/05UCB/Merminga-Douglas-Krafft.pdf

ER@CEBAF Seminar

Jan 12 2017

10

Jefferson Lab

Shameless Promotion Admission

HIGH-CURRENT ENERGY-RECOVERING ELECTRON LINACS

Annu. Rev. Nucl. Part. Sci. 2003. 53:387–429 doi: 10.1146/annurev.nucl.53.041002.110456 Copyright © 2003 by Annual Reviews. All rights reserved

Lia Merminga, David R. Douglas, and Geoffrey A. Krafft

http://uspas.fnal.gov/materials/05UCB/Merminga-Douglas-Krafft.pdf

ER@CEBAF Seminar

Jan 12 2017

World ERL Landscape

World ERL Landscape: Power

World ERL Landscape: Energy Frontier

ERLs at Jefferson Lab

- Jefferson Lab has a history of world leadership in ERLs
 - 1993: CEBAF front end ERL test
 - 1998-2001: IR FEL demo
 - First demonstration of ERL-based light source
 - 2002-3: CEBAF one-pass energy recovery expt
 - Remains world leader in ERL beam energy
 - 2002-10: UV FEL
 - Remains world leader in beam power (2 MW)
 - Present: Electron-ion collider ERL collaborations
 - LHeC, BNL
- ER@CEBAF will make Jefferson Lab a world leader in high energy ERL beam and RF studies

LHeC Electron-Ion Collider ERL

2003 CEBAF-ER Measurements

2003 2-pass viewer images

2003 2-pass harp scan (2L24)

- Injector energies: E_{inj}=20 MeV and 56 MeV
- Viewers and harps discriminated multiple pass beams
- 12 GeV era emittance measurements much improved
 - Dispersion control and matching also much improved

ER@CEBAF Seminar

Note RF transients even with ER on!

17

Jan 12 2017

Collaboration

ER@CEBAF: A Test of 5-Pass Energy Recovery at CEBAF

S.A. Bogacz, D. Douglas, C. Dubbe, A. Hutton, T. Michalski,
F. Pilat, Y. Roblin, T. Satogata^{*}, M. Spata, C. Tennant, M. Tiefenback Jefferson Lab, Newport News, VA 23606, USA

I. Ben-Zvi, Y. Hao, P. Korysko, C. Liu, F. Méot^{*}, M. Minty, V. Ptitsyn, G. Robert-Demolaize, T. Roser, P. Thieberger, N. Tsoupas Brookhaven National Laboratory, Upton, NY 11973, USA

* Co-spokesperson

A collaboration between Jefferson Lab and BNL (Also an amusing football game)

Meetings (on and off) since July 2015

ER@CEBAF Seminar

ER@CEBAF Again

ER@CEBAF: 5-Pass Energy Recovery at CEBAF

- Decelerating beam provides part of RF drive power
 - Can be very efficient with superconducting RF
- Advantages
 - MW of power: RF → beam → dump injector power
 - RF drive power nearly independent of beam current
- A "prerequisite" for multi-MW electron coolers

ER@CEBAF

ER@CEBAF: Accelerating

ER@CEBAF Seminar

ER@CEBAF: Slip Half RF Wavelength

ER@CEBAF Seminar

Jan 12 2017

ER@CEBAF: Decelerating

CEBAF Hardware Modifications

- λ/2 pathlength chicane: Add four 3m dipoles in AE region
 - Optics solution designed, only magnet strength changes
- Low energy dump: Add quadrupole girder, low energy dump
 - Located at end of south linac next to SL spreader
 - Maintains vacuum isolation
- Use existing CEBAF designs, spares
 - Small costing uncertainty
 - Summer SAD installation

New Quadrupole Girder

24

New Low Energy Dump

🍘 💎

T. Satogata

ER@CEBAF Seminar

Extraction Area

Jan 12 2017

Pathlength Chicane

Pathlength Chicane: AE02 region

- Use established BA dipole magnets
- No cryomodule passthrough clearance necessary

FA T. Satogata

ER@CEBAF Seminar

Jan 12 2017

26

C. Dubbe

Jefferson Lab

Dump Extraction Detail

- Existing area has corrector / BPM / quad downstream of 2L27 C100 cryomodule
 - No additional apertures or points of failure created
 - Dump line diagnostics angled away from C100 cone
 - BL magnet failure only affects ER@CEBAF capability

M. Spata

Dump Traffic Clearance

- Dump line maintains clearance for magnet carriage clearance
 - Cryomodule carriage clearance not required in this area
 - ER@CEBAF would not interfere with expected tunnel traffic

Longitudinal Simulations and Match

- Collaboration with BNL using four accelerator simulation codes to verify optics design
 - Manipulate bunch length and compression
 - Collaborative benefits to CEBAF parity quality program, CEBAF energy spread control

Optimized Linac Optics

A. Bogacz: APS SLC 2016 Talk

Jefferson Lab

30

ER@CEBAF Seminar

Optimized Linac Optics

Acceleration/Deceleration

Bogacz

. ک

Diagnostics and Measurements: BPMs

- Linac SEE BPM extension
 - Current linac SEE BPMs temporally multiplex 5-6 passes of beam
 - Feasible to extend to 10 passes with software and beam pulse structure modification
- 3 GHz BPMs
 - Six modified SEE BPMs (3 each Arcs 1 and 9)
 - Establishes accelerating/decelerating energy ratios
 - Wire scanners resolve both accelerating and decelerating beams
 - No other decelerating arc BPMs
 - no steering degrees of freedom

Diagnostics and Measurements: Dump

- Extraction beam measurements
 - Leverage well-calibrated Hall A dipole system
 - IHA1C12 and viewer provide energy spread
 - Emittance measurements in zero-dispersion 2C line
 - All measurements feasible each even pass up/down
- Dump line includes full diagnostics suite
 - Three BPMs for steering
 - Two quadrupoles for focus/emittance measurements
 - MPS BCM for total beam transmission
 - Viewer for dump beam images

Phased Hardware Commissioning

- ½ pass: NL accelerating, SL decelerating
 - Commission dump line extraction, diagnostics
 - Compare injection / dump line beam characterization
 - 1-2 days
- 1 pass: reproduce 2003 ER experiment results
 - Requires first pass beam passing through Arc A
 - Commission pathlength chicane, Arc 1 3 GHz BPMs
 - Demonstrate intermediary beam diagnostics
 - Evaluate MOMOD pathlength control tolerances
 - 3-4 days (took 1.5 days in 2003 experiment)
 - Preferably $E_{inj} = 56 \text{ MeV}$ (same as 2003), $E_{linac}=500 \text{ MeV}$
 - Does not require changes to arc optics

Phased Hardware Commissioning

- 5 pass (E_{linac} up to 750 MeV, E_{inj} up to 85 MeV)
 - Commission new arc optics, longitudinal beam manipulations
 - Commission Arc 9 3 GHz BPMs, 10-beam BPM software
 - Further demonstrate intermediary beam diagnostics
 - Use 500 MHz separators at start of west arcs
 - Perform tuning tolerance studies
 - Demonstrate full decelerating beam transport
 - Perform RF tuning studies
 - Demonstrate CW energy recovery
 - ~14 days of tuning and characterization

Recirculating Beam Breakup (BBU)

- Recirculating beam breakup
 - Positive feedback loop between beam power and higher order mode RF power
 - Couples through beam transport
 - Many RF higher order modes communicate with beam, each other in near-exponential complexity
 - Limits total beam current
- Open questions in current literature
 - Hofstaetter/Bazarov PRST:AB: Scale as N_{pass} or N_{pass}^2 ?
 - May only be answerable experimentally
 - ER@CEBAF SRF scale is ideal test bed
 - E.g. C100 warm HOM damper loads accessible

http://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.7.054401

36

ER@CEBAF Seminar

BBU Mechanism: TM110 mode

- Recirculating beam breakup RF cavity HOM
 - TM110 mode shown here: illustrates mechanism
- High Q HOM modes are most dangerous
 - Deposited power rings for longer time
 - More chance for positive feedback with later bunches

BBU Measurements: C100 Warm HOM Loads

- C100 HOM, BBU experiment: Ilkyoung Shin's PhD thesis
- Surveyed HOMs using warm coupler ports in CMTF, tunnel
 - With and without beam loading, varying recirculation optics
- · Based on techniques described in Chris Tennant's thesis
- HOM power and BBU measurements are accessible
- Can we drive BBU instability in ER@CEBAF with existing beam?

Summary

- High energy ERLs are a required technology for affordable, high-quality, high power electron beams
 - Required for future high-energy EIC designs
 - Energy frontier exploration requires large facility
- CEBAF is a unique facility to study energy recovery of high energy, disrupted beams in a large installation
 - Synchrotron radiation: graceful energy scaling
 - Design in hand to add capability to CEBAF 12 GeV facility without affecting base program
 - Optics optimization, BBU studies accessible
- ER@CEBAF will make Jefferson Lab a world leader in high energy ERL beam and RF studies

