SNS Superconducting Linac: Operational experiences and plans for performance improvement

Presented at Jefferson Lab

October 8, 2015

Sang-ho Kim SCL Systems Group SNS/ORNL

ORNL is managed by UT-Battelle for the US Department of Energy

Overview

- SNS SCL brief history
- SNS SRF caivty characterization and operational status
- Performance degradation & recovery
- Performance improvement plan
- Summary

Design evolution of SNS Complex

SNS superconducting linac (SCL)

Preliminary Design Report for SCL option (Nov. 1999): Y. Cho lead a task force to investigate the feasibility to change to a SCL

- Jan.- Feb. 2006: Support Ring Commissioning
- Oct. 2006 present: Support neutron production runs

INJECTION DUMP

SNS Superconducting Linac

- Cryomodules and CHL are designed and built by JLAB
- The first SRF technology for large scale pulsed proton machine (relatively high duty factor and high beam current)
- Designed for H- beam acceleration from 186 MeV to 1000 MeV
- 157-m long, 81 independently powered 805-MHz SRF cavities in 23 cryomodules
- Two types of cavity geometries to cover board range of particle velocities
- 71-m long space is reserved for energy upgrade

Average macropulse beam current: 26 mA

SNS SRF cavity characterization and operational status

7 SNS, S-H. Kim, Accelerator Seminar at Jlab 10/8/2015

Cavity characterization

- Major limiting factor: electron loading (FE, MP)
 - Heating RF surfaces & beam line components: resulting in 'end-group quench'
 - Following slides will show a few examples taken during qualifying tests in the test cave
- Other limiting factors
 - HOM coupler: many HOM feedthroughs were taken out
 - One cavity is not operable. Eacc of a few cavities are limited due to large coupling
 - Lorentz force detuning: a few cavities show larger LFD
 - Hot spots
 - RF/controls related issues in early days

Turning on cavities

- First turn on must be closely watched and controlled (possible irreversible damage)
 - Initial (the first) powering-up, pushing limits, increasing rep. rate (extreme care, close attention)
 - Aggressive MP, burst of FE → possibly damage weak components or RF surfaces
- Similar situation after thermal cycle and after long shut down
 - Also careful conditioning process is required to keep the same cavity condition since behavior of the same cavity can be considerably different from one run to another (gas redistribution)

Radiation/electron activity diagnostics during qualifying tests in the test cave

PMT

- Internal Ionization Chamber
- Phosphor Screen, Camera, Faraday Cup

After removal of HOM feedthrus, Installed two diodes/HOM can

Radiation patterns (I)

- Field emission dominant case example
 - HPRF test in open loop in the test cave
 - Typical field emission response

In this example, measureable radiation started from 15 MV/m and the cavity was tested up to 20 MV/m.

Radiation pattern (II)

- Multipacting (MP) dominant case
 - Typical MP: from ~3MV/m up to ~15 MV/m (HOM cans, End groups, FPC, etc.)

Eacc

ATION

The waveforms below are taken after 5-hrs long conditioning

Radiation pattern (III)

- Multipacting and field emission
 - In this example, a cavity right below D4

1000

HIGH FLUX

ISOTOPE

ational Laboratory REACTOR

1200

SPALLATION

NEUTRON

SOURCE

Electron activities

- Same radiation patterns (MP, FE) from both MB and HB cavities
 - MB cavities show less thermal loading from electron activities since electron acceleration in MB structure is less efficient
- In general, x-ray levels are quite stable in the tunnel over time
 - SNS beam repetition rate is actually 59.9 Hz → Measure background radiation every 10 sec. during operation
 - A few cavities show slightly elevated x-ray levels resulting in reduction of Eacc by ~1MV/m
 - Some MP has not been processed away after 10 yrs operation
- Collective behaviors at high duty factor
 - Electrons from one cavity hit other cavities in a cryomodule
 - Not only depends on Eacc but also relative RF phases
 - Operating gradients are lower at 60 Hz than those at low repetition rate
 - Linac output energy: 940 MeV at 60 Hz vs. 1070 MeV at 10 Hz

SRF cavity operating gradients today

- Average Eacc of medium and high beta cavities: 12 MV/m and 13 MV/m respectively
 - Based on 60 Hz collective limits

SNS SRF cavity RF operation

- 60 Hz: 5.2 M pulses/day
- Filling: 250 us, feed forward
 - Forward power: ~3 times higher than power during the flattop without beam loading
- Flattop: 1 ms, feedback
 - With beam: + adaptive feed forward
 - Forward power at full beam loading (26mA): 2.5-3.5 times higher than power for RF only

SNS SCL Operation Status

High availability while keeping high power beam operation

- Understand machine & reliable machine setup as a whole
- Make systems as simple as possible
- Develop adequate diagnostics/protection
- Have energy margin to take advantage of operational flexibility
 - to circumvent problems that can't be addressed during operation and to minimize a down time
- Conduct proactive/preventative maintenance
- Keep good communication between machine experts and machine operators

