The Beam-Beam Effect and Its Consequences for High Energy e-p Colliders such as the LHeC and FCC-he

Edward Nissen

Contents

- LHeC and FCC-he projects
- The software in question
- Initial single pass studies of the beam-beam effect
- The effects of waist shift on the beam, and the luminosity
- Emittance growth measurements
- Spent electron beam concerns
- Beam steering solutions
- Conclusions

The LHeC Accelerator:

An energy recovery linac in a racetrack configuration

The LHeC Accelerator: An energy recovery linac in a racetrack configuration

RECIRCULATOR COMPLEX

- 1. 0.5 Gev injector
- 2. A pair of SCRF linacs with energy gain 10 GeV per pass
- 3. Six 180° arcs, each arc 1 km radius
- 4. Re-accelerating stations to compensate energy lost by SR
- 5. Switching stations at the beginning and end of each linac
- 6. Matching optics
- 7. Extraction dump at 0.5 GeV

LHeC (parameter list)

	Value	Nominal Parameters	High Luminosity
Particle Energy (ion/electron)	GeV	7000/60	7000/60
Particle number (ion/electron)	10 ¹⁰	17/0.3	22/0.2
β* ion	mm	100	50
β* electron	mm	120	32
Ex,y ion	mm mr	3.75	2
ex,y electron	mm mr	50	50
Beam Beam Tune Shift (i/e)		9.61x10 ⁻⁵ /0.76	1.20x10 ⁻⁵ /0.987
Beam Beam D-Parameter (i/e)		3.62x10 ⁻⁶ /5.99	9.05x10 ⁻⁶ /29.1

FCC project (Future Circular Collider)

- Proposed 100km circumference ring that would either collide protons at a c.m. energy of 100 TeV (FCC-hh), or electrons at a variety of c.m. energies between 91 GeV for Z production and 350 GeV for tt production (FCC-ee).
- The work here refers to the FC-he which would use the LHeC linac with the FCC-hh ring for ep collisions.

Parameter sets

- FCC is modeled using the 100km FCC-hh design with 25 ns bunch spacing
- Electron beam is the LHeC linac

			Nominal		Ultimate	
		Proton	Electron	Proton	Electron	
Energy	GeV	50000	60	50000	60	
β*	mm	1100	109	300	9.692	
ε _{x.vn}	μm	2.2	50	0.7333	50	
σ _z	mm	75	0.3	75	0.3	
Particle number	10 ¹¹	1	0.03	1	0.03	
B-B Tune Shift		.000164	0.45	.000426	0.382	
D-Parameter		5.6x10 ⁻⁷	3.89	5.35x10 ⁻⁶	37.2	

Software in use

- Guinea-Pig (C version) beam-beam code.
- Uses a strong-strong algorithm to calculate beam-beam interactions

Transverse Effects

Difference between outgoing x' with and without beam-beam effects

Longitudinal Effects

Longitudinal Effects

Single Pass Luminosities (LHeC)

Single Pass Luminosity (FCC-he)

Single Pass Offsets (LHeC)

Single Pass (offsets cont'd)

Single Pass (offsets)

Waist Shift Background

No Waist Shift

Waist Shifted 0.65 ozproton

Waist Shift optimization (LHeC)

Nominal Parameters

60,000 60,000 10000 10000 Waist Shift um Waist Shift µm $-40\,000$ $-40\,000$ 60,000 60,000 ! 1.1 · 1 60,000 10,000 $20\,000$ 0 $20\,000$ $40\,000$ 60,000 60,000 40,000 20,000 0 20000 40000 60 000 Waist Shift µm Waist Shift µm

Contour range: 9.04²⁹ – 1.028x10³⁰ Contour range: 1.23x10³⁰ – 2.396x10³⁰

High Luminosity

Waist Shift optimization (FCC-he)

Combination of Waist Shift and beta Function

Max 1.0997e30, min 7.44915e29

Max2.44e30, min 1.24e30

Multi-turn simulations

- Beam-Beam effect is simulated using Guinea-Pig
- The resulting particles are then acted on by a linear map of the LHeC/FCC with longitudinal motion
- The electrons are stored and used repeatedly with an offset governed by a random number generator seeded by the turn number
- The initial conditions for the protons are created using different random number seeds

Induce an instability

Attempt to induce instability in recirculating proton beam by matching the electron beam to always hit with a set offset at the same section of the beam, based on the horizontal tune.

Jefferson Lab Seminar April 1 201224

Growth Rate (resonant LHeC)

Nominal Parameters

High Luminosity

Red lines indicate no longitudinal motion, green lines indicate longitudinal motion

HeadTail effect (LHeC)

Predicted = 5.2838×10^{-14} /turn

Predicted = 1.821×10^{-14} /turn

Growth Rate comparison (LHeC)

Calculated growth rates are shown with the trendlines, while the predicted growth rate is shown with the thick red line.

