# The 2015 eRHIC Ring-Ring Design

Christoph Montag, BNL



# Ring-ring design goals

- Low- to no-risk approach
- Full energy range (up to 250 GeV protons on 20 GeV electrons) from the beginning
- Full physics reach in terms of IR design
- 80 percent electron polarization, 70 percent proton polarization
- Baseline design luminosity around 1E33
- Luminosity upgradeable
- Potential future upgradeability to linac-ring design

#### Beam parameters and luminosities

- 360 bunches (requires in-situ beam pipe coating and new injection kickers; now 120)
- Normalized proton emittance  $\epsilon_{n,p} = 2.5 \,\mu\text{m}$  (achieved in RHIC)
- Proton rms bunch length  $\sigma_s = 20 \text{ cm}$  (achievable in RHIC at 250 GeV; requires electron cooling at low energies)
- Electron emittances  $\epsilon_{x,e} = 53 \text{ nm}, \epsilon_{y,e} = 9.5 \text{ nm}$
- Proton  $\beta$ -functions  $\beta^*_{x,p} = 2.16 \text{ m}, \ \beta^*_{y,p} = 0.27 \text{ m}$

- Maximum proton bunch intensity  $N_p = 3 \times 10^{11}$  (25 percent higher than achieved in RHIC)
- Beam-beam scaling with transverse damping decrement as in B-factories:  $\xi_e = 1.37\delta^{1/3}$ , with  $\delta = U_0/(2 \cdot E_e)$
- eRHIC:  $\xi_y = 0.096$  at 20 GeV,  $\xi_y = 0.178$  at 5 GeV with damping wigglers (N.B.: LEP200 reached  $\xi_y = 0.115$ )
- Use damping wigglers to increase damping decrement by increasing SR power to respective RF limit

#### Beam-beam parameter vs. damping decrement



- Experimental data agree well with scaling rule
- B-factories significantly better due to half integer working point

#### Synchrotron radiation power losses

- Technical limit for linear synchrotron radiation power loss is 10 kW/m in the arcs
- With a total arc length of  $2\pi \cdot 380 \,\mathrm{m} = 2390 \,\mathrm{m}$ , that corresponds to 24 MW of RF power
- Typical klystron efficiency is about 60 percent, so we would need 40 MW of electrical power for the RF alone

How does luminosity scale with RF power?



- More RF power means more luminosity, esp. at high energies
- Peak luminosity scales less than linear with RF power, but occurs at different energies

#### What can cooling do?

Assume moderate electron cooling:

- Reduce proton emittance by factor 2:  $\epsilon_{n,p} = 1.25 \,\mu\text{m}$
- Reduce proton bunchlength by factor 2:  $\sigma_s = 10 \text{ cm}$
- Reduce electron  $\beta$ -functions by factor 2 to match size with cooled protons

Could use other scaling factors as well



• Cooling gives us the same luminosity at half the synchrotron radiation power

# IR design requirements

- $\pm$ 4.5 m element-free space around IP
- Unobstructed path for  $\pm 4 \text{ mrad}$  neutron cone
- $\approx$  2 m space for Roman Pots, transverse momentum acceptance of  $p_{\perp} \geq$  200 MeV/c
- Design aperture  $10\sigma_p$  for protons,  $15\sigma_e$  for electrons

# IR layout (top view)



- Full dogleg and  $> 2 \,\text{m}$  space for Roman Pots
- 15 mrad crossing angle with crab cavities
- Proton quad aperture could be increased to accommodate low energy beams without cooling; peak field for apertures shown only 1.1 T

#### Crab crossing

Crab cavities provide a 4-bump for head and tail:

- Main crab cavities are adjacent to hor. focusing quad, at  $\beta_{\rm crab,1}=2400\,{\rm m}$  and  $\psi=86^\circ$
- Non-ideal phase advance causes an angle error at the IP, described by  $m_{22} = \sqrt{\beta_{\rm Crab,1}/\beta^*}\cos\psi \approx 2$
- This angle error has to be corrected by a second crab cavity at  $\psi = k \cdot 180^{\circ}$ ; this is described by  $m_{22} = \sqrt{\beta_{\text{crab},2}/\beta^*} \cos \psi = \pm \sqrt{\beta_{\text{crab},2}/\beta^*}$