Performance Degradation and Recovery

19 SNS, S-H. Kim, Accelerator Seminar at Jlab 10/8/2015

Linac Output Energy History at 60Hz

Changes of output energies are the result from specific activities and events

TION

2N

Performance degradation during operation

- Degradation related to vacuum activity
 - Observed performance degradations from ten cavities
 - Beam halo, errant beam, e- activity and ion pump pressure spike
 - Desorption and redistribution of gas \rightarrow could create conditions for vacuum breakdown or hot spots
 - Main event: Interaction with RF (one of the worst case is surface damage and particulate contamination)
 - Not every event makes a cavity trip. But the probability for degradation increases with frequency and intensity of events
- Other potential degradation related to particulate contamination
 - Gate valve operation
- When a cavity shows a symptom of performance degradation, the gradient is lowered slightly (typically lowered by 1 MV/m or less) to avoid further degradation and to minimize downtime
 - Early diagnostics and prompt involvement from system experts are the key to minimize additional degradation

RF waveforms at cavity trip

• Very useful to understand the trip event

In both cases, cavities tripped because cavity field did not reach setpoint during filling time

Trip 2

22 SNS, S-H. Kim, Accelerator Seminar

Ion pump pressure spike example

- A cavity was tripping with ion pump pressure spikes. Slight performance degradation (~1 MV/m) was observed.
- The cavity trips and pressure spikes became more frequent
 - What is the root cause?
- To verify the cause we turned off one ion pump after interlock logic changes
 - No trip since summer 2014

Gate valve

- Valve actuations causing pressure spikes: observed from a few valves in the tunnel
- Particulate generation are measured on the test bench
 - Tested gate valves from three vendors
- Valve verification before installation
- During operation: Minimize valve actuation

Errant beam (I)

- Our definition:
 - Off-energy beam generated from a fault condition
 - Beam transported downstream and lost until beam abortion by MPS system
- Mani sources of errant beam
 - Warm linac RF truncation: arc, pressure burst, etc.
 - Ion source/LEBT: arc, unstable plasma, etc.
- SCL beam loss monitors (BLM) are the primary indication of errant beam event
- MPS delay: time between RF truncation/BLM trips and beam abortion
 - It was recognized that MPS delay was too long in 2009 :~300 us
 - − MPS circuit was fixed in 2010 \rightarrow MPS delay: 25 us

Errant beam (II)

- Errant beam hitting a cavity surface desorbs gas and could create vacuum breakdown environment
- Errant beam events before 2012: 35 per day
 - Performance degradations by errant beam were observed
 - More diagnostics were added to detect errant beam event
 - Due to this, more careful operation/conditioning of all warm linac structures and front end
- Errant beam events after 2012: 15 per day
 - Dedicated MPS circuit for errant beam event is recently installed: MPS delay 12 us
- Errant beam events since 08/2015: 5 per day
 - Warm linac vacuum system was improved last summer

Beam halo

- Performance degradation from beam halo is observed in the first few cryomodules of the SC linac
- It is difficult to diagnose since the process is very slow
 - BLM is less sensitive at low energy region
 - Temperature diodes sometimes indicate slight temperature increment before quench
 - Degradation seems to develop over a long time
 - Cavity becomes very sensitive to small changes of operating conditions
- Beam scraping in the front-end helps
- More sensitive BLMs for low energy region are being prepared

Performance degradation, component damages and recovery

- Most frequent symptom is hot spot creation in the end group
 - Dynamic load changes 10 times higher
 - Some cavities run in this condition
 - Some others need lower Eacc by <1MV/m
 - No changes of x-rays
 - Once hot spot is developed, no correlation with beam
 - Recovery
 - RF conditioning starting from low repetition rate
 - Thermal cycling
- Other degradation/component damage
 - Two FPC windows showed leak after errant beam events
 - ~10⁻⁶ torr I/s leaks, both were replaced with new FPCs at the SNS test facility and reinstalled in the tunnel
 - Another cavity is arcing around FPC/end group: turned off for now.