Predicted = 5.2838×10^{-14} PredictedAverage = 3.665×10^{-14} AverageGrowth Rate= $1.47 \times 10^{-8} (\sigma_{jitter}/\sigma_x)^2 m/s$ Growth1 day doubling time jitter of 5.4%1 day doubling time jitter of 5.4%

Predicted =1.821x10⁻¹⁴ Average =0.679x10⁻¹⁴ Growth Rate=5.06x10⁻⁹(σ_{jitter}/σ_x)²m/s 1 day doubling time jitter of 6.7%

Head Tail Effect (FCC-he)

Nominal Parameters

0.008 0.002 0.006 Δp_x at 1 σ offset (µr) offset (µr) 0.004 -0.002 0.002 -0.004 **b** 0 at -0.006 -0.002 Δp_{x} -0.008 -0.004 -0.006 -0.01 -300000 -200000 -100000 0 100000 200000 300000 400000 -400000 -300000 -200000 -100000 0 100000 200000 300000 400000 Longitudinal Position (µm) Longitudinal Position (µm) Predicted rate 9.470x10⁻¹⁴ m/turn Predicted rate 1.249x10⁻¹⁴ m/turn

Jefferson Lab Seminar April 1 2015 28

Ultimate Parameters

Growth rate comparison (FCC-he)

Growth rate with Charge (LHeC)

Adjusted Beta Shift

Beta Shift (headtail)

 $\boldsymbol{\beta}^*$ is increased with a corresponding reduction in emittance to keep a constant spot size

Beta Shift (growth rates)

Spent Electron Beam (matching LHeC)

Nominal Parameters

High Luminosity Parameters

Spent Electron Beam (matching LHeC cont'd)

1000 800 10.0 Signa 10.0 Signa 9.0 Signa 9.0 Signa 8.0 Signa 8.0 Sigma 800 7.0 Sigma 7.0 Sigma 600 6.0 Sigma 6.0 Signa 5.0 Signa Ó 5.0 Signa Ó 600 4.0 Signa 4.0 Signa 3.0 Signa Δ .0 Signa Δ 400 2.0 Signa ٠ 0 Signa . 400 1.0 Signa ∇ 0 Signa ∇ PX (microradians) (nicroradians) 200 200 А 0 -200 <mark>≿</mark> -200 -400 -400 -600 -600 -800 -800 -1000-20 -10 10 20 30 -40 -30 Ø 40 20 60 80 -80 -60 -40 -20 40 X (micrometers)

Nominal Parameters

X (micrometers)

High Luminosity Parameters

Betatron Squeeze

- Option 1, Squeeze both the protons and the electrons together while in collision.
- Reduces nonlinearities in the spent electron beam
- Difficult to achieve with simultaneous operations

Betatron Squeeze

- Option 2 Squeeze electrons into an existing proton beam
- Simple with simultaneous operations
- Nonlinear phase space downstream

Betatron Squeeze

- Option 3, reduce electron emittance and increase along with squeeze
- Operates well with simultaneous operations
- Avoids nonlinear downstream issues
- Difficult to realize in practice

Spent Electron Beam (LHeC)

Nominal Parameters

High Luminosity

Red particles show the beam without beam-beam effects, green particles show the electron beam with beam-beam effects. Each frame is a single

interaction at an increasing offset

Jefferson Lab Seminar April 1 20159

Spent Electron Beam (FCC-he)

Nominal Parameters

Ultimate Parameters

The green data represent the spent beam after beam-beam focusing, the red shows the electron beam without the beam-beam effect for comparison. The blue circle shows the position of the proton beams, the beam is offset from 0 to 6σ in 0.1 σ intervals.

Electron Linac (kicker correction system)

The 1km radius is sufficient to allow for feedback within the same turn in each arc by cutting across

Δt (nanoseconds) Δs (meters) n_{kicks} 3434.351419 1029.592654 1 2 148.7120948 44.58276442 Assuming a circular arc, with a depth of 56 m Using numbers from FONT1 latency is 65ns and voltage is 350 volts

Electron Linac (kicker parameters)

Voltage	350 kicks	2	2		
energy	max kick µrad	beta	geometric emittance (nm)	σpx (µr)	max offset σ
10.5	1.3333	100	2.43321	4.9328	0.540603
20.5	0.6829	100	1.24631	3.5303	0.386893
30.5	0.4590	25	83.7691	5.7886	0.158594
40.5	0.3457	50	63.0856	3.5521	0.194636
50.5	0.2772	50	50.5935	3.1810	0.174303
60	0.2333	50	42.5830	2.9183	0.159909

Using one set of kicks at the opposite side, a 1σ offset can be corrected with a voltage of ~4400V

Electron Linac (tune shift correction)

Add Symmetric triplet cell

Correcting for the beam-beam induced tune shift could be accomplished with a pole tip voltage of less that 1.5 kV for a 1σ offset.

Jefferson Lab Seminar April 1 2015

Conclusions

- Beam Beam effects in asymmetric collisions provide some interesting physics
- Can be a limitation on beam lifetime and luminosity
- Can be managed if we don't push the parameters too hard
- Correction Schemes can keep the beam jitter within acceptable limits
- Methods can be employed to correct for tune shifts from offsets

