Report from SRF2013: The SRF World Today

Report from SRF2013: The SRF World Today

16th International Conference on RF Superconductivity

SRF 2013 covered the latest advances in the science, technology, and applications of superconducting RF.

~390 participants from >35 institutions

The program:

- 10 tutorial talks in pre-series @ GANIL
 - http://pro.ganil-spiral2.eu/events/cw/srf2013/
- 62 invited review talks
 - https://indico.in2p3.fr/conferenceOtherViews.py?confld=8939
- ~350 contributed posters
 - All papers will appear soon on JaCOW
- 3 "hot-topic" discussion sessions

10/17/2013

Report from SRF2013: The SRF World Today

- 1. Status of SRF-based accelerator projects in the world scale and quality in comparison with CEBAF, esp. 12 GeV John Mammosser
- 2. SRF cavity processing techniques the latest standard and the emerging
 Ari Palczewski
- 3. SRF non-bulk materials what is new and promising? Anne-Marie Valente-Feliciano
- 4. Nb high-Q pursuits what is new, what is the best seen, what understanding and control is needed yet? Pashupati Dhakal

10/17/2013

Status of Accelerator Based Projects SRF2013

Thomas Jefferson National Accelerator Facility is managed by Jefferson Science Associates, LLC, for the U.S. Department of Energy's Office of Science

Outline:

SRF Based Projects: XFEL FRIB Cornell ERL **ADS** China ESS Atlas Upgrade **IFMIF** Project X

XFEL-Europe

Civil Construction

XFEL - DESY

- 220/640 Cavities fabricated, 111 delivered
- Rate 4/week ending in mid 2015
- Two Vendors both with new facilities for
 - EP
 - HPR
 - Cleanroom assembly
 - QA, RF and Mechanical
- Cavities delivered fully processed ready for testing in helium vessel

– Only additional HPR necessary

Nb to Cavities, DESY

XFEL- Performance

4 RCVs of RI and 4 RCVs of E. Zanon: acceptance test successful

Prior surface treatment.

EP 110-140 μm (main EP), outside BCP, ethanol rinse, 800° C annealing, tuning

Final surface treatment - two alternative options

- 1. Final EP of 40 μm, ethanol rinse, high pressure water rinsing (HPR) and 120° C bake
- 2. Final BCP of 10 μm (BCP Flash), HPR and 120° C bake.

Integration of the helium tank, assembly of HOM, pick up and high Q antennas and shipment to DESY for 2K RF acceptance test

XFEL- Performance Comparison

Preliminary accounting for gradient reductions:

- Capping VTA Admin limit to 25 MV/m reduces VTA average to 24.9 MV/m
- Cryostat riser limits (50 60W per cavity) account for reductions in 21% of the cavities
- Assembly / Testing "events" account for reductions in ${\sim}5\%$ of the cavities

Acceptance Criteria:

"...maximum gradient > 26 MV/m with an unloaded Q_0 of $\ge 1x10^{10}$ and a X-ray level lower than $1x10^{-2}$ mGy/min." (with 26 MV/m to give 10% margin compared to 23.6 MV/m design gradient)

If acceptance criteria passed

=> preparation for transport + string assembly

If acceptance criteria is not passed

=> re-treatment at DESY

(Reminder: **No performance guarantee by the vendors**, i.e. the risk of unexpected low gradient or field emission is with DESY)

• "Usable Gradient": i) Quench

ii) $Q_0 < 1x10^{10}$ iii) radiation > 1x10⁻² mGy/min

footnote

Performance Comparison Vertical Test

Vertical Test Performance Cavity Vendor	C100 2.07K (R1)	XFEL 2.0K (1/3-Ri/2/3 - Z)	C100 Yield	XFEL Yield
VTA Admin Limit	27.0/Rad /Pd/Quench	26.0/Rad /Qo/Quench		
Eacc (Avg Maximum)	27.4	28.1 ±7.8		
Qo (Low Field)	1.3E10	2.2e10		
Eacc (Usable)		29.0 ±3.9		
VTA Yield First Pass	62/86	50/79	72.1%	63.3%
VTA Yield Second Pass	18/21	13/17	85.7%	76.4%
No Success First and Second Pass	3/86	3/79	3.5%	3.8%

