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Outline of the Talk

* New computational tools:
* New methods
 New computational hardware

* New methods: Multidimensional, non-linear optimization using a
genetic algorithm (GA)

* Brief motivation and background
» Applications: What we have done, will do and can do

 New computational hardware:
Parallel computation on Graphical Processing Units (GPUs)

* Brief motivation and background
» Applications
 Multidimensional integration for use in CSR simulations
* New code for simulation of long-term beam-beam dynamics
e Summary

3/27

.jeffer‘s)on Lab



GA Optimization: Motivation

e Asthe dimensionality of the problem N increases, N-dimensional
non-linear optimization becomes more challenging/impossible:

— Traditional, gradient-based methods (Newton, conjugate-gradient,
steepest descent, etc...) are not globally convergent:

e May get stuck in a local minimum and never come out
* Final solution depends on the initial guess

* Generally not robust in the non-linear regime

e Direct multi-objective optimization not possible

e This demonstrates a clear need for globally-convergent, robust,
multidimensional, multi-objective, non-linear optimization methods

— Genetic algorithm (GA):
* Trade-off: not as efficient as traditional methods
e Caution: still not a silver bullet
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GA Optimization: Background

« GA uses principles of natural selection to solve an optimization problem

Evolution Multidimensional optimization
Gene Variable

Individual Point in search space

Population Set of points in search space

Mutation Changing variables

Swap Exchange of values of the same variable

between two points in search space
Recombination Change of values of the same variable
(partial swap) between two points toward each other

Fitness Value of the objective function
o Mutation _ _
« Asexual reproduction Nmut=1 o .@? -+ Nmu=10
Recombination _ ' _
* 77rec_1 ——niin: .o o i 77rec_10

« Sexual reproduction

For details see: Hofler, Terzi¢, Kramer, Zvezdin, Morozov, Roblin, Lin & Jarvis 2013, PR STAB 16, 010101  g/>7
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GA Optimization: Background

Select independent End

variables = condition

chromosomes ?
Initialize [ Assi n Fitness | [ Select pairs |
populatlon 9 , L P )

v

Evaluate model ( )
generatlon =0 Recombination
and obJectlves L )

v

generatlon ++ \ [ Mutation \
L 3 J L J
Minimize f_ (x), m=1,2,....M; — objectives
Subjectto g, (X) =0, Jj=12,...,J; < inequality constraints
hk(X) =0, k=1,2,..,K; < equality constraints
fo) <X = xfu), i=1,2,...,n — decision variable constraints
Slide courtesy of Alicia Hofler 6/27
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GA Optimization: Background

 GAsimulationis only as accurate as its function evaluator
e We use two paradigms depending on objective function evaluation
* When objective function(s) are evaluated by a full simulation

— Platform and Programming Language Independent Interface for Search
Algorithms (PISA) from ETH Ziirich and Alternate PISA (APISA) from Cornell:

e Job control: spawning simulations, post-processing, communication
e Redesigned to be more modular and script-based: easier to plug-and-play
 Parallel execution of an entire generation: runs on JLab’s cluster and farm

e When objective function(s) are analytically evaluated in a subroutine
— Still can use PISA, but other options available (in various languages)

— We choose inspyred Python package:

e Contains various nature-inspired and other optimization methods:
particle-swarm, differential evolution, simulated annealing, etc...

 Contains efficient traditional methods: Newton, conjugate gradient, ...
e Parallel execution possible (using pympi package)
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GA Optimization: Applications

 We applied GA optimization to many problems in accelerator physics:

— When a separate simulation is needed to evaluate objective function(s)
e | Optimizing collider working point for luminosity (BB3D)

Single  _

objective | ° Maximizing dynamic aperture in a collider ring (elegant)

e Decoupling of the beam optics in the injector (elegant)

Multiple | ¢ | Optimizing dynamic aperture and chromaticity in a collider ring (elegant)

b- t. . . . . . M
OPIEEYE o RF gun optimization for injector brightness (Astra, Superfish)
1 [Hofler 2012, PhD and elsewhere]
[

Hofler, Terzi¢, Kramer, Zvezdin, Morozov, Roblin, Lin & Jarvis 2013, PR STAB 16, 010101]

Multiple o

P Optimizing laser frequency modulation function in Thomson scattering
objectives

[Terzi¢, Deitrick, Hofler & Krafft 2013, PRL, submitted]

— When objective function(s) can be evaluated analytically
e | Chi-square fits to the CEBAF harp data

e Future candidate for GA optimizations:
— Optimizing heat load and trip rates in the CEBAF linacs Multiple

objectives
— Injector optimization with the CEBAF as the function evaluator 8/27
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GA Application: Optimizing Collider Working Point

Collider luminosity is sensitive to beam-beam effect and synchro-betatron
resonances of the two colliding beams

Careful selection of a tune working point is essential for stable operation of
a collider as well as for achieving high luminosity

We simulate the Medium-energy Electron-lon Collider (MEIC)
Optimization problem:

— Independent variables: betatron tunes for the two beams (v',,v",v*,,v* )
(Synchrotron tunes fixed for now; 4D problem)

— Objective function: collider’s luminosity L(v',,v!,v*,,v* )
(Evaluated via a simulation with BeamBeam3D parallel code on the JLab cluster)

— Subject to constraints (e.g., confine tunes to particular regions)

GA is the only non-linear optimization method that can work in a search
space so violently fraught with resonances (very sharp peaks and valleys)

9/27
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GA Application: Optimizing Collider Working Point

Resonances occur when m,v, +m v +m.y .= n
m,, m, m and n are lntegers (m ~o for now)

Green lines: difference resonances (stable)
Black lines: sum resonances (unstable)

Restrict search to a group of small regions along
the diagonal devoid of black resonance lines.
Restricts the search space by ~30in 2D, ~1000 in 4D

Found an excellent working point near
half-integer resonance
e-beam: v, = 0.530, v, = 0.548
p-beam: v, = 0.501, V, = 0.527
Luminosity about 33% above design value
in only ~300 simulations (5 gen. of 64 individuals)

Systematic scan with a modest 0.01 resolution:
1004=108 simulations!

=» GA search orders of magnitude more efficient

This is just a proof of principle — future realistic
simulations will include other important effects:
magnet errors, non-linear maps, IBS, cooling ...

Luminosity [cm2 s]

5 A0 2N ‘
0 0.1 0.2 03 04 05 0.6 0.7 V.8 09 1
Vx

Gen 2

Gen 3

Gen4 Genb5

0 1 2
Generation Number

3
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GA Application: Non-Linear Chi-Square Fitting

Wire scanners (harps) are used in CEBAF to
measure the beam’s position and size

Moved into the beamline at a constant
velocity and angle (generally 45°)

Data from these plots needs to be fit to
Gaussians to obtain beam size and position

Non-linear fitting cast into an optimization
problem: minimize chi-square (x?)

2 2
X' =Y Lf(x)-y] —
i=1,N
Independent variables: -
Gaussian parameters: A, U, g, ¢ (4D problem)
o
Objective function: _Gemp)? -
2
x> of a Gaussian  f(x)=Ae * -c #’!‘W.
®° oo M ¢
i 10
Used Python paCkage inspyred Slide courtesy of Alyssa Henderson 11/27
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GA Application: Non-Linear Chi-Square Fitting

* A hybrid method combines strengths of the two approaches

* Traditional, gradient-based methods

converge quickly to a local optimum NCG 3.168
* GA and other nature-inspired methods (PSO, DE) PSO 123.906

are globally convergent — they eventually zoom in_»— | DE 41.416

on the global minimum (generally slow)/ GA 120.940
* First reduce the search space with a globally Average execution time for

a harp scan fit with >50 points

convergent method, then use a fast :
on a single CPU

gradient-based method for improved efficiency

* Harp fitting is still mostly solvable by a traditional, globally
convergent method (Newton CG)

* GA and other nature-inspired methods used for robustness & insurance
 Switching to other models is easy (just change the objective function)

* As the dimensionality of the problem grows, gradient-based methods

becomes less reliable, and the need for GA more pronounced |
12/27
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GA Application: Dynamic Aperture & Chromaticity

In a collider ring design, dynamic aperture and momentum acceptance
should both be maximized — but they are roughly inversely proportional
Reducing the higher-order chromaticity will lead to increased
momentum acceptance

* This, again, depends on the choice of the working point (betatron tunes)