- If  $\beta_{crab,2}$  is chosen such that  $\sqrt{\beta_{crab,2}/\beta^*} > 2$ , the voltage of this "trim crab cavity" is smaller than that of the main crab cavity
- This condition is fullfilled if  $\beta_{crab,2} > 10 \,\mathrm{m}$  practically everywhere

• 
$$V_{\text{main crab}} = \frac{c \cdot E[\text{eV}]\Theta_{\text{crab}}}{\omega_{\text{RF}}\sqrt{\beta_{\text{crab}},q\beta^*}} = 7.4 \text{ MV} \text{ at } f_{\text{RF}} = 168 \text{ MHz}$$

# IR design features

- 15 mrad crossing angle
- crab crossing, using 7.4 MV, 168 MHz crab cavities
- $\pm 4.5 \text{ m}$  element-free space for central detector
- free space for  $\pm 4 \, \text{mrad}$  neutron cone
- 8 m long, 25 mrad spectrometer dipole
- $\bullet$  > 2 m for Roman Pots

# Required IR changes for moderate cooling

(Emittance reduction by factor 2 in all planes)



Modified layout:

- 20 mrad crossing angle instead of 15 mrad
- larger electron triplet aperture

Cooling to even smaller emittances requires larger crossing angles; feasible if bunch length shrinks accordingly

# Electron ring lattice

- 300 m dipole bending radius in 380 m radius tunnel
- 53 nm horizontal emittance, tuneable to 106 nm for collisions with 50 GeV protons
- Robinson wiggler for emittance adjustment via damping partition number manipulation



- Complete electron ring lattice with IR and Robinson wiggler for emittance adjustment
- No damping wigglers yet

## Electron polarization

Ramping would destroy electron polarization Electrons self-polarize at store due to synchrotron radiation:



Self-polarization is not viable except at highest energies  $\Rightarrow$  Need a full-energy polarized injector

Advantage of a full-energy polarized injector:

- Electron spin patterns with alternating polarization (as in RHIC proton fills) are highly desirable and likely required for single-spin physics
- Such fill pattern can be generated by a full-energy polarized injector
- Bunches with the "wrong" (unnatural) polarization direction will slowly flip into the "right" orientation. Time scale given by Sokolov-Ternov self-polarization time
- Bunch-by-bunch replacement at 1 Hz (360 bunches in 6 min) yields sufficient polarization even at full energy with  $\tau_{S-T} = 30 \text{ min}$

#### Electron spin rotators



- Two solenoid type spin rotators provide longitudinal polarization in two different energy regimes
- Integrated fields:  $B \cdot l[\text{Tm}] = 5.24E[\text{GeV}]$ ; 26-53 and 52-105 Tm, resp.

Longitudinal spin vs. energy



Perfect longitudinal polarization at 7.5 and 15 GeV, some transverse component at other energies

# Electron injector options

- 1.  $\approx 0.8\,\text{km}$  section of the SLAC linac, used twice
  - May need an accumulator ring after first linac pass to reach required bunch intensity
  - Second pass with full intensity bunch to reach full energy
  - Time critical; removal begins next spring
- 2. Figure-8 rapid cycling synchrotron
  - Spin tracking underway to ensure polarization preservation

- 3. Recirculating superconducting linac (CEBAF-type)
  - May need an accumulator ring as well
  - Only option upgradeable to linac-ring

All options still need detailed feasibility study

# Path length adjustment

- Different proton beam energies require path length adjustment by up to  $\Delta C = 65$  cm due to velocity changes
- Wigglers in electron ring increase path length and synchrotron radiation power - good for increased damping decrement at low electron energy, bad due to power losses at high energy
- Utilizing arcs from both RHIC rings provides a set of discreet proton energies with matched circumference.
  Polarity of YELLOW arcs needs to be reversed and arcs need to be physically moved - labor intensive but doable

Final solution will likely be a combination of both schemes

## Leading risks

- 1. Electron cooling
  - Required to maintain 20 cm RMS bunch length at low proton energies (50-100 GeV)
  - Option to reduce power consumption or increase high energy luminosity
  - LEReC is a prototype for bunched beam electron cooling
  - Challenging linac design for full energy range: High energy, high intensity ERL

#### 2. Crab cavities

- IR design with 15 mrad crossing angle requires crab cavities to restore luminosity
- 168 MHz crab cavities with 7.5 MV seem feasible
- Proof-of-principle exists at KEKB, but not for hadron beams. To be studied by tracking - may need to add harmonic cavities to straighten out bunches
- Eliminating the crossing angle requires a dipole field that generates several hundred kW of synchrotron radiation power with a critical energy of 120 keV or more, having serious impact on detector design and acceptance