Jefferson Lab

Performance Comparison Cryomodules

- Cryomodules are built at CEA by CEA staff
- 3 Modules fabricated to date PXFEL2-1, PXFEL3-1, PXFEL2-2

The team (~10 persons)

footnote

A closer look at two modules

PXFEL2-1		cav1	cav2	cav3	cav4	cav5	cav6	cav7	cav8	Avg
	Vertical test	28	33	27	32.5	32	27	32	37	31.1
	DESY assembly	26	33	16	34.5	34	28.5	31	32	29.4
	% change	7 1	0.0	40.7	6.2	6.2	ГС	2.1	10 F	го
	% change	-7.1	0.0	-40.7	-0.2	-0.3	-5.0	-3.1	-13.5	-5.8
	CEA Accombly		22 E	16	24 5	27	20	20 5	27	20.6
	CEA Assembly	20.2	55.5	10	54.5	57	20	29.5	52	29.0
	% change	-6.4	+1.5	0.0	+6.2	+15.6	+3.7	-7.8	-13.5	-0.1
PXFEL3-1								ном		
	Vertical test	23.5	27	27.5	28	35.5	31	33	38	30.4
	CEA Assembly	20	25	25	32 5	37 5	26 5	15 5	16	2/1 1
	CLA Assembly	20	23	23	52.5	52.5	20.5	13.5	10	24.1
	% change	-14.9	-7.4	-9.1	+16.1	-8.5	-14.5	-53.0	-57.9	-18.7

Cornell ERL

Cornell ERL

nominal length: 9.8 m

Intermodule unit

Cornell Cryomodule Test Bed Results

- HTC-1: Follow vertical assembly procedure as closely as possible
- HTC-2: Include side mounted, high power RF input coupler

20

 HTC-3: Full cryo-module assembly:high power RF input coupler and beam line HOM loads

Cornell Vertical Test Results

FRIB- MSU

FRIB – Facility for Rare Isotope Beams

- 400 KW beam >200 MeV/u Oxygen to Uranium
- Currently at CD2-3A
- Start of civil construction April 2014

 Total \$ 730M, 180 employees
 CD4 in 2020
- SRF Infrastructure at MSU
 - 27000 sq. ft. production facilities under construction
 - Complete in April 2014

Production Required

- $\beta 0.041$
 - 3 Cryomodules, 12
 Cavities
- β- 0.085
 - 11 Cryomodules, 88
 Cavities
- β- 0.29
 - 12 Cryomodules, 72
 Cavities
- 1 meter 1 meter 0 -

β- 0.53

Jefferson Lab

SRF Mass Production Will Occur In New MSU SRF Facility 27,000 sq. ft. SRF High Bay - Building Completion: April 2014

F2013 RIS Secondarian Jefferson Lab

Performance

23 FRIB-relevant cavity prototypes have been successfully tested
 8 β=0.041 cavities, 11 β=0.085 cavities, 5 β=0.53 cavities

Cavity Production

- Production cavities are procured using a phased approach
 - 2 development cavities, undressed (no helium vessel) 🖛 CONFIRM FINAL DESIGN
 - 10 dressed pre-production cavities (with helium vessel) CONFIRM PRODUCTION
 - Production cavities
- Production Cavities Fabrication Status:
 - First development cavities have been successfully fabricated and delivered
 - »β=0.53 Roark Welding & Engineering Co., Inc. (received and certified)
 - »β=0.29 Roark Welding & Engineering Co., Inc. (received)
 - »β=0.085 Pavac Industries, Inc. (delivery early 2014)
 - β=0.53 FRIB production contract placed for 144 cavities.
 - Rest of cavity production contracts will be placed by end of this year.