Hot spot example 1: meta-stable condition at the same gradient

- Some part in the end group (must be very low field region) must be normal conducting but still operable
- Additional cryogenic load at 2K is about 50W more from one cavity (would be 800W in CW)

OAK RIDGE HIGH FLUX ISOTOPE REACTOR

Hot spot example 2: unstable condition

NEUTRON

ational Laboratory | REACTOR

- Reduce gradient during operation by 0.5-1MV/m due to end group quench
- Cavity still unstable \rightarrow have to wait 10-15 min. for cool-down
- Performance recovered by thermal cycle during long-maintenance period

Plan for performance Improvement

31 SNS, S-H. Kim, Accelerator Seminar at Jlab 10/8/2015

In-situ processing in the tunnel

- Develop a cost effective processing method with minimal impact on machine operation
 - Goal is 15-20% improvement on average
 - In-situ plasma processing R&D
 - Preliminary attempts in 2009
 - Focused on removing of residual hydro-carbons
- Medium term goal
 - Reach 1GeV + energy reserve (Increase high beta cavity gradients by about 2 MV/m in average)
- Long term goal
 - 38-mA beam loading with 2nd target station: Need narrower performance scattering
 → Efficient utilization of RF power (ideally constant RF power/cavity is preferred)
 - Pertains mostly to medium beta cavities

In-situ Plasma processing

- Low density reactive plasma at room temperature to clean residual hydrocarbons on RF surfaces
 - Demonstration of performance improvement with single cavities in Horizontal Test Apparatus and in offline cryomodule
 - Increase of Eacc at 60 Hz after processing: >25 %
 - Observed reduced FE, MP, vacuum activities, thermal load in the end group
- Deployment in SNS tunnel planned during shutdown periods starting FY16

Summary

- The SNS SCL is providing stable operation for the neutron production up to 1.4 MW beam power on target
 - Understanding of system as a whole leads to the most efficient and reliable operation
- Causes for performance degradation during operation at SNS are identified
 - Continuous development of dedicated diagnostics and protection systems
 - Recovery actions including thermal cycling and offline repair are ongoing
- R&D is ongoing to improve the current SRF cavities performance
 - Plasma cleaning technique was demonstrated with performance improvement of offline cavities in HTA and cavities in offline cryomodule
 - Plan on deploying plasma processing in the linac tunnel in FY16 and FY17

Backup Slides

35 SNS, S-H. Kim, Accelerator Seminar at Jlab 10/8/2015

FY15 Operation

	SNS FY15 Q1-2 Official Released 12-03-14										SNS FY 2015 Q3-4 For Planning Purposes (December						3,	2014)					
	Oct-2014		Nov-2014		Dec-2014		Jan-2015		Feb-2015		Mar-2015		Apr-2015		May-2015		Jun-2015		Jul-2015		Aug-2015		Sep-2015
1		1		1		1		1		1		1		1		1		1		1		1	
2		2		2		2		2		2		2		2		2		2		2		2	
3		3		3		3		3		3		3		3		3		3		3		3	
4		4		4		4		4		4		4		4		4		4		4		4	
5		5		5		5		5		5		5		5		5		5		5		5	
6		6		6		6		6		6		6		6		6		6		6		6	
7		7		7		7		7	,	7		7		7		7		7		7		7	
8		8		8		8		8		8		8		8		8		8		8		8	
9		9		9		9		9		9		9		9		9		9		9		9	
10		10		10		10		10		10		10		10		10		10		10		10	
11		11		11		11		11		11		11		11		11		11		11		11	
12		12		12		12		12		12		12		12		12		12		12		12	
13		13		13		13		13		13		13		13		13		13		13		13	
14		14		14		14		14		14		14		14		14		14		14		14	
15		15		15		15		15		15		15		15		15		15		15		15	
16		16		16		16		16		16		16		16		16		16		16		16	
17		17		17		17		17	·	17		17		17		17		17		17		17	
18		18		18		18		18		18		18		18		18		18		18		18	
19		19		19		19		19		19		19		19		19		19		19		19	
20		20		20		20		20		20		20		20		20		20		20		20	
21		21		21		21		21		21		21		21		21		21		21		21	
22		22		22		22		22		22		22		22		22		22		22		22	
23		23		23		23		23		23		23		23		23		23		23		23	
24		24		24		24		24		24		24		24		24		24		24		24	
25		25		25		25		25		25		25		25		25		25		25		25	
26		26		26		26		26		26		26		26		26		26		26		26	
27		27		27		27		27		27		27		27		27		27		27		27	
28		28		28		28		28		28		28		28		28		28		28		28	
29		29		29		29				29		29		29		29		29		29		29	
30		30		30		30				30		30		30		30		30		30		30	
31				31		31				31				31				31		31			
l	Oct-2014		Nov-2014		Dec-2014	1	Jan-2015	1	Feb-2015		Mar-2015 Apr-2015 May-2015 Jun-2015 Jul-2015 Aug-2015											Sep-2015	
	Accele	rato	r Physics	Deet	ore						Neutron Production												
	Accele	rato	r Physics/	Main	tenance P	eric	ods				Transition to Neutron Production												
36	Machi	ne De	owntime N	lajor	Periods(N	/lain	tenance/U	pgr	ades)					_									

SNS Beam Power History

HIGH FLUX ISOTOPE

AK **KIDGE**

National Laboratory REACTOR

SPALL ATION

NEUTRON

SOURCE