# Luminosity upgrade options

Two possible luminosity upgrade paths:

- 1. Linac-ring, using
  - ERL
  - FFAG
  - CeC

To be cost effective this upgrade path practically requires a CEBAF-type injector for the ring-ring baseline 2. Ring-ring with many low emittance, low intensity bunches, as suggested by Y. Zhang:

| Upgrade level                                                     | 0    | 1    | 2    |
|-------------------------------------------------------------------|------|------|------|
| maximum no. of bunches                                            | 360  | 2000 | 6000 |
| minimum hor. electron emittance [nm]                              | 53   | 23   | 10   |
| proton normalized RMS emittance $[\mu m]$                         | 2.5  | 0.7  | 0.34 |
| proton RMS bunch length [cm]                                      | 20   | 8    | 3.5  |
| minimum $\beta^*$ [cm]                                            | 27   | 8    | 4    |
| maximum $\sigma'_{x,p}$ [mrad]                                    | 0.42 | 0.47 | 0.40 |
| maximum $\sigma'_{x,e}$ [mrad]                                    | 0.37 | 0.7  | 0.7  |
| crossing angle [mrad]                                             | 15   | 22   | 22   |
| maximum luminosity $[10^{33} \mathrm{cm}^{-2} \mathrm{sec}^{-1}]$ | 2    | 4.7  | 12.7 |

Requires (coherent) electron cooling and a new, advanced IR design with quadrupoles at 4.5 m to limit chromaticity

#### Luminosity in various upgrade stages/scenarios



# Next steps

- Spin matching
- Tracking studies: Dynamic aperture, beam-beam (including realistic crab crossing), spin
- Spin tracking in Figure-8 injector synchrotron
- Detailed crab cavity design
- Electron cooler design
- Cost estimate

#### Summary



• Ring-ring approach provides  $\approx 1\cdot 10^{33}\,cm^{-2}sec^{-1}$  luminosity over the required energy range, depending on RF power

- IR design meets Physics requirements
- Low risk approach electron cooling and crab crossing
- Longitudinal electron cooling needed for low proton energies (up to  $\approx 100 \, {\rm GeV})$
- Electron cooling boosts luminosity, or reduces power consumption, over entire energy range
- Crossing angle requires crab cavities
- Luminosity upgrade path, including possible conversion to linac-ring (depending on injector option chosen)

# Backup slides

### Bunch intensities for 250 GeV protons, 10 MW power limit



#### Luminosity curves for different proton energies



#### Proton low- $\beta$ doublet



- Crab cavities adjacent to Q2
- $\beta_x$  at crab cavities intentionally increased to minimize voltage,  $\beta_{\rm crab} = 2400\,{\rm m}$
- Chromaticity for entire IR:  $\chi = \frac{1}{4\pi} \int k\beta \, \mathrm{d}s \approx 60 70 \, \mathrm{units}$

## Proton magnet parameters

| magnet | length | k                    | aperture radius | peak field |
|--------|--------|----------------------|-----------------|------------|
| QP1    | 5.0 m  | $-0.022/m^2$         | 62 mm           | 1.14 T     |
| QP2    | 5.0 m  | 0.026/m <sup>2</sup> | 52 mm           | 1.13 T     |

- Maximized horizontal  $\beta$ -function at QP2 to help with crab crossing
- Phase advance between IP and crab cavity is 86 degrees. Need additional cavities to produce a closed 4-bump.
- Magnet apertures could be increased to allow same  $\beta^*$ at lower energies (=larger emittances)

# Electron triplet



# Electron magnet parameters

| magnet | length | k                   | aperture radius | peak field |
|--------|--------|---------------------|-----------------|------------|
| QE1    | 0.6 m  | $-0.43/m^2$         | 70 mm           | 2.1 T      |
| QE2    | 1.2 m  | 0.43/m <sup>2</sup> | 87.5 mm         | 2.5 T      |
| QE3    | 1.0 m  | $-0.3/m^2$          | 68 mm           | 1.4 T      |

- Apertures given are for  $15\sigma_x$
- Resulting minimum vertical aperture is  $\approx 30\sigma_y$  (at QE3; could likely be increased somewhat)

# Crab crossing geometry