FRIB project procured \$13.2M of niobium material

ADS China

	Spoke	HWR	HWR	Spoke	Spoke	Ellip	Ellip	Tin:4
	012	010	015	021	040	063	082	
Freq.	325	162.5	162.5	325	325	650	650	MHz
βg	0.12	0.09	0.14	0.21	0.40	0.63	0.82	-
Aperture	35	40	40	50	50	100	100	mm
Uacc	0.82	0.78	1.82	1.64	2.86	10.26	15.63	MV
Epeak	32.5	25	32	24/31	25/32	29/38	28/36	MV/m
Bpeak	46	50	40	50/65	50/65	50/65	50/65	mT
Temp.	4.5	4.5	4.5	4.5	2	2	2	K
Ploss	10	10	15.5	16.8	6.5	21	30	W
1 1055	$(70n\Omega)$	$(70n\Omega)$	$(70n\Omega)$	$(70n\Omega)$	0.5	<i>2</i> 1	57	vv
Number	12	6	6	28	72	28	85	-

Operation At 4.5K injectors and possible 2K for rest Bpk – 65mT

Prototyping on-going

Courtesy of IHEP

Performance Comparison

Jefferson Lab

ESS

	Length (m)	Input Energy (MeV)	Frequency (MHz)	Geometric β	# of Sections	Temp (K)
RFQ	4	75 × 10 ⁻³	352.2		1	≈ 300
DTL	19	3	352.2		3	≈ 300
Spoke	52	50	352.2	0.45	14 (3c)	≈ 2
Low Beta	57.5	200	704.4	0.63	10 (4c)	≈ 2
High Beta	215	500	704.4	0.75	19 (8c)	≈ 2
HEBT	100	2500		1777):	1. 	-70-71

Cité Internationale Universitaire, PARIS

Lund, Sweden

Capital spend	Investment: 1478 M€ / ~10y Operations: 89 M€ / y Decomm. : 346 M€ (Cost per 2008-01-01)	
		€250M
		€200M
	Operations	€150M
Site preparation		€100M
2009 2011 2013 2015	2017 2019 2021 2023 2025	€50M €0M
Construction phase	Operations phase	► 7

Jefferson Lab

Línac R&D in progress

IPHI RFQ at CEA-Saclay

http:// www.jpaw.com

SC triple spoke cavity, ANL

SC 5 cell cavity for 704 MHz, CEA and CNRS

IFMIF/EVEDA

Two parallel 125 mA Deuteron beams at 40 MeV will coll that within a few years will reach the expected displ commercial nuclear fusion reactor.

Primary Parameters	LIPAc	Units
Number of Linacs	1	
Duty factor	CW	
lon type	D ⁺	
Beam intensity on target	125	mA
Beam kinetic energy on target	9	MeV
Beam Power on target	1.125	MW
RF Frequency	175	MHz
Target material	Cu*	
Total length	34.00	m
Injector length	5.05	m
RFQ length	9.81	m
MEBT (MS) length	2.35	m
SRF Linac length	4.64	m
Number of cryomodules	1	
HEBT total length	9.65	m

- Q₀ recovered
- Quench occurring on one HPR port

cea

THE LIPAC CRYOMODULE

8 Half Wave Resonators (operating temperature 4.4 K)

8 RF Power Couplers

CW operation (70 kW max)

- Vertical position
- One room temperature window

8 Superconducting Solenoid Packages

- Focusing solenoid with shielding
- H & V steerers
- Cold BPM

Cryostat

Target Values of complete Cryomodule					
Frequency	175 MHz				
β value of the HWR	0.094				
Accelerating field E _a	4.5 MV/m				
Unloaded Quality factor Q₀ for R₅=20 nΩ at nominal field	1.4×10º				
Beam aperture HWR/SP	40 / 50 mm				
Freq. range of HWR tuning syst	± 50 kHz				
Freq. Resolution of tuners	200 Hz				
Max. transmitted RF power by coupler in CW (for LIPAc)	70 kW				
Max. reflected RF power in CW	20 kW				
External quality factor Q _{ex}	6.3×10 ⁴				
Magnetic field B _z on axis max.	6 T				
∫ B.dI on axis	1 T.m				
Field at cavity flange	≤ 20 mT				
CBPM position meas. Accuracy	0.25 mm				
CBPM phase meas. accuracy	2 deg				
Total Static/Dynamic Heat losses	18 / 120 W				

SRF 2013 - N. BAZIN

Jefferson Lab

Cavities Project -X

Project X Meeting 8/16/2011

Cavity Types & Quantities

*Source: Vyacheslav Yakovlev

Sectio n	Energy MeV	E _{acc} MV/m	B _{max} mT	Q @ 2K x10^9	Installed cavities	Processed Cavities
SSR0 (β _G =0.11)	2.5-11	9.0	66	6.5	18	22
SSR1 (β _g =0.22)	11-41	11.0	65	11	20	24
SSR2 (β _G =0.42)	41-179	10.0	69	13	44	53
$_{(\beta_G=0.61)}^{650 \text{ MHz}}$	179 - 559	16.5	70	15	42	51
650 MHz (β _G =0.9)	559 - 3000	16.8	63	20	152	183
1300 MHz (β _G =1)	3000- 8000	25	107	10	224	270

Front-end demonstrator PXIE is under construction (25 MeV, 1mA)

- ✓ Goal = validate Project X concept & eliminate technical risks (compact lattice layout)
- ✓ Beam operation planned between 2016 & 2018
- ✓ Cavities under fabrication Stepper moto SSR1 HWR MEBT RFQ LEBT B B === 110 15 LBNL FNAL, SLAC FNAL ANL ow harer arm Pivot mie Cavity Type HWR See P. Ostroumov MOP066 See A.I. Sukhanov MOP014 162.5 MHz Frequency Optimal B 0.112 SSR1 bare cavity cold test results at 2 K 20.7 cm Effective Length Aperture 33 mm 4.7 E. /E. 5.0 mT/(MV/m) B_{peak}/E_{acc} ò 48 M G R,/Q 2720 ARL 101 184 181 181 2 K Heliun Conduction Vacuum 108 January 16, 1919 Cooled Leads Manifold Subcooled Heat Harris & April 24, 2013 Furhance of participation and ARG., MV/m E., MW/m 162.5 MHz B_{ps}. mT Ti Strongback HWR

J-Luc Biarrotte, SRF2013, Paris, 23-27 September 2013

19

Beam Parameters of RAON

Jefferson Lab

SRF Cavities

Jefferson Lab

SRF Test Facility Layout

Atlas Upgrade, ANL

ANL ATLAS Intensity Upgrade Cryomodule

• Seven $\beta = 0.077$, 72.75 MHz quarter-wave cavities

Courtesy of ANL

- Four 9-Tesla superconducting solenoids
- Replaces 3 old cryomodules with split-ring cavities
- Total design voltage is 17.5 MV, expected 4.5K cryogenic load is 70 W

Vacuum Vessel

Will be operated to provide ~20 MV, 4.5K cryogenic load is 85 W

5.2 m long x 2.9 m high x 1.1 m wide

fo

5 QWRs were tested in TC3

- Highly optimized EM design, conical shape, minimized ratio Bpeak/Eacc, Epeak/Eacc
- Only wire EDM is applied for machining of the Nb joints to be EB welded
- · EP after all mechanical work including He vessel is completed

New Cryostat Design

Cavity String Assembly and Cooldown

Cavity temperature during 1st cool down

August 2013 (Test for 2 wks)

- All cavities E_{ACC}≥10 MV/m
- Tuners cycled through full range
- Low microphonics, +/- 2 Hz for periods of minutes up to days
- Solenoids aligned to 120 μm RMS October 2013
- Need to place string in stand (above) and
- Replace pickup loops (too much coupling)
- Squeeze one cavity by +5 kHz

16

KEK - Activities

Purpose of fabrication of cavities on the KEK site

Development of a mass production technology in order to fabricate more than 16000 cavities within 3 to 5 years for ILC project

- Improvement of yield ratio = Stable quality
- Reduce the cost drastically
- Development of mass production technologies

Development on the KEK site

Collaboration with many companies

Cooperation with STF

0.2

Q-E curve of vertical test at STF

Oo pi-mode initial [1.71-1.80K]

KEK-0 (First product) Acceleration gradient attained 29 MV/m, did not meet the ILC specification (31.5).

Accelerator B**Spira**2Configuration

Particles	H+	³ He ²⁺	D +	Ions	
Q/A	1	2/3	1/2	1/3	1/6
I (mA) max.	5	5	5	1	1
W _o max. (MeV/A)	33	24	20	15	9
CW max. beam power (KW)	165	180	200	44	48

Total length: 65 m (without HE lines)

Slow (LEBT) and Fast Chopper (MEBT) RFQ (1/1, 1/2, 1/3) & 3 re-bunchers

12 QWR beta 0.07 (12 cryomodules) 14 (+2) QWR beta 0.12 (7+1 cryomodules) 1.1 kW Helium Liquifier (4.5 K) Room Temperature Quadrupoles Solid State RF amplifiers (10 & 20 KW) 6.5 MV/m max $E_{acc} = V_{acd}/(\beta_{opt}A)$ with $V_{acc} = \int E_{ac}/(z)e^{aact/c}dz$

Cavity Performance

Report from SRF2013 Accelerator Seminar: The SRF World Today

SRF cavity processing techniques - the latest standard and the emerging

Ari D. Palczewski, SRF Scientists Jefferson Lab, USA 10/17/2013

Highlights from SRF2013 - processing

- Review how a cavity is made
- XFEL standard vs. C100 surface prep
- Cavity weld prep chemistry and handling (informal discussions with industry and DESY)
- New welding laser welding in Argon environment
- Standard horizontal Electo-polishing (EP)
- Alternative EP Vertical EP (9 cell)
- Alternative EP Bipolar EP (no HF)
- Alternative EP ionic liquid EP (no HF)
- Alternative to bulk chemistry (and possible zero chemistry) Centrifugal barrel polishing (CBP)

How Cavities Are Made

Cavity surface treatment standard (XFEL) vs. (C100)

Surface treatment after welding.

- EP 110-140 μm (main EP), outside BCP, ethanol rinse, 800°C annealing 2 hrs.
- Final surface treatment two alternative options
- VS.
- 1. Final EP of 40 μm, ethanol rinse, high pressure water rinsing (HPR) and 120°C bake
- 2. Final BCP of 10 μm (BCP Flash), HPR and 120°C bake.

 No need for ethanol rinse because of low
temperature (below
25C) from external water cooling) and no bulk EP – ethanol rinsing required for bulk EP at JLab to remove sulfur even at low temperatures

(New) Standard weld prep XFEL vs. JLAB

Machining prep

VS.

Iris and equator

Abandoned years ago by many labs because of weld pits from trapped particles, but has better tolerance for eccentricity and With mechanical stir plate agitation 5-20 µm +DI water rinse to resistivity $16M\Omega$

Iris and equator

<u>cid etch/cleaning</u>

Buffered chemical polish
 [BCP112]
HNO₃(65%)+HF(40%)+H₃PO₄(85%)]
 Hand agitation
 3-6μm
+ DI water triple rinse/ultrasonic
 in DI 10 min.

Weld assembly (XFEL) vs. JLab

•Dry in clean area with fully gowned personal with Is the extra cost associated with this worth the money? **Depending on DESY, Zanon or RI** this is only done for high field regions welds. machine (iso 6/7) with partially gowned

•Dry in iso 6 area with ⁹Should JLab implement some of these standards? Should JLab consider interlocking weld prep which was abandoned years ago because of weld bubbles?

personal

New welding (tested at FNAL) – Laser welding

500W (avg.) Nd:YAG laser

Prashant Khare - RRCAT in India

31MV/m Q>1e10! On first prototype

•Can be used with optical fiber to make all inside welds

• Promises – higher through-put, lower initial costs and lower operations costs, and can be done in nonvacuum environments

Electro-polish facilities

Horizontal EP

Asia:KEKEuro:DESY, Zanon, RIUSA: FNAL/ANL, JLab

Vertical EP

Asia:KEKEuro:Saclay, INFUSA: Cornell, JLab

Machine Specs that use EP (one BCP)

Jefferson Lab

Non-standard EP – Vertical EP SACLAY (1-cell)

R 1DE1: Horizontal EP + 70 µm VEP Parameters: 6V & >24L/min

Bright and smooth surface

Performance before/after baking similar to HEP

High gradient maintained after VEP

1DE1 after HEP + 70 µm VEP

Aspects to improve:

-Low removal rate at 19° C: 0.2µm/min

- asymmetry: removal rate higher in the upper part of the cell (x 3)

Presented by F. Eozénou, 1st LCC/ILC cavity group meeting, 2013

Acid flow

322

Non-standard EP – Vertical EP Cornell 9-cell

Non-standard EP – Vertical EP JLab

Development of an Integrated Cavity Processing (ICP) System: Pushing cavity processing technology

Jlab's CBP+VEP reaches 35MV/m - 2012

Non-standard EP - Bipolar EP

Non-standard EP - IONIC LIQUID EP 6GHz

Choline Chloride:Urea (1:4) + 97 g/l Sulfamic Temperature = >120C Current density (A/cm2)=0.3 Niobium cathode

Promising but still needs a lot of work

V. Pastushenko @ INFN/LNL

Low beta cavities (spoke/quarter/half) - EP

In the past most nonelliptical cavities were only chemically treated with BCP

Quarter wave 72.75MHz Quad cathode EP @ ANL

117 MV/m

84 MV/m

Magnetic Field

Peak Surface

Electric Field

Alternative to bulk chemistry (CBP)

Alternative to bulk chemistry (CBP)

(CBP) with zero post chemistry at FNAL

-See TUPOOO (Grapse Una/Conner FNAL) Lande Grandie Collain Company FNAL) Carde Grandie Collain Company FNAL) Q slope limited

High temperature heat treatment

See - Pashupati Dhakal

Nb high-Q pursuits - what is new, what is the best seen, what understanding/control is needed yet?

Report from SRF2013 Accelerator Seminar: The SRF World Today

SRF non-bulk materials - what is new and promising?

Oral session- Wednesday Sep, 25 Basic R&D New materials

> Thin film deposition techniques Multilayers, MgB₂ I Multilayers, MgB₂ II

Poster session – Tuesday Sep, 24

Anne-Marie Valente-Feliciano Jefferson Lab, USA 10/17/2013

Background

•CERN LEP 2 272 x 353MHz Nb/Cu 4-cell cavities also LHC

•INFN Legnaro 52 x 160 MHZ Nb/Cu QWR 1.5 GHz Nb/Cu cavities, sputtered w/ Kr @ 1.7 K ($Q_0=295/R_s$) Standard film Q Nb/Cu best sputtered films 11 10 **Bulk Nb** 10 1.5 GHz Nb/Cu Fundamental Quench $RRR_{max} = 28$ 10 Multipacting Courtesy: P. Jacob - EMPA 10⁹ **Oxide-free films** LEP II 350MHz Nb/Cu (4.2K) ermal breakdown Oxide interface Field emission Grain boundaries 8 10 0 50 MV/m 25 **Accelerating Field** $RRR_{max} = 40$

Energetic Condensation

Condensing (film-forming) species : hyper-thermal & low energies (>10 eV).

As a result of these fundamental changes, energetic condensation allows the possibility of controlling the following film properties:

- Density of the film
- □ Film composition
- Crystal orientation may be controlled to give the possibility of low-temperature epitaxy

Additional energy provided by fast particles arriving at a surface ⇒number of surface & subsurface processes ⇒changes in the film growth process:

- residual gases desorbed from the substrate surface
- chemical bonds may be broken and defects created thus affecting nucleation processes & film adhesion
- enhanced mobility of surface atoms
- stopping of arriving ions under the surface

High Impulse Power Magnetron Sputtering

High Impulse Power Magnetron Sputtering

Nb/Cu cavities produced at CERN both by DC cylindrical magnetron sputtering and cylindrical HiPIMS with Kr

Jefferson Lab

Note: - Substrate preparation is SUBU (by opposition to electropolishing for the best 1.5GHz DCMS Nb/Cu cavities to date)

- Measurement at higher fields than 11MV/m prevented by interlock system due to radiation

Other energetic condensation techniques: CED, ECR

Co-axial Energetic Deposition (AASC Inc.) – collaboration with Jlab, ANL, LANL, CERN KEK06 hydro-formed copper cavity, CBP at FNAL (Cooper), coated at AASC, tested at LANL (Tajima, Haynes)

 The difference between 4K and 2K is smaller than expected: BCS resistance should be about 40x less if all the surfaces are Nb.

 This suggests that there are areas that are not coated well and lossy, which is causing the lower than expected Q₀

Good results on Nb/Cu samples (RRR:12-110) Several attempts of Nb coating on both Cu and bulk Nb cavities. Transition from flat samples to cavity coating is a challenge

Other energetic condensation techniques: CED, ECR

Tune thin film structure and quality with ion energy and substrate temperature : RRR values from single digits to bulk Nb values on a variety of substrates (on Cu: 5 - 300).

Gap measurements performed by PCT (point contact tunneling spectroscopy-ANL) show a superconducting gap (**1.56-1.62meV**) similar to bulk Nb ($\Delta_{Nb \ bulk}$ =1.55meV measured on the same setup) for hetero-epitaxial ECR Nb films on polycrystalline Cu.

Energetic Deposition vis Electron Cyclotron Resonance - JLab

Voltage (mV)

Thin film deposition techniques Magnetron sputtering development for HIE-ISOLDE - CERN

W. Venturini et al.

HIE-ISOLDE needs 39.6 MV from 32 independent jup phased QWR,

project schedules are always tight and physicists are waiting for the beam

Project oriented R&D, several parameters changed at a time

HIE ISOLDE specifications recently met, (with 30% margin in power)

We are on track to start series production for the first phase up to 5 $\ensuremath{\text{MeV/u}}$

R&D at INFN-LNL and at CERN continues with encouraging results, which could benefit phase II and phase III (low beta), and future machines Strong development program focused on bias diode sputtering method:

- Increasing baking and coating temperatures
- Increasing sputtering power (global deposition rate)
- Layered coatings
- Sputtering gas, venting gas
- Global film thickness
- Local film thickness

Measurement setups for materials beyond bulk Nb

Quadrupole resonator @ CERN

- 400, 800, 1200 MHz
- S. Aull et al.

coil support (high conductivity

copper)

therma

braid

Hiah

conductivity

copper plate

G. Eremeev et al.

IPN Orsay/CEA Saclay –TE011 @ 3.988 GHz and magnetometry

temperature

rods

heating

opper rod

(thermalization of electrical wires)

sample

sample support

(high conductivity

copper)

- Almost identical magnetic field configuration
- Ratio of Bpