

Crab Cavity Efforts at CERN

Alejandro Castilla on behalf of the BE-RF-SRF section and HL-LHC Project Work Package 4, with special thanks to (but not only) Lancaster University, USLARP, ODU, Jefferson Lab, and more...

Jefferson Lab - Accelerators Seminar, December 15th 2016

Outline

- Luminosity Requirements
 - Jefferson Lab Electron-Ion Collider
 - HL-LHC
- Crab Cavity Designs
- Schedule
- Activities at CERN
- Summary

Jefferson Lab - EIC

*from F. Pilat, JLEIC Collaboration Meeting $5^{th} - 7^{th}$ Oct 2016

A. Castilla - CERN, Dec. 15th 2016

Jefferson Lab - EIC

• $(\sqrt{s} = 20 - 70 \text{ GeV})$ and $> 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ luminosity

*from V. Morozov, JLEIC Collaboration Meeting 5th - 7th Oct 2016

CERN HL-LHC Upgrades

CERN HL-LHC Upgrades

Comparing the Machines

		JLEIC		HL-LHC
Parameter	Units	р	e	р
Beam energy	GeV	100	5	7000
Collision frequency (SRF1)	MHz	476		400
Particles per bunch	10 ¹⁰	0.98	3.7	22
Beam current	А	0.75	2.82	1.1
Polarization (BDD1)		>70%	>70%	
Bunch length, rms	cm	1.2	1.2	9.0
Norm. emittance, x/y (<i>ECL</i>)	μm	0.5/0.1	70/14	2.5
x/y β* (BDD2)	cm	6/1.2	4/0.8	20
Vert. beam-beam param. (BDD3)		0.015	0.053	0.0086
Lumi./IP, w/HG, 10 ³³	cm ⁻² s ⁻¹	19.5		59.5

Experimental Challenge of the EIC

Electron-Ion Collider: Cannot be HERA or LHeC: proton energy too high

Jefferson Lab

LHC 2016 Run (about luminosity)

https://home.cern/cern-people/updates/2016/10/lhc-report-end-2016-proton-proton-operation

Luminosity in Colliders

More events in time → better statistic/resolution of the processes

$$\frac{dR}{dt} = \mathcal{L} \times \sigma_p$$

- $\frac{dR}{dt}$ interactions per second,

- σ_p interaction cross section (machine independent),
- *L* luminosity, relativistic invariant, independent of the interaction and
 - -very important- measurable.

11

Luminosity in Colliders

$$\sigma_a$$

 σ_f
 r
 r

- Identical Gaussian beams
 - no crossing angle
 - w/o dispersion
 - no offset

$$\mathcal{L} = \frac{n_1 n_2 f N_b}{4\pi \sigma_x \sigma_y}$$

Where at the IP

$$eta_{x,y}^* = rac{\sigma_{x,y}^2}{\epsilon}$$
 and $\epsilon = rac{\gamma}{\epsilon_N}$

$$\therefore \mathcal{L} = \frac{n_1 n_2 f N_b}{4\pi\epsilon \sqrt{\beta_x^* \beta_y^*}}$$

Luminosity Parameters

- Geometrical deformations at IP (hour-glass)
- Beam offsets
- Dispersion at IP
- Strong coupling, etc.
- Not head-on (crossing angle θ_c)

Crossing Angle

- Using rotated reference frames per beam
 - change of coordinates
 - rewrite Gaussian distributions
 - compute the new Gaussian integrals

Luminosity + Crossing Angle

• Some more approximations since $\frac{\theta_c}{2}$ is small:

$$\sin\frac{\theta_c}{2} \sim \tan\frac{\theta_c}{2} \sim \frac{\theta_c}{2};$$

discarding
$$\begin{cases} \sigma_x^{\ k} \sin^{l \theta_c}/_2 \\ x^k \sin^{l \theta_c}/_2 \end{cases}; \ \forall \ k+l \ge 4 \end{cases}$$

• And so the result is slightly different:

$$\mathcal{L} = \frac{n_1 n_2 f N_b}{4\pi\epsilon \sqrt{\beta_x^* \beta_y^*}} \cdot \frac{1}{\sqrt{1 + \left(\frac{\sigma_s}{\sigma_x} \tan\frac{\theta_c}{2}\right)^2}}$$

Crossing Angle w/o Correction

The Crabbing Concept

*R. Palmer, SLAC-PUB-4707 (1988).

RF Transverse Deflection

RF Crabbing

$$V_T = \int_{-\infty}^{\infty} \left[E_x(z) \cos \frac{\omega z}{c} + c B_y(z) \sin \frac{\omega z}{c} \right] dz$$

Local Crab Crossing Correction

Comparing Machine Requirements JLEIC*

$$V_T = \frac{c \boldsymbol{E}_b \tan \frac{\boldsymbol{\theta}_c}{2}}{\boldsymbol{\omega} \sqrt{\beta^* \boldsymbol{\beta}^c}}$$

HL-LHC

Parameter	Proton	Units
Beam energy E_b	7000	GeV
Beam current	1.1	А
Bunch frequency ω	400	MHz
Crab crossing angle θ_c	~0.5	mrad
Beta function at IP β^*	20	cm
Beta function at CC β^c	~3000	m
Integrated kicking voltage per beam per side V_T	~8.5	MV

CERN

*from S. De Silva, JLEIC Collaboration Meeting $5^{th}-7^{th}\,Oct\,2016$

Parameter	Electron	Proton	Units
Beam energy E_b	10	100	GeV
Beam current	0.72	5.0	Α
Bunch frequency ω	95	MHz	
Crab crossing angle θ_c	50	mrad	
Beta function at IP β_x^*	10		cm
Beta function at CC β_x^c	200	750	m
Integrated kicking voltage per beam per side V_T	2.8	14.5	MV

JLEIC Interaction Region

- 50 mrad crossing angle
 - Fast beam separation
 - No parasitic collisions
 - Improved momentum resolution for the detector
- Other advantages
 - Downstream chicane for electrons
 - spectrometry and polarimetry
 - e's & p's parallel and separated downstream by 1.5 m

*from V. Morozov, JLEIC Collaboration Meeting $5^{th}-7^{th}\,Oct\,2016$

Reminder, Basic Parameters

- Voltage = 3.4 MV /cavity (2 cavities /beam /IP side) 16 total
- Frequency = 400.79 MHz
- $Q_{ext} = 5 \times 10^5, Q_0 \approx 10^{10}$
- RF power source = 80 kW (SPS $\leq 40 \text{ kW}$)
- Cavity tuning = $\pm 100 \text{ kHz}$ (LFD $\sim 0.5 \text{ kHz}$)
- Operating temperature = 2.0 K

750 MHz-RFD Transverse Kick

$$V_T = \int_{-\infty}^{\infty} \left[E_x(z) \cos \frac{\omega z}{c} + c B_y(z) \sin \frac{\omega z}{c} \right] dz$$

750 MHz MEIC-Crab Fabrication

952.6 MHz Cavity – Single Cell Cavity

- Single cell cavity designs with varying beam aperture radii
- RF properties
 - Peak surface fields increase
 - Shunt impedance decrease

	(A)	(B)	(C)	
Frequency	952.6			MHz
Aperture	50	60	70	mm
1 st HOM	1431.0	1420.4	1411.5	MHz
V_t^*	0.157			MV
E_p^*	4.2	4.8	5.4	MV/m
B_p^*	9.3	11.3	13.6	mT
$[R/Q]_t$	136	81	50	Ω
G	145	155	166	Ω
$R_t R_s$	2.0×10 ⁴	1.3×10 ⁴	8.3×10 ³	Ω^2
$*E_t = 1 \text{ MV/m}$				

*from S. De Silva, JLEIC Collaboration Meeting $5^{th} - 7^{th}$ Oct 2016

952.6 MHz Cavity – Multi-Cell Cavity

 A 3-cell design study with varying beam aperture

- HILUMI
 - CERN

- Low surface fields
- High shunt impedance
- Presence of lower order modes
 - Requires a notch filter in damping LOMs

	(A)	(B)	(C)	
Frequency		MHz		
Aperture	50	60	70	mm
LOM	790, 879	773, 870	757, 862	
1 st HOM	1409	1383	1335	MHz
V_t^*		MV		
E_p^*	4.7	5.1	5.6	MV/m
B_p^*	8.7	10.0	11.4	mT
$[R/Q]_t$	494	323	219	Ω
G	161	170	179	Ω
$R_t R_s$	8.0×10 ⁴	5.5×10 ⁴	3.9×10 ⁴	Ω^2
$*E_t = 1 \text{ MV/m}$				

*from S. De Silva, JLEIC Collaboration Meeting 5th – 7th Oct 2016

Example Designs (400 MHz)

WP4 Planning

L-LHC PROJEC

SPS Cavities, 2K Volume

Bulk Nb cavities, Dipolar symmetry

 $V_T = 3.4 \text{ MV} (E_p, B_p \le 40 \text{ MV/m}, 70 \text{ mT})$ Stored energy ~ 10 - 12 J

CERN insourced DQW production Nov 2015

*from R. Calaga 6th HL-LHC Collaboration Meeting Nov 2016

A. Castilla - CERN, Dec. 15th 2016

Prototype Cryomodules

Design and Engineering of Prototypes

*from S. De Silva, JLEIC Collaboration Meeting $5^{th} - 7^{th}$ Oct 2016

SPS-DQW Cavity Fabrication

First CERN cavity frequency trimming last week

Cavity I cold test mid-Feb 2017 (Cavity 2 in early March)

Dressed Cavities (2K volume)

Main Mechanical interfaces: He-vessel: Bolted-welded concept Cold magnetic shield Tuner: Sym. tuning with warm actuation Three point support + alignment system

Main RF interfaces 1 FPC: Single ceramic coaxial line 3 HOMs: Two stage filter, coaxial 1 PU: Cu-Nb for field probe + HOM

*from R. Calaga 6th HL-LHC Collaboration Meeting Nov 2016

Similar concept for RFD with different HOM interfaces

HL-LHC CC SPS test stand in 2016

*from G. Vandoni 2nd CERN-SRF Workshop Nov 2016

A. Castilla - CERN, Dec. 15th 2016

HL-LHC CC SPS test stand in 2018

HL-LHC CC SPS test stand layout

*from G. Vandoni 2nd CERN-SRF Workshop Nov 2016

37

SPS – Machine protection

Table movement is interlocked by Access VETO in SPS and by Valves closed

Mitigation of the risk of cryogenic hazard

Table movement interlocks beam by sector valve closure

Table position interlocks beam and extraction

SPS-ring BIS and EXTR 1 BIS

*from G. Vandoni 2nd CERN-SRF Workshop Nov 2016

SPS Installation Master plan

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr

*from G. Vandoni 2nd CERN-SRF Workshop Nov 2016

A. Castilla - CERN, Dec. 15th 2016

39

Tuner Mockup Vs Cryomodule

Proof-of-Principle

DQW Proof-of-Principle

J. Swiesek and K. Artoos

- Calculations Norbert Kuder for 0.5 mm displacement on each plate. Maximum stress intensity: 289 MPa
- Elastic limit Nb with 1.5 safety factor is 320 MPa at 2 K (Material properties for mechanical and thermal analysis, EDMS 1530740)
- Since rigidification by welds are not in the model + other factors like Nb thickness variation, etc.:
 - Maximum 0.5 mm motor displacement for the DQW-PoP tuner test

41

SM18 Tuner Mockup Setup

- Test Stand
 - New test stand commissioned to allow the tuner test configuration
 - New user interface deployed
 - RF testing
 - Motor controls
- Diagnostics
 - Temperature mapping
 - 3 axis B-flux gauges
 - 2nd Sound detection
 - Strain gauge

42

Tuner Small Steps

Moving 116 steps

- ~256 nm displacement
- Total freq. shift ~29 Hz
- Average measure of 2.2 nm/step
- From large freq. excursions
 - $\Delta f / \Delta y \approx 180 \text{ kHz/mm}$

Maximum Tuning Excursion

CERM

 After fixing end stops and motor slippage

Following: CC LLRF + Tuner

- Design evolving from the existing Linac 4 cards/crates
 - A few firmware changes are needed:
 - Change from 352.2 MHz to 400.8 MHz, sampling, etc.
 - Change from pulsed to CW operation, etc.

P. Baudrenhien, B. Kremel, J. Simonin and N. Stapley

Clean Room Assembly (Bare Cavity)

Clean assembly

- Parts and pre-assemblies ready
- Under laminar flow
- Systematic sequence

Insert Installation (Bare Cavity)

Remove from chariot **SM18 RF-**Mechanically mount onto insert

zone

Clean Room Assembly (Part. Dressed Cavity)

- Cavity + He tank is moved to ISO4
- Mounting of HOMs couplers and RF field antenna
 - Done by E. Montesinos' team (see dedicated talk)
 - One-by-one with nitrogen overpressure

ISO4

Part. Dressed Cavity Insert Installation

SM18

Mounting into insert

 Vacuum line connection and leak check procedure similar to bare cavity

Summary

Lots of studies done and undergoing:

- Machine Integration
- Machine Protection
- and some others still missing...
- Great efforts at CERN for infrastructure and tooling
- Insourcing of cavity fabrication has been an important investment for CERN
- Very tight schedule with a very promising added value
- Synergy of the CC program between JLEIC and CERN

Thank you

Acknowledgement, credits: R. Calaga, O. Capatina, M. Garlasche, A. Macpherson, K. Schirm, G. Vandoni, R. Thomas, K. Artoos, J. Swiesek, N. Shipman, I. Ben-Svi, S. Verdu, S. De Silva, J. Delayen, H. Park, V. Morozov, ...

A. Castilla - CERN, Dec. 15th 2016

Jefferson Lab - EIC

- Understanding the nucleon, nuclear structure and associated dynamics
 - Probe the nucleon
 - many-body regime
 - $x \approx 0.005$ at large Q^2
 - Probe the nuclei
 - N-N and multi-N interaction regime
 - at large Q^2
 - Extend of QCD
 - Saturation
 - Jets in cold matter

A MAR

Jefferson Lab - EIC

- Non-Perturbative Quantum
 Chromodynamics (+TR)
 - Jefferson Lab 12 GeV
 - Quantitative understanding of DIS processes
- Perturbative Quantum Chromodynamics (pQCD)
 - Jefferson Lab EIC
 - Full picture of nucleons and nuclei
 - Origin of mass, spin, nuclear forces,...

*from R. Yoshida, JLEIC Collaboration Meeting 5th - 7th Oct 2016

LHC 2016 Run

Parameter	Chamonix 16	Actual - July 16 - BCMS	
Energy [TeV]	6.5	6.5	
Bunch spacing	25 ns	25 ns	288 bunches per injection following TDI replacement
β* (1/2/5/8) [m]	0.4 / 10 / 0.4 / 3	0.4 / 10 / 0.4 / 3	Tested in 2015 - 0.5 m also an option
Ext. half X-angle (1/2/5/8) [μrad]	-185 / 200 / 185 / -250	-185 / 200 / 185 / -250	10 sigma in 1&5 assuming 3.75 micron emittance
Number of colliding bunches (1/5)	2736 nominal 25 ns	2076	Limited by SPS dump to 96 bpi as of July 16
Bunch population	1.2e11	1.18e11	
Emittance into Stable Beams [µm]	3.5	2.6	
Bunch length [ns] - 4 sigma	1.25	1.05	Start of fill
Peak Luminosity (L0) [cm-2s-1]	1.1e34	1.1e34	BCMS could give around 1.4e34
Peak mean pile-up (inel xsection 80 mb)	29	39	cf. ~40 with BCMS

Number of crab cavities halved

55

HL-LHC virtual luminosity in 2016

TCC meetings: https://indico.cern.ch/category/7361/

CÉRN

Luminosity: A Primer

Per bunch crossing

$$\mathcal{L} = K \cdot n_1 n_2 \cdot$$

 $\iiint_{-\infty}^{\infty} dx dy ds ds_0 [\rho_1(x, y, s, -s_0) \cdot \rho_2(x, y, s, s_0)]$

- Where $s_0 = ct$
- And κ is the kinematic factor $\sqrt{(\vec{v}_1 \vec{v}_2)^2 (\vec{v}_1 \times \vec{v}_2)^2/c^2}$
- Head-on collisions $(\vec{v}_1 = -\vec{v}_2)$, then K = 2
- For uncorrelated distributions:

$$\rho(x, y, s, s_0) = \rho_x(x)\rho_y(y)\rho_s(s \pm s_0)$$

Luminosity: A Primer

• For two beams:

$$\mathcal{L} = 2 \cdot n_1 n_2 \cdot f \cdot N_b \cdot \iiint_{-\infty}^{\infty} dx dy ds ds_0 [$$

 $\rho_{1x}(x)\rho_{1y}(y)\rho_{1s}(s-s_0)\cdot\rho_{2x}(x)\rho_{2y}(y)\rho_{2s}(s+s_0)]$

• The Gaussian distributions can be written:

$$\rho_{iu}(u) = \frac{1}{\sigma_{iu}\sqrt{2\pi}} e^{\left(-\frac{u^2}{2\sigma_{iu}^2}\right)}, \ \rho_s(s \pm s_0) = \frac{1}{\sigma_s\sqrt{2\pi}} e^{\left(-\frac{(s \pm s_0)^2}{2\sigma_s^2}\right)};$$

where u = x, y and i = 1,2 indicates the bunch number A. Castilla - CERN, Dec. 15th 2016

Crossing Angle

- Using rotated reference frames per beam
 - change of coordinates
 - rewrite Gaussian distributions
 - compute the new Gaussian integrals

Crossing Angle

Luminosity + Crossing Angle

For two beams:

$$\mathcal{L} = 2 \cdot n_1 n_2 \cdot f \cdot N_b \cdot \iiint_{-\infty}^{\infty} dx dy ds ds_0[$$

 $\rho_{1x}(x_1)\rho_{1y}(y_1)\rho_{1s}(s_1-s_0)\cdot\rho_{2x}(x_2)\rho_{2y}(y_2)\rho_{2s}(s_2+s_0)]$

Now we will use:

$$\int_{-\infty}^{\infty} dt e^{-(at^2+bt+c)} = \sqrt{\frac{\pi}{a}} \cdot e^{\frac{b^2-ac}{a}}$$

Luminosity + Crossing Angle

• Some more approximations since $\frac{\theta_c}{2}$ is small:

$$\sin\frac{\theta_c}{2} \sim \tan\frac{\theta_c}{2} \sim \frac{\theta_c}{2};$$

discarding
$$\begin{cases} \sigma_x^{\ k} \sin^{l \theta_c}/_2 \\ x^k \sin^{l \theta_c}/_2 \end{cases}; \ \forall \ k+l \ge 4 \end{cases}$$

• And so the result is slightly different:

$$\mathcal{L} = \frac{n_1 n_2 f N_b}{4\pi\epsilon \sqrt{\beta_x^* \beta_y^*}} \cdot \frac{1}{\sqrt{1 + \left(\frac{\sigma_s}{\sigma_x} \tan\frac{\theta_c}{2}\right)^2}}$$

The RF Dipole Family Tree

*from S. De Silva, ODU-JLab 2012.

Aspects of optimization

- Lower and balanced peak surface fields
- Stability of the design:
 - Cylindrical shape is preferred to reduce flat surfaces.
- Curved end plates for cleaning the cavity.
- Wider separation in Higher Order Mode (HOM) spectrum.

A. Castilla - CERN, Dec. 15th 2016

TE-Like Transverse Kick

Accelerating to Deflecting

A. Castilla - CERN, Dec. 15th 2016

Accelerating to Deflecting (2)

Multipole Expansion

-LHC PROJEC

CAARI 2014 Asan Antilian, CERN, Dec. 15th 2016

Field Flatness & Emittance

CÉRN

6 Sigma

750 MHz MEIC-Crab Design Parameters

Parameter	MEIC RF-Dipole	Unit
Frequency of p-mode	750.1	MHz
$\lambda/2$ of p-mode	200.0	mm
Frequency of 0-mode	1350.6	MHz
Cavity length	549.3	mm
Cavity width	93.7	mm
Cavity height	93.7	mm
Bars length	200.0	mm
Bar Vertical Angle	45	deg
Bar Horizontal Angle	10.9	deg
Bars height	63.0	mm
Aperture diameter	60.0	mm
Deflecting voltage V _t *	0.2	MV
E _o *	4.45	MV/m
B _o *	9.31	mT
G	131.4	Ω
R _t /Q	124.15	Ω
R _t R _s	1.65 x 10 ⁴	Ω^2

 $\frac{B_p}{E_p} \sim 2.1 \ \frac{mT}{(MV/m)}$

 $E_T = \frac{V_T}{\lambda/2} \Rightarrow V_T^* = 0.2 \ MV$

 $E_T^* = 1 \frac{MV}{m}$

A. Castilla - CERN, Dec. 15th 2016

750 MHz MEIC-Crab Test Results

CERN

– B_P = 125.69 mT

A. Castilla - CERN, Dec. 15th 2016

DQW SPS-Series

K. Artoos et al, for the Crab Cavities Cryomodule Review, Nov. 2015

Force/tuner stroke 2.2 kN/mm 199 MPa/mm

At RT for 50 MPa , 0.25 mm maximum tuner stroke for 0.5 kN

Cavity (RT , no PCB) with He vessel + pretuning device Input force 2.5 kN

Displacement **z 0.53/0.6 mm** Maximum eq. Stress **225 MPa** Corresponds to about **0.21 MHz (0.42 MHz pp)** *

For 400 MPa/1.2= 333 MPa -> 0.31 MHz (0.62 MHz) range (linear), 3.7 kN, ±1.6 mm

72
Prototype He Vessel, Manufacturing R&D

Internal magnetic (UK contribution)

CERN

Successful pressure, vacuum & magnetic tests done

Compatibility of CCCM with SPS Operation

CCCM aperture

Fast extraction to LHC Not enough aperture for extracted beam at nominal location close to QDA.617 H.Bartosik @ SPS Test Day, I https://indico.cern.ch/event/463435/

at 400GeV, incl. extraction bump purple : raw beam envelope red: beam envelope + tolerance

Crab cavity at QD617 is compatible with slow extraction to North Area

*from G. Vandoni 2nd CERN-SRF Workshop Nov 2016

SPS Tests Program – Weekly Schedule

Crab Cavity SPS Layout, LSS6

*from G. Vandoni 2nd CERN-SRF Workshop Nov 2016

A. Castilla - CERN, Dec. 15th 2016

SPS test-stand Budget

