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Introduction

Figure of merit for accelerator performance
— Luminosity for colliders
— Brightness and coherence for light sources
— Close relation with beam intensity in phase space

Emittance and beam brightness in phase space
— Important and fundamental quantities
— Characterize beam quality

Past and recent development
— Path toward higher brightness of charged beams

— Recent development
* Magnetized beam
* Emittance exchange/transfer in phase space manipulation

Goal of this tutorial

— Review the theoretical foundation
— Introduce recent developments



Outline of the tutorial

Phase space concept for single particle dynamics
Emittance for a bunch of particles

Emittance dilution and mitigation

Electron cooling and magnetized beam

Phase space manipulation

Discussion and Summary



Il. Phase Space Concept
for the Single Particle Dynamics

 Hamiltonian mechanics and its origin in geometrical optics

* Flow in canonical phase space
— Linear and nonlinear harmonic oscillator
— Benefits of phase space description
— Symplectic map and its properties
* Invariant: Liouville theorem
e Single particle dynamics in accelerators
— Lorentz force and equation of motion
— Hamiltonian (t or s as independent variable)
— Transverse and longitudinal equations of motion



* Courant-Snyder theory
— Hill’s equation
— Invariant for linear map: action amplitude

— Phase space ellipse and Poincare section
* Particle dynamics in a solenoid
* Various phase spaces

— Coupling of subspaces in 6D phase space
— Trace space, nominal trace space, canonical phase space



Origin of Phase Space Concept

 Geometric optics for light rays

Fermat’s Principle (1662)

Lagrangian Equation

Eikonal Equation

Hamilton’s Equation (1828)

B
58 =5 [ n(x.y.2)ds =0
A

L(q.q",2)=n(x,y,2)y1+x" +y"
d oL 0oL
dz dq” dq

=0 forg=(x,y)

d( dr) Vi
ds\ ds

H(p,q,S) = pq - L(q,q,S)

dq/ds=0H/dp
dp/ds=—-0H/dq

H(p, q) - q
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Propagation of light is described
by the flow in phase space



Phase Space Concepts in Particle Dynamics

 (Classical Mechanics

Example: mi =—kx

Newton’s Equation (1686) mﬁ: F x(1)
dt’ “f o~
) -05F \ / \\ /
L=L(G,G,t) w

Lagrangian Equation d oL oL

— = =0 forg=(x,y,
4 9d 9q q=(x,y,2)

B
Extremal Action Principle 65=6JL(@,§,t)dt=O

Hamilton’s Equation dq/ds=0H/dp
dp/ds=—-0H dq

l H(p.q.5)= pi—L(g:.8) =T +V //s
N




Simple Harmonic Oscillator

Newton’s equation
mi=—kx, or ¥+w’x=0 (for o=\k/m)

Hamiltonian dynamics in phase space

Hx,p)=T+V = + 5 (total energy)

x | [ —9H/op | ([ o0 1 0H /dx
p | | oH/ox ‘( | 0] OH [dp

P mwx

2m

dH _OH _

=—=0, = H =constant
dt ot

(x,p) are on equal footing in equation of motion, or called
conjugate pair
Solutions are phase space orbits (x(t), p(t))

Phase space velocity vector is equal and perpendicular to
the gradient vector of the Hamiltonian

Hamiltonian or energy is conserved

H(x,p)
S,
\ (,p)

R B 2

A oH JH
.. x dp




Nonharmonic Pendulum

Equation of motion:

2
@+a)23in9=0 W= g
dt \/l

Hamiltonian (allows general coordinates):

2
H@®,p,)=T+V =-Le
2m

Trajectories in phase space are

curves of constant energy E: H(®.py)=E

b)




Hamilton’s Equation

 Hamilton’s equation

Vector
In 2n-dim
phase space

(for motion in n-dim space)

4
Py
4,
p,

J: 2nx2n

1| oH/9q,
dH /dp,
dH /dq,
dH /dp,

| -

q,
P
q,
P>

)y
dt

— Phase space vector at time t depends on its previous state vector

— At any time its flow is governed by the Hamiltonian equation

e Benefits of phase space description
— Phase space vector is a complete representation of state of motion
— Particle motion is described by the trajectories in phase space, these

trajectories do not cross each other

— Stability of dynamics are indicated by stable regions in the phase
space structure




Symplectic Transformation

 Map for phase space flow (canonical transformation)

z, =z(t)

o [azz,.(zl)J
azlj 2nx2n

* Symplectic condition

>

z, =z(t,)

=J VH(z,.1,)

v

[:[1 %
dt
2, = Mz,
v
r=1, | 9%
dt

=J VH(z,,t,)

VH(z,)= MVH(z,)

q, 19@)
M
_—
5, - %
H(x,p)
_______ Ao
2
VH(z,) \ |-~/ 5 VH(z,)
Z2 - u Zl p
<o

M must satisfy the symplectic condition:

—_

MJIM = J




Symplectic Constraints

* Symplectic condition "0 .
-1 0
For n-dim space or T J = 0 1
2n-dim phase space, MIM =J for -1 0

e Number of constraints

Example: n=2, M is a map in 4-dim phase space 0 “a, a, a,.

J is a 4 X 4 matrix wiht antisymmetry —a, 0 way; a,

MJM = J sets 6 constraints for the 16 elements of M

In general, for 2n-dim phase space, symplectic condition sets
K=n(2n-1) constraints for 2nx2n matrix elements of M.

n=1, K=1; n=2, K=6; n=3, K=15




Features of Symplectic Transformation

* Liouville’s Theorem

From MJM =J , we have
detM =1

or J Nt — JdetM d*"z = constant
Q’ Q

1809-1882

In 2D phase space, J.dp Adg = Cj}pdq =constant
Q s

Fundamental invariant: Phase space volume of any enclosed boundary
is conserved under symplectic map

Locally, a parallelogram is transformed into a parallelogram.
Globally, the shape of the volume may change by the symplectic map,
but the volume stays constant.



Poincare-Cartan Invariants

More conserved quantities: sum of projected subspace

volumes are invariants under symplectic transformatio

X, = j dp dx+ j dp,dy+ J dp.dz

proj(V,) proj(V,) proj(V,)
S, = [ dp.dpdrdy+ | dp,dpdydz+ [ dp.dpdudx
proj(Vy) proj(Vy) proj(Vy)

* GromovV’s nonsqueezing theorem

Starting from a ball with projected shadow 11, = TR’
After canonical transform, the shadow on any plane
will never decrease below its original value TR*

n

dy




Single Particle Dynamics In Accelerators

Equation of motion for charged particles

dymv
dt

=q(

—

—

E+YxB

C

) ,  with

B=VxA

F=_vo_194°
c ot

EM fields in typical elements

Dipole field:

B, =B,

Quadruple field:

B =B, (xé, + Ye,)

—

VxB=0:

oB

Y

o0x

Acceleration field:

E, =E,(r,z)cos(wf + @) j%j

Solenoidal field:

oo

RZ
BO(Z) - ‘u()_

, 1,(Z")Ar
5 sz [

(Z_Z,)2 +R2]3/2

—oo

2

B.= B(z)—rzB"(z)+---

3

r r
B :__B/ __B/// 4.
=73 (2) T (2)

&
e =
P

N




Hamiltonian for Charged Particles

* Hamiltonian for a free particle

H = c\/p2 +m’c? (relativistic, p =ymv)

2

P

H =mc” +2— (nonrelativistic, p < mc)

2m

* Hamiltonian for a charged particle in EM fields

2
H = c\/(ﬁ—fﬁ(i,t)) +m’c’ +ed(X,1)
c

minimal coupling: p— P—eA/c, H— H —e®

Independent variable: t

canonical conjugate pairs:
(x,P.),(y,P,),(z,P,)

—

for P=p+—A
C




Hamiltonian for Charged Particles

 Hamiltonian for charged particle in accelerators

(1) From lab frame to the curvillinear coordinates: e e N

z—s, P,—>(P-€)-(I+x/p), A, > (A-€)-(1+x/p)
P

—_

(2) Lets be independent variable: (¢,—H) — (s,—P)
New Hamiltonian:
H=-P = —eAs/c—(1+x/p)\/(H —eCI))Z/c2 —m’c’—(P.—eA,/c) —(P, - eAy/c)2

1 E-E, Ap

~

=

(3) For canonical pair: z=s— f,ct, 6 =
’ ﬁg L, Po

2 2
A
H:_(1+£)qu_x(1+5)+ 1 [Px_eij +[ y_e_y] N 12524_“'

P ) po p 2(1+0)p, Po Po 2%,

: : : * Independent variable: s
1 . 7P ) 7P ) ,6 . . .
Chnomieal conugais pais: - (5057 y) (2,0) * The new Hamiltonian is no longer

total energy




Transverse Equation of Motion

* Vector potentials

The magnetic field for dipoles and quadruples is described by the vector potential

B, (s)= -2
ep(s) 2 2
B, =—B(s)+ B/(s)x+-- ) > qAS:—[£+(L2—K1)X—+K1y—]+---
B, =B (s)y+-- K= Po p \p 2 2
* Hamiltonian to the 2"9 order
H_Pf'*'l?yz 1 Iy 1K xS when 6=0, the motion in x,y,z are decoupled
T 3 P xRy 5 H=H(x,p)+H,(y.p,)

e Linear equation for transverse motion (for §=0)

(dx OH, (1

— = X"+ —-K, |x=0
Jds  dp, < p
dpx:_aH1 y”+&K1y=O

L ds ox l p

If d/ds=-0H/dz=0 — §=4,



Hill’s Equation

Hill’s equation for a time dependent, periodic harmonic oscillator

d*x

ds

—+K(s)x=0

for periodic lattice focusing:

K(s+L)=K(s)

2
Hamiltonian: H(x,p_,s)= P
2p, 2

+K(S)x2

x,:aH/apx :px/pO
—aH/ax =—K(s)x (energy is conserved)

Hamiltonian Equation: ,
D,

N,
A ¥
hNY /4
N 1,0

\\ 2/,
)
-

(H=-p. is not'energy)

Canonical conjugate pair: (x,p.) for p. = p,x’

For constant energy, we can consider particle motion in (x,x’)



Courant-Snyder Theory of Linear Beam Optics

Courant-Snyder parameterization of transport map (periodic lattice)

! M has 3 free parameters

X
s+L s

C-S parametrization:

(07
M(s)=M((s+L|s)= i cos U+ sinit=1Icosu+Ssin L,
0 1 -y -
S N -
1 S
for By-a*=1, S§*=-I (a,B,y): Twiss parameters

Key features:

M"* =TIcos(ku)+Ssin(ky)  similar to Euler's identity: "’ = coskf +isin k6

Hill's equation requires the Twiss parameters (3,c,y,1)(s) to satisfy:

o0=—B 2. u(s) = [ds/ )+, BB 12— B[4 +K©B* =0



Solution for Hill’'s Equation

e General solution

x(s)=+/2JB(s) cos for  ((s)= (P(0)+j ds,
xX'(5)=—J2J/B(s)(sin@ + ax(s)cos @) o s

 Courant-Snyder Invariant

From sin’¢@+cos’@ =1, \/%/‘7—06\/8/7
s
J:%[ 2+(ﬁx'+0¢x)2] Q/ JBe




Phase Space Ellipse and Courant-Snyder Invariant

* Phase space ellipse for ring optics (Poincare section)
S, S, S

y($)x* +20a(s)xx’ + B(s)x”> =2J

Area of ellipse=27]

Ellipses in x-x" plane for different s
M(s5|s1)= M(s5|s4)---M(s3|s2)M(sz|sl)

Unlike the harmonic oscillator, here the phase space ellipses changes with s. But
because of detM=1, the area is conserved.

e Poincare invariant Ve /7
i > X

Area enclosed=§].> x'dx=2mn] <_/ JBe




General Beam Transport

 General solution in terms of Twiss parameters -
S T B(s ]
Faw Ay BY Ay

(x(s)j_m{ JB(s) 0 ][ cos(@(s)+@,) ] \

——

/  stretch & /

X'(s) —a()/\B(s) 1B(s) |\ —sin@()+y)
sheer

X(s) = B(s) : u(s)

~ -
————————

det B(s)=1, area preserved

* General expression of transport matrix (general lattice)

/&(cosl//+061 siny) MSim//
cosQ  sin@ 4, B,
M(S2|S1)=B(S2) sing  cos B ()= 1 3
- +o,0, . o, —o :
———LZsiny + ——=2cosy [T (cosy —a, siny)
VBB, VBB, \ B,
Physical
. PR | ’
meaning: . 4 . . X
// /,' B ( S] ) ,',' 1 \“ B (S 2 ) \\‘ \\ X
i e stretch & WA
normalize U, \ y <heer A

A 4

S, X(sz)zM(s2|s1)X(s1) sz\“




Motion in a Solenoid

* Special features about solenoid
— It plays an important role in magentized beam
— x-y coupling
— Constant of motion from cylindrical symmetry
— Canonical momentum includes the vector potential

 The magnetic field in solenoid is cylindrically symmetric

B — . " N
{VXBZO BB B=V XA, A=-22(S)(—y§x+x§y)
V- B=0 Br:—LB'(S)+"' B
2 - or 2nmrA,=7mr’B., A, :%4....

B_(s)

K3

° @«
B, (kGauss)

B, (kGauss)

z (cm)



Motion in a Solenoid

Hamiltonian
In Cartesian coordinates:

o (PmeAle) (P—eA lc)
2p, 2p,
2 2 2 2
1 B P B B
b (81) xt+ L+ (ez) y2+eZ(ny—Pyx)
2py 8py\ ¢ ) 2p, 8p,\ ¢ ) 2psc
H (s) H (s) coupling term

Canonical conjugate pairs:  (x,P,),(y,P)

Canonical momentum: { P =px +eA |c

P =pyy +eA /c

for {

A =-By/2

X

A =B x/2

The properties of symplectic transformation apply to the canonical conjugate pairs




Motion in a Solenoid

* Hamiltonian
In cylindrical coordinates:

1 ¢’B* > ¢BP
H = P +5 2 |y L P _ 50
2p0 4¢ 2p0 C

Canonical conjugate pairs: (r,P.),(0,F,)

[ ] i I
Cylindrical symmetry Canonical Angular Momentum (CAM)

dF, _ _oH _, N P, = yBmr’0’ + er A, /c = constant
ie. L=FxP=Fx(p+eAfc)

ds 00

(Busch’s Theorem)

e Radial motion

2
dr 9H dP._ 9H ,,~+( eB, j ,,_(ﬁ) %_0
ds OP° ds  or 2pycC Py

L €+

focusing repulsive centrifugal force



Focusing in a Solenoid

Example: quiet beam entering a solenoid

Outside the solenoid, the beam is quiet:
v, =0, B.(s)=0

v =

5

Canonical angular momentum is conserved:

P, =yBmr’0’ +erA,/c=0

Inside the solenoid body, the charge acquires angular frequency

r

2

Ae_ BZ(S)’ SO Ymrzéz—r—eBZ(S), wLZHZ— L= __ ¢
2 2c

Radial focusing inside the solenoid:

,, eB
r’+ <
(2 DPoC

P
Po

P,=0
"
=

[llustration
of solenoid
focusing




Motion in a Solenoid

e Example: rotating beam entering a solenoid

: —
At en.trance, the particle has transverse >V >
rotation o & '

v =0, v, = , B(s)=0
' ) (5) A, =0
B

Canonical angular momentum is conserved: P, = yBmr’0’ +er & /c = er’ 2—Z
c

Inside the solenoid body, particle transverse motion is quiet

B . r ’
P, =yBmr’0’ +erA,/c=er’—=,  withA,=—=B.(s), so 6°=0
I = I 2c 2

Radial focusing inside the solenoid:

2 2
r”+( B, ] r—[i i=0 == r=constant if r’(0)=0

No focusinginr

cancelled



Transport Matrix of a Solenoid

B, (kGauss)

Transport for (x,x’,y,y’)

- , 1 0 0 0 1 0 O
é b | 0 1 KO ol 01 -K
SRR 10 01 0 10 0 1
T NS K 0 0 1 K 0 0
1 sinf/2K 0 (1-cosB)/2K

i Mo = 0 cosO 0 sin@

> 1 0 —(1-cosB)/2K 1  sin@/2K

: 0 —sin6 0 cos6
v c> CS/K CcS S*/K
= F| My |F= -KCS C* -KS* CS

M =F,M k| = ) )

-cs -S’/K C* CS/K

KS® -CS -KCS ¢?

—_o O O




Role of Solenoid Fringe Fields

¥
K =eB/2pc = F M, F, =

Y y Y y
A A A A
—
X v \\ y —) X — K j¢
Incoming Rotation stopped R _ 4
particle after entrance fringe otatlor.x re§ume
after exit fringe

X 1 1 1 1
x| | o0 0 0 0
y || 0 0 0 0
y K 0 0 K

Quiet beam good for
Electron cooling



Coupled and Decoupled Motion

* Phase space transport for a general form of Hamiltonian
H=H(x,P,y,P,,z,0)

— symplectic map depends on phase space coordinates (nonlinear map)
— coupling among subspaces (X,Px),(y,Py) and (z,0)

 Decoupled motion

H = Hl(x,Px)+H2(y,Py)+H3(z,5)

Motions in each subspace are transported separately

(M, 0 0
x(s) | [ )

{ P (s,) ]_ 1[ P (s)) } — 0 ]\42 0

0O M

\O )

\

ctc.



Notions of Phase Spaces

e Canonical phase space

(x, Px) for P.=p +e Ax (conjugate pair when A_#0)

* Normalized phase space

(x,p,) for px/mc=(7ﬂ)-X' (when A, =0)

* Trace space

’
(X,X ) (when A_ =0, and p, = yfmc = const.)




Il. Emittance for a Bunch of Particles

* Liouville’s Theorem for a Bunch of Particles
— Beam as a vector in the 6N-dim phase space

— Beam as an ensemble in the 6-dim phase space
— Liouville’s Theorem and incompressible flow

e Statistical description of emittance: moment matrix

* Role of Emittance in machine performance
— Colliders: luminosity
— Synchrotron radiation source: photon brilliance
— FEL: gain performance and transverse/longitudinal coherence



* Notions of emittance
— Canonical, normalized and geometric emittances
— Machine and beam ellipses
— Slice and projected emittance
— Beam core and halo
— Rms, 95%, etc

* Invariance of emittance under linear transport
— Invariant for 2D linear transport
— 6D emittance preservation
— Decoupled system: emittance for each subspace is preserved
— Eigen emittances and invariants of moments



Beam Transport in 6N-dimensional Phase Space

* A charged bunch in accelerators consists of an ensemble of N charged particles

A bunch of N particles:

described by (7,7, ,---,7,,) in configuration space ——> 3N degree of freedom

— —

canonical phase space z = (Fl ,151 I Py ety ,PN) —> 6N degree of freedom

* The state of the beam can be represented by one state vector in the 6N
dimensional phase space

A For Hamiltonian H = H(q,,p,,"**qsn > Pen)
- d .
p d—j:J-VZH, 2, = M(t,t,)z,, with MIM" =]
6N-dimensional 6N 6N
h / detMoy oy =1, — _[ d"z, = f d"z,
phase space [, A= Q1) Q1)
_ip Liouville Theorem: (a property of the mapping)
symplectic’ (ly"z 1 N)
map M tl > G The volume enclosed by any hypersurface
N in the 6N phase space is conserved for
o< R i=1N) system governed by Hamiltonian dynamics




Beam Transport in 6D Phase Space

* Motion for an ensemble of non-interacting particles in a beam
When N particles are identical and non-interacting with each other,

Htot = H(élvﬁl)_l_H(éz’ﬁ2)+°"H(éN’l_5N)

we can consider only one particle motion in 6D phase space
governed by H(qg,p)

One representative particle
transport in 6N phase space

Dimension
reduction

N particle transport
in 6D phase space




Beam Transport in 6D Phase Space

Motion for an ensemble of mutually interacting particles

If the particle collective interaction can be described by potentials (CI)wl 7.0),A_ (F ,t)),

as smooth functions of 7,

_ 0A
(I) = (I)ext + (I)col . Ecol — _V(Dcol — ol
. , with < cot

A = Aext + Acol D A

Then motion of each particle in 6D phase space is governed by the single particle

Hamiltonian

2
H = c\/(ﬁ—ﬁix(x,t)j +m*c? +qD(x,1)
C

The smooth function requirement applies to the mean field of collective interaction,
and it does not apply to Coulomb collision.



Incompressible Flow in 6D Phase Space

* Time evolution governed by reduced Hamiltonian
is considered as symplectic mapping

 Forlarge N particles closely clustered in small
phase space volume, the beam state can be

represented by phase space density

1(q.p.t)

A
Po

. o8

6D pthase SPACE agt,.,

2 > G
symplecﬁc‘,r})
MaP_~i=1103)

l, ol =
. ! 4 qi
...;.Q’. Y (i=1t03)

The number of particles in a small volume d°z = d°Gd’ p is

AN > @ pd'Gd’p >

During transport

« dN=invariant (particle number conservation)

e d°G d’p =invariant (Liouville theorem)

= phase space density | (g, p,t) = constant

=

Beam motioncan be viewed as
an incompressible flow
in 6D phase space




Phase Space Flow for a Beam of Particles

* A beam usually consists of N=10°-101° electron or ions.

The particles in the beam can be viewed an ensemble in phase-space

evolving in time following symplectic map, including the constraint of
Liouville’s theorem.

.\.’(S} A .v-, " . i(s)=_\/g‘\/%

* Ateachs, the lattice ellipse can be filled with the beam\.pa‘rticles
4\){7'

—oefy
\/E ----- . o ——
o Je/B

Jpe

> X




Statistical Description of Emittance

* Forabeamin 2D x-x" phase space, we need to characterize the spread of
beam particles in phase space.

* Emittance is a measure of the phase space area occupied by a beam.

* Area foranell

%

ipse

NS =rmr?

S
Cdl

NI

* Area for the beam rms ellipse in the (x,x") space
/’

x’ ?x

rmssp
L2

-

s X

for -

(Unit: mm-mrad)




General RMS Ellipse and Emittance

Choosing 0 for least square condition: < A 9
iEEf=i2(xi’cos€—xisin9)2=0 Vﬁ/\
do i do ; ® . > x

The solution:




Beam Matrix

Beam Matrix in terms of 2"¥-order moments

Define beam matrix:

Foer[ x, ), 2
X

The emittance is related to beam matrix by:

=) (x)~ () = darT




Emittance and Courant-Snyder Invariant

e Particle orbit in terms of lattice Twiss parameters

X, () =~J2J;B(s) cos(y (s)+¢,)

(i=1toN) {
x[(s) = =20,/ B(s) [ot(s) cos(w (s) + @)+ sin(w (s) +

]

For matched beam, for each J, particles are uniformly distributed around the ellipse,

(x*)= %2 2J,B(s)cos” (W (s)+@,) = B(s){J),

<x,2> =7(S)<J>, and <xx'> = (X(S)<J> 'T\x,

Ve

1 N
E:NZ‘JI.:U}

 Beam ellipse matched with lattice ellipse, </

oy

o
22D=8[ P ) with By -a’=1




Invariance of Emittance Under Linear Symplectic Transport

* |nvariance of emittance for matched beam

] & Average of area for ellipse of each particle,
E= NZ J,- = <]> conserved during symplectic transport
i=1

* Invariance for general beam distribution

For X(sz):[ ;((12)) ]:MX(SJ’ %(s5,)=(X(5,)X(s,)) = MX(s,) M

>(s,)=MX(s)M, detX(s,) =det2(s1)

=1 (symplectic)

€= \/ (x*)(x") = (xx")" = /det X, = const.




Emittance for Various

Phase Spaces

. . ’
e Emittance in trace space (x,x")
(geometric emittance)
invariant for constant energy

g2 =detX , = det

()

*)

e Emittance in normalized trace space (x,p.)

for the kinetic momentum
px = px/mc :yOﬁOx,

Adiabatic damping:

g: =det 2, =det

)

(xp,)

reduction of geometric emittance during acceleration &, = )/Oﬁogx

* Emittance in canonical phase space (x,P.)

for the canonical momentum
P =P /mc, P.=p.+eA_/c

g> =detX , = det




Emittance for 6D Phase Space

* Particles in 6D phase space (x,P,,y,P,,z,0) form a 6D RMS ellipsoid

() ()| (o) () () (xp)

(Px) (P}) (Py) (PP) (P2) (PP)

ot | or) [0 6R)] e ()
matrix Yoo ={(XX)=

O (o) (o) (o) ()] (8] (en)

() () (@) ()] () (&

(Px) (PP) (Py) (PP)|(Pz) (P

Beam 6D rms emittance: Ep = \/m L:;’;g?::tfor symplectic

Projected emittance in (x,P,), orin (y,P,), (z,0)

(¥) (xP) ]

g =detX,, = det[ <xPx> <sz>



Eigen Emittance

* Diaganolization of the beam 2" moment matrix

At each s, there exists similarity transformation:

};‘ L;P* such that
-RrR 7 |,
X(s)=R(s)U(s), or | P %(s)=(XX)=R(s)D(s)R"'(s)
< u
P "
(u?) * Eigen emittances:

(u2,)
) 0 :(s)= (13 )(u )

L €)= () {u )
0 ) e2(s)=(u? ){u )

for D=<Ul7>=




Invariants of Eigen Emittance

* Invariants of eigen emittance under linear symplectic transport

2 2 .2 o

IO = £ -gy €. (volume invariance)

12 = 83 + €y2 + 8z2 (sum of projected area for all subspaces)
4 4 4

I,=¢. +¢€ +€,
6 6 6

I,=¢€ . +¢& +€,




Notions of Emittance

e Different definitions of emittance.

Eys4, 18 the area of ellipse that contains 95% of the beam,

with the same (3,c,y) for the ellipse as the rms one. L
€000, 18 the area of ellipse that contains 100% of the beam. k/ :

* Beam and machine ellipse machine
~7 rms ellipse
A beam injected into a lattice may not
have its rms ellipse matched to the >
machine ellipse.
beam

rms ellipse



Notions of Emittance

e Beam core and halo

* Halo may have different ellipse as the core distribution

* The rms emittance measures the spread of particles
for the core of the beam. It is a good description of beam
distribution if the beam is dominated by distribution in the core

* Each tail particles has contribution to the emittance than a particle in
the beam core. Emittance is not a good measure of beam-core spread if
there are many tail particles



Notions of Emittance

* Slice and projected emittance
»  head

tail head X

Projected
4 phase space ™

tail

|

Bunch Slice

* Each longitudinal slice of the bunch may have its own phase space ellipse and
slice emittance in the x-x’ phase space

* The projection of the whole beam on the x-x’ phase space will have larger
rms spread, or larger projected emittance



Role of Emittance in Colliders

Luminosity

— The performance of a hadron or lepton collider is characterized by the beam
energy and the luminosity.

— Luminosity is the event rate for unit cross-section area [cm2s]
dR s
L= [cm 2 1]
o dt

= 2cfrepjp2(x,y,z —ct)p,(x,y,z+ct) d’Xdt

For Gaussian beams, if 6, =0,, =+/€,B8;, 0, =0,,4/€,B,
_ f;'eleN2 _ ﬁeleNZ

4r0.0,  4meBleB;

The goal of pushing for high luminosity is to design optics with small beta*,
and deliver high charge beam with small emittance at interaction point.




Path Toward Higher Luminosity

Ecm -

V D Shiltsev, “High energy particle colliders: past 20 years, next 20 years
and beyond”, Physics-Uspekhi 55 (10) 965-976 (2012)

KEK-BA
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10 ® pp.ep ® pp. ep PEP-11
Aete - A et .c’ LHC o
evatron 108 BEPC-11
10° ) - ACESR DT"f"‘f’A 2
HErA R 5 e ISR e
ALEP 2 10 >R A CESR ALEP-11@ RHIC
102 ASLC — PEP s AAVEPP4  @HERA
ISR fl;clru P “ATristan = APEE " A petra Te.vatron IVEPP-2000-
APEP Zz 10! HERAABEPC A
VEPP-4g " : S 1R aVEPP2M 8PS
10! CEA 7 2CESR aPEP-II k= A A ASLC
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“AVEP-1
A
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* With the increased understanding of mechanism of emittance growth and mitigation
method, and advances in technology and simulations, the colliders continue to achieve

higher luminosity performances.



Role of Emittance in Undulator Radiation

* Brightness of a photon beam

Photon pulse generated by single electron
F(w) —32/262-3"%/262

(2/2)"°

Photon pulse generated by beam of electrons

B,(x,x")= , with|le =00/ =—

%3 = [ By(X— X8~ ¥,2) f (R, ¥R d¥,
N F (@)
Qny, 3. 3.3,
2

2 2 2
for 2, , =\0,,t0;, X, = \/Gx,,y, +0.

B(0,0)=

Radiation dominated regime (diffraction-limited regime)

B~N,B, when e <e

Requirement on emittance



Role of Emittance in FEL Performance

S <

14

Larger emittance means longer gain length

4

FEL gain performance requires

2
A for A, = 4 (1+K—

T 2

2y 2

Gain performance for SASE X-ray FEL

Transverse divergence will change the average
longitudinal velocity of the electron bunch, causing
change of synchronism of e-beam with photon beam

|

and the need for longer undulator.

Example

LCLS:

€, =YoE, ~1 mm-mrad

Electron source
and accelerator

Magnetic structure

Electron trap

Y Light beam

Experiment

7'

Gain of SASE FEL

Log(radiation power)




Path toward Higher Brightness

Peak brightness (photons / s / mrad?/ mm?2/ 0.1%-BW)
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I1l. Emittance Dilution and Mitigation Methods

 Sources of emittance dilution

* Mechanisms for emittance dilution
— Mismatch
— Filamentation from nonlinear optics
— Collective effects
— Halo formation
— Scattering

 Examples of Mitigation Method
— Space charge compensation
— Electron cooling to suppress IBS effects



Sources of Emittance Dilution

Hamiltonian

* Accelerator system
— Beam mismatch
— Nonlinear optics
— Errors, misalignments

e Collective effects
— Space charge
— Coherent synchrotron radiation (CSR)
— Wakefield (impedance)
* Two-beam effects
— Beam-beam
— Electron cloud for positively charged beam
— lon effects for electron beams

Non-Hamiltonian
* Synchrotron radiation
* Scattering

— Residual gas scattering

— Intrabeam scattering
— Touschek scattering



Example Mechanisms of Emittance Dilution

Mismatch of beam and lattice ellipse x” lattice

For a periodic lattice, when the incoming beam ellipse
differs from machine lattice ellipse, the beam particles
phase space trajectory will follow the machine ellipse,

causing enlarged phase space area or emittance grochh/'<>< s

Nonlinear optics

f‘ »/glﬁlips;g

X

Incoming
beam ellipse

— Nonlinear optics maps a straight line in phase space to a curved line. It
features tune dependence on the betatron amplitude.

— Phase space may have resonance islands at large amplitudes

that trap particles, and separatrix may lead particle to chaotic motion

X

4




Example Mechanisms of Emittance Dilution

e Optical mismatch at injection
Filamentation fills larger ellipse with same shape as matched ellipse




Collective Effect on Emittance Dilution

 Example: Space charge effects at injector

| projecteq

slice | y.

<

Linear transverse space charge force

Different slices experience different
transverse phase space transport

The slice emittance is the same, but
the projected emittance can be
much larger.



Halo Formation

Example: Displacement versus distance for oscillating

- Mismatched bea m cause breathing uniform-density core and a resonant particle.
(uniform core, mismatch parameter y=1.5, tune depression=0.5)
mode for the beam core due to space partile
31 Core
charge interaction A o v /o

— Breathing of beam core drives particles £ °|
. . -1
to parametric resonance, forming halo

particles ol
0 56 160 150
axial distance (relativ e units)
— Halo causes beam loss at aperture, Stroboscopic phase-space plot
. . . Particle-Core Model - breathing mode excitation of uniform core.
th at Can Cause ra d 104 Ctlvatl on at t h e (mismatch parameter i = 1.5, tune depression=0.5)
pipe wall

maximum
amplitude for
parametric
resonance

\
)

-3 -1 X/R, 1



Scattering Effects on Emittance Dilution

* Intrabeam Scattering (IBS)

Measured and simulated
emittance growth
due to IBS at KEK-ATF

— Particles within the beam can have Coulomb
collision with small angle that could transfer

the transverse momentum to longitudinal YRR R N Y R R
ones. - o = 1
— With dispersion (x-dE/E) and x-y coupling in . 1.er = .
the lattice, this could lead to 6D emittance < . aF P .
growth SHE A =
| SOE A 5

1.2 — —]

X - .

t 10—HHl%H%lHH'HH'HH'E?E)%:

I R 2 L
AN >3 N R O Lt T
\\y wh _ o B i

o i -

o = i

— c)

Particlescatteringinthe O|1||||||||||||||||||||||||1||

00 05 1.0 15 2.0 25 3.0

beam comoving frame
I [mA]



Emittance Compensation Method

AT A

Space charge Solenoid Space charge
defocusing foucsing defocusing

Cathode After space I Aft.zrl After drift,
charge kick Solenoidlens 4t beam waist



Electron Cooling to Suppress IBS Effects

H. Poth, Electron cooling: theory, experiment, application

Basic Idea
a) o)

Accompanying
system

Laboratory system

Electrons

lon storage Electrons (dots)

ring at rest

Electron fod

T+ +

1. 3. Passage




IV. Electron Cooling and Magnetized Beam

* Benefit of using magnetized beam

* Generation of magnetized beam

e Characterization of magnetized beam
* Transport of Magnetized

* Simulation results for JLEIC



Magnetized Beam for Electron Cooling

* |llustration of high-energy cooling using magnetized beam

/ Cathode Cooling ]
/. Solenoid ‘ Solenoid
2, SRF Linac |
! 5"// > 1
7z
Electrons born in Upon exit of
strong uniform B, Cathode Solenoid

Features:

e Electron cathode immersed in solenoid

e Optical matching between two solenoids through all the beam lines

e Electron beam is in calm state (almost-parallel beam with large transverse size)

during cooling process [Gl > p, = L lel
eB

N



Benefits and Challenges of Using Magnetized Beam

e Benefit

Strong reduction of e-beam divergence

Due to the freezing of the electron transverse motion, cooling
efficiency is significantly improved since it is now only limited by
the longitudinal temperature (usually 7; <7 )

Strong reduction of misalignment impact on cooling rate

Cyclontron motion of electron in solenoid also suppresses
recombination during cooling process



Electron Cooler Design for JLEIC

lon Beam

1 Tesla Cooling Solenoid

De-chirper

50 MeV Linac
Magnetized Gun  Booster Cryomodule

* Challenges
— Requires generation and transport of magnetized beam
— Need optical solution of beamline design that is different from those

for usual uncoupled beams
— Rotating beam transported through lattice with axial-symmetric

focusing



Generation

of Magnetized Beam

bucking prim
solenoid solenoid

secondary
solenoid

PM

FNPL 1.625-cell RF gun, 1.3 GHz

Canonical angular momentum (CAM)
1s conserved:

eB. 2

L=7Fx(ymy+eA/c)=ymr’0+
2[c]

Inside solenoid At cathode

6=0

Kinetic angular momentum acquired at the

B eBZ 52

el

(L)

CAM vs. rms size at cathode:

Exit fringe of the solenoid:

=




Measurement of Angular Momentum

110

P
__ drift
D
0,0,sin 6
(L)=2p,——2—
D
B, (G)
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1
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Characterization of Magnetized Beam

* 4D ellipsoid in (x,x,y,y’) phase space

b

For projected 2D phase space vectors X = ( x, ] Y = [ ,
X Yy

N——

() (x)
g R A R R
z:<( ; J( X ¥ )>:[ i) (o7, }: <<yx> < (xy) (
)

')
<y/x ’

{
() [y (7
e Rotational symmetry T

Xy
Rotation in x,y: X gl X | g e fcos® Isin® >/
Y, Y —Isin® Icos6 6 > x
% )> —RYR=Y

symmetry:

™
I
/\
/T~
o~

~——

b

~

Characterization:

volume of 4D phase space

Y Exgl LJ with J = 0 1 , detT =1 £,, =+detE =¢’
-LJ &,T L=L/2 g =g —12

u




Relationship of Various Emittances

volume of 4D phase space

g,,=VdetZ =¢

_ o2 2
=€y —L

S o

€

Thermal

Projected emittance

emittance

Coupling
term




Eigen-emittance and Invariance

* Eigen emittance

The symmetric matrix Y, can be diagnolized by a symplectic matrix:

seus ar. wih 5= 0 O || PO
= , w1 = or 1, =
0 0 0 eT § 0 1/B,

Geometric
mean

Here €, and €_ are called eigen emittance, with(e> = £,&_

withe, =€ . +Land € =€ ,—-L

* Invariance of symplectic transformation

1* invariance: €. or g,, (Liouville Theorem)

2" invariance: & +¢&’ =2(ek+L’)




Relationship of Various Emittances

Geometric mean

CP=+~AP-BP

the.rmal » 8
emittance U
J—
~
e E
/ /

large small
emittance emittance




Relationship of all the Emittances

g, : 4D emittance €, = /€,
€, . eigen emittance
€. - projected emittance

on x-x" or y-y’ plane

L: coupling term

g =¢¢€

€, =€q+L
E =€,;—L

€




Round to Flat Transformation




Transport of Magnetized Beam to the Cooling Channel

lon Beam

g 1 Tesla Cooling Solenoid w
’ Chirper 9 De-chirper |

i
“: 50 MeV Linac o
.. Magnetized Gun  Booster ~Cryomodule ~
- dechirper

6. 6, (m)

Cie B ImrwrmN Y B oeos B

Match from Match from dechirper
linac to arc to solenoid
Features:

1410
121
101

31

o N B~ D

70 20 30 40 50 60
s (m)

* Lattice focusing is axial symmetric, with index % in arc dipoles
* Matching sections are applied before the arc and before the

cooling solenoid

 Beam has angular momentum during the transport




V. Phase Space Manipulation

* Horizontal to vertical emittance exchange
* Longitudinal to transverse emittance exchange
* Emittance partitioning



X-Y Emittance Exchange




Longitudinal to Transverse EEX

X
x=| ¥ | x> mx
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Emittance Partitioning

=

Non-rotating
Round beam
Within the cathod

o;

% 20 4o e s 100
7. (cm) £

Emission
In solenoid

_> -

Non-Hamiltonian

Rotating
Rou_r_1_d beam
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Emittance Partitioning



Example of Flat Beam Generation

L2 350 351 502 D
photocathode 1.1

13 1-gun SI S2 Q2 S3 Q4
B B L =

solenoids
3770

10° . ! .
= -
= i
Q 10' -
(- C
3 F Xé
-é 0 B
o 10 F =
%) -
€ rrf-gun booster

107 ' L '

0 1 2 3 7

distance from photocathode (m)



Summary

We've reviewed the basic concepts of phase space flow,
symplectic map and the related properties

The Hamiltonian dynamics is fundamental for studies of single
particle and bunch dynamics in accelerator physics

Magnetized beam for electron cooling has many interesting
and non-conventional features

Recent development in phase space manipulation extends the
previous concepts and opens up many new possibilities



References

E. Courant and H. Snyder, Ann. Phys. 3,1 (1958)

A. Dragt et al., “General moment invariants for linear Hamiltonian system”, Physical Review
A, 45,2572 (1992)

K-J Kim, “Round-to-flat transformation of angular-momentum-dominated beams”, Physical
Review Special Topics—Accelerators and Beams, 6, 104002 (2003)

J. Buon “Beam phase space and emittance”,

K-J Kim and A. Sessler, “Transverse-longitudinal phase-space manipulations and corrections”,
AIP proceeding 821, 115 (2006)

D. Douglas, “Life hacks for solenoids and magnetized beams”, JLEIC 2016 Spring
collaboration meeting.

Ph. Royer, Solenoidal Optics, PS/HP Note 99-12.

M. Reiser, “Theory and design of charged particle beams”, 1994

Y-E. Sun, “Round-to-Flat Beam Transformation and Application”,Cool15, 2015.
P. Piot, Y-E Sun and K-J. Kim, PRSTAB 9, 031001 (2006)

B. E. Carlsten, Nucl. Instrum. Methods Phys. Res., Sect. A 285, 313 (1989).

B. Carlsten et al, IEEE Tran. On Nuclear Sci.,63,921 (2016)

R. Gluckstern, Phys. Rev. Lett. 73, 1247 (1994).

T. P. Wangler and K. R. Crandall, Phys. Rev. ST Accel. Beams 1, 084201 (1998).



Acknowledgement

* Thanks for the discussions and support from Jlab colleagues
Steve Benson

Slava Derbenev
Dave Douglas
Fay Hannon
Todd Satogata
Chris Tennant