We simulate the MEICion ring
Optimization problem:
— Independent variables: betatron tunes for the beam (v,,v,) (2D problem)

— Objective functions:
(Both evaluated via a simulation with elegant code on the JLab farm)

e Maximize mom. acceptance €<—>» Minimize 2"%-order chromatic function &>

e Maximize area of dynamic aperture A €=> Minimize 1/A

13/27
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GA Application: Dynamic Aperture & Chromaticity

* Physics judgment is needed to strike a —— DynamicAperture
- A —
balance between the two quantities 6| B —
* Pareto-optimal front: |
o [ = 4 I
Non-dominated solutions s |
2 -
Pareto-Optimal Front 1l
20 T T T T T T
18 =X A ol TEE 4 S E 0 125 45 67
6| | 0.10F x fom]
14F | 0.08
> 0.06f X %
B 12r " ooal % T Momentum Acceptance
*x 10 ’ T T T T T T T
1 1 1 1 vy
el |% 0006502 06 08 1 - 08} B v,
4r K%n‘ Vx 1 8 3"
2 06 y
B XK e C <
O , R xX WO N v, w - , =
0 002 004 006 008 0.1 0.42° 0.14 041
/A [m?] 02}
FIG. 17. Pareto front after 24 generations of 64 individuals. ot -
The large X’s denote representative points A, B, and C. -1lo -23 -I6 -:1 2 b 2

-3
[Hofler, Terzi¢, Kramer, Zvezdin, Morozov, Roblin, Lin & Jarvis 2013, PR STAB 16, 010101] Ap/p x10
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GA Optimization: Adapting to a New Problem

e Adapting the two paradigms to a new problem is relatively easy
— Physics pre-screening

e Restrict the search space as much as physically possible
Convergence directly proportional to the volume of search space

— Define the optimization problem:
e Objective function: How is it computed? Choose paradigm
e Independent variables (parameters/“knobs to be turned”): define ranges
e (Constraints: specify if present
e Decide on simulation parameters: number of individuals/generations
— If a separate simulation is needed for evaluating objective function(s)

e Make sure program is installed on the platform to be used
(Unlimited licenses are required for commercial software)

e Modify scripts for spawning jobs and extracting results
e Define parameter ranges for independent variables
— If objective function(s) can be evaluated analytically

o Write function(s)/subroutine(s) 15/27
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GPU Computation

e
« Second half of my talk is on parallel computation on GPUs
* Why is it important?

* Making simulations much more efficient computationally
enables studying previously inaccessible physics

* What are we doing that is new and different?
* Interdisciplinary approach — division of labor among experts in the field:
* Physicists: physics, algorithm development, prototyping

« Computer scientists: algorithm development and implementation,
parallel programming

* What are our goals?

* Develop GPU-parallelized codes that will lead to accelerator physics
simulations beyond the present state of the art

* Design methods useful beyond the scope of accelerator physics
* Develop expertise on the subject to use it on other problems

16/27
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GPU Computation: Background

e
 Parallel computation on GPUs

* Ideally suited for algorithms with high arithmetic operation/memory access ratio
Same Instruction Multiple Data (SIMD)
Several types of memories with varying access times (global, shared, registers)

Uses extension to existing programming languages to handle new architecture

GPUs have many smaller cores (~ 400-500) designed for parallel execution

Avoid branching and communication between computational threads

GPU
| Device) Grid
El (Device)
=] Block (0, 0)
EHHIGETE’HHH C
W [T TTTTITTTTITTT]
EHHHHH[HH .
~ EEEEEEEEEEEEEEN

=

’

More Space for ALU Thread (0,0) Thread (1,0) Thread (0, 0) Twead(1,0)
) I )
less for cache CPU
and flow control GPU: Host
grid = blocks = threads
Example: Tesla M2090 GPU has 512 cores 17)27
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GPU Computation: Motivation

« There are many problems in accelerator physics that can
greatly benefit from a speedup from a GPU-based computation

* Particle tracking codes (elegant, VORPAL, etc...)
* Collision codes (BeamBeam3D)
* Monte Carlo-based codes

Speedup: ratio of execution times on a host CPU to that on a GPU

Some have already been GPU-parallelized with impressive speedup
* elegant: ~70 times
* VORPAL: at least an order of magnitude

In general, it has been shown that GPUs can deliver performance
improvements of 1-3 orders of magnitude

This kind of speedup means:
 Simulation time: several months or a year - about a day
* Opening the doors to studying previously inaccessible physics!

18/27
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GPU Computation: CSR Simulations

* When a charged particle beam travels
along a curved trajectory (bending magnet), \
beam emits synchrotron radiation

reberent (59 """b\’o't"’o'MO\W’M’&'6'00'6\’0’6’0&'6’0&'6\ A
Coherent (CSR) W Ejsstematic

A> O : «— > effects
O

A

* CSR adversely impact beam quality:
- Increased energy spread and emittance, longitudinal instability (microbunching)

* CSR effects are important for FELs, light sources, ERLs, etc...

* Itis of vital importance to have a trustworthy code to simulate and
mitigate the CSR effects

19/27
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GPU Computation: CSR Simulations

* CSR simulations have proven to be extremely challenging
« Computing retarded potentials requires integration over the retarded time t’:

pory | 90| (] P |

' =
T A(F,1) JGFEt) |[F=7]
Retarded time
* Circles of
* Huge computational bottleneck! Computations scale: causality

 Particle-particle codes: ~ N2, where N is the number of particles

* Particle-in-cell codes: ~ N, .2, where N_. is the grid resolution
We have been developing a particle-in-cell (PIC) CSR code

* Solution: Develop an efficient, parallel multidimensional integrator on GPUs
* Integration over grid is ideally suited for GPU parallelization (SIMD)

« Used NVIDIA CUDA framework (extension to C++)
» Deterministic: based on integration rules like Gauss or Newton — not Monte Carlo

* Useful beyond this project: outperforms Monte Carlo in medium dimensions

20/27
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Adaptive Multidimensional Integration On a Single GPUs

* Direct parallelization of the serial methods does not take advantage of GPU data
parallelism and does not provide load balancing = inefficient code

* We developed a new two-phase parallel algorithm multidimensional integration on GPUs
* Phase 1: Parallel identification of subintervals needing higher resolution
* Phase 2: Parallel evaluation of identified subregions to prescribed accuracy

* GPU-based implementation outperforms the best known sequential method (CUHRE)
and achieve up to 10-100 times speedup on a single GPU

Benchmark functions in n dimensions 0000 Speedup: 1 GPU Vs. 1 CPU
oscillatory, strongly peaked and of varying scales Bgﬁgﬁggﬁg .
_9 1000 | Dimension 7 & |
1. fl (X) — [Cl‘ + cos2 (Z?:l 112)] “, where a = 0.1 — > i Dimension 8 g 1
100 | Ve "
. =
2. f2(x) = cos ([T;, cos (2%'z;)) S 10 I
9 ,
3. f3(x) = sin ([]i, i arcsin(z})) a o
4. fa(x) = sin([;_, arcsin(z;)) 0.1
5. f5(x) = %Z?:lcos(ari), where a = 10.0 and 001 Lo v
8 — —0.054402111088037 0.1 001 0.001 0.0001 1e-05 1e-06 1e-07 1e-08 1e-09
Relative error
[Arumugam, Godunov, Ranjan, Terzi¢ & Zubair 2013a] Slide courtesy of Kamesh Arumugam 21/27
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Adaptive Multidimensional Integration On Multiple GPUs

* Next, we optimized our new GPU-based algorithm for memory efficiency and
scaled to multiple GPU devices

e The algorithm has been implemented on a cluster of Intel® Xeon® CPU X5650
computes nodes with 4 Tesla M2090 GPU devices per node (512 cores per device)

 Onasingle GPU device: Reached a speedup over a serial version of up to 240 as
compared to a speedup of 70 when memory optimization was not used

e Onacluster of 6 nodes (24 GPU devices): Reached a speedup of up to 3250

1 CPU Speedup:
With Vs. Without Memory Optimization Multi-CPU Speedup
. 20— - | ; :

Single GPU without Memory Optimization —+ |} falx) =+

1000

Single GPU with Memory Optimization f1(X)

o
3
b7 10
)]
Q.
(7, "

1E

01 1 1 Il 1 0 1 1 1 1 1 1
0.1 0.01 0.001 0.0001 16-005 12 4 8 12 16 20 24
Relative error # of GPU devices
[Arumugam, Godunov, Ranjan, Terzi¢ & Zubair 20133, 2013b] Slide courtesy of Kamesh Arumugam 22/27
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Monte Carlo Vs. Adaptive Multidimensional Integration With a Single GPU

e

* Monte Carlo integration on GPU (VEGAS and BASES methods) has been published
previously in The European Physical Journal C [Kanazaki 2011, 71:1559]

* We compare Monte Carlo Vs. our method on a set of 6 functions with exact solutions

* Preliminary results: Even in higher dimensions our adaptive multidimensional
integration method outperforms Monte Carlo method on a single GPU

* Preliminary results: Monte Carlo on GPU fails for large number of function evaluations

* Possible ramifications: Our new code can replace Monte Carlo in many physics
application for improved performance

Internal Relative Error True Relative Error
R —— MC CPU 1e+00 1 ! — — ! : Adaptive GPU —s— 1e+00 ! ! ! ! I : Adaptive GPU —s—
==== CUHRE CPU
— CUHRE GPU

1e02 T T TN,
1e-02|

1e-03 |

e-03 [

e-04 |

Relative Error

e-04 1
1e-05 |-

Estimated Relative Error

1e-05 1
1e-06 |-

1
Fs(x) = ﬁzcos(axi)

1e-06 |- 1e-07

where oo =10.0 and

_ 10 dimensions 10 dimensions
6= -0.0544 1e-07 s i : w w . . 1e-08 i i i w w ‘ hd
1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10 1ed 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10 1e+1
# of function evaluations # of function evaluations
[Arumugam, Godunov, Ranjan, Terzi¢ & Zubair 2013¢] Slide courtesy of Kamesh Arumugam 23/27
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GPU Computation: Beam-Beam Code

e
e Studying beam dynamics in particle colliders requires specialized codes
e Simulation in beam-beam codes can be divided in two parts:
— Particle tracking between consecutive beam collisions
* Number of efficient tracking codes exist
— Beam collisions at the interaction point
e Solving the Poisson equation: major computational bottleneck

e Long-term dynamics is of particular interest
— Simulate operational stability and luminosity lifetime
— Long-term: on the order of beam lifetime (for MEIC ~ 109 collisions!)
— This kind of long-term is currently inaccessible with existing codes
e Too much time is spent on detailed solution of the Poisson equation
e Solution:
— Simplify the beam-beam interaction (use Bassetti-Erskine approx.)
— Parallelize both tracking and collision on GPUs

24/27
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GPU Computation: Beam-Beam Code

e Bassetti-Erskine approximation: l)l)l)l)l)
— When beams are infinitesimally short and transversally Gaussian
the Poisson equation reduces to a complex error function
(much faster than any other way of solving the Poisson equation) <
 Finite length of the beams simulated by stringing along thin slices

— Collide each slice in one beam with each slice in the other beam
e Gaussian transverse distribution a good approximation for the MEIC

e GPU parallelization: (preliminary results) 64 CPUs: BeamBec\zm;D ~M7/4

New algorithm (serial)
BEAMBEAM3D 64 cores
oM

oc M/

— Particle tracking:

104 L

e Symplectic 1-turn maps of an arbitrary
order from COSY-Infinity

— Single-CPU tracking is equivalent
and as fast as COSY-Infinity

— Speedup on 1 GPU ~ 170 times

| 1T

103 L

Execution time

— Beam-beam collisions: 0%} 1 CPU: Our code ~ M |

e Scales better than BeamBeam3D

1 2 3 4 5 7 9 15

— Speedup on 1 GPU ~ 70 times 4 of slices M 25/27
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Summary

* Presented two new powerful computational tools

* GA optimization for multi-dimensional, non-linear optimization:
 In many physics cases, knobs have to be turned to improve performance
When the dimensionality of the problem is large, GA is the only hope
GA simulation is only as good as its function evaluator
Implemented two easily-adaptable computational paradigms
Applied to a number of problems in accelerator physics

These serve as a template for other applications

26/27
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Summary
e
 Parallel computation on GPUs:
* Interdisciplinary approach: physicists, computer scientists and engineers
 Can lead to orders-of-magnitude speedup for some codes

* GPU address the computational bottlenecks in two important
accelerator physics problems:

e CSR simulation
* Numerical integration: speedup of up to about 3 orders of magnitude
 Beam-beam interaction
* Tracking and collision: speedup of about 2 orders of magnitude
* We developed expertise on the subject to be used on future problems

* Overarching goal: Develop new tools to study previously intractable
problems in accelerator physics and beyond

27/27
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Details for the Work Presented

 Application of GA optimization (CASA collaboration):

* Kramer, Jarvis & Terzi¢ 2010, JLab Tech Note JLAB-TN-10-034
Terzi¢, Kramer & Jarvis 2011, PAC (WEP167)
Hofler 2012, PhD thesis

Hofler, Terzi¢, Kramer, Zvezdin, Morozov, Roblin, Lin & Jarvis 2013, PR STAB 16, 010101
Mini-tutorial to be presented at NAPAC 2013 by Alicia Hofler

Terzi¢, Deitrick, Hofler & Krafft 2013, PRL, submitted

Henderson 2013, REU project

* GPU computation:
Multidimensional integration (ODU / CAS collaboration)

* Arumugam, Godunov, Ranjan, Terzi¢ & Zubair 20133,
International Conference on Parallel Processing — 42" Annual Conference (refereed)

* Arumugam, Godunov, Ranjan, Terzi¢ & Zubair 2013b,
20" Annual International Conference on High-Performance Computing (refereed)

« Arumugam, Godunov, Ranjan, Terzi¢ & Zubair 2013¢, in preparation

Beam-beam code (ODU [ CAS [ CASA collaboration)
* Roblin, Morozov, Terzi¢, Aturban, Ranjan & Zubair 2013, IPAC (MOPWO0080)
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Genetic Algorithm Basics

Crossover or Recombination Mutation
Parent-1 2-gene Parent-2 2-gene
Chromosome ____C_h['_o_m_o__s_q_m_e ________ 2-gene Chromosome
1011[011011] | 0101{101001 1011]011011
1o11]o][t1011] fo1o01]1iforo001! l
l 1010011011
1011[001001| {0101{111011
T :' """"""""" | Mutated 2-gene
chromosome

Offspring-1 2-gene Offspring-2 2-gene
chromosome chromosome

Slide courtesy of Alicia Hofler
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Real Valued Recombination

Simulated Binary Crossover

X —-X
% %
Xpl —Xp1 parent-1 3-element parent-2 3-element
decision vector decision vector
1.1} 2.2| 3.3 5.516.6|7.7
1.1 2.2 3.3 5.5 6.6 7.7
B=1.2
1 - _ =
E_6.6+1.2(4.4)_
0.66| 2.2| 3.3 5.94(6.6| 7.7
offspring-1 offspring-2
(Optionally, swap vector elements a priori)

Slide courtesy of Alicia Hofler
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Real Valued Mutation

Polynomial Mutation

X . =X+0A
mut max
3 . ‘ . A X=1.0

T|mut=0 ma

Nmut=1
25 | Nmut=5 —— - 0=0.1

4-element decision vector

old| 1.1 2.2/ 3.3/ 4.4
l3.3+(o.1)(1.0)

O.: / . K new| 1.1| 2.2| 3.4/ 4.4

Slide courtesy of Alicia Hofler
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Optimizing Collider Working Point: GA Vs. Parameter Scan

Generation Number
0 4 8 12 16 20
45 T T T

35 oo ' :

25 .
20 1
15 | .
10 .

Improvement over design [%)

. : : GA —o—
0 512 1024 1536 2048 2560

# function evaluations
Scan Resolution k

3 4 5 6 7

45

35 .

25 | ——
20 — -
15 | |
10 | -

Improvement over design [%)
|
ll
|
|
|
|
|
\

) Parameter scan —e—

81256 625 1296 2401
# function evaluations

FIG. 6. Top panel: Improvement over the design luminosity
after each generation for a GA-based optimization with 20

generations of 128 individuals in each. The improved working HOﬂer, TerZiC,, Kramer, ZveZdin, MorOZOV,
point is about 9% better than the one found in Fig. 4. Bottom . . .
panel: Improvement over design luminosity after a systematic RObIln) Lin & Jarvis 2013) PR STAB 16) 010101

parameter scan with resolution k in each parameter.
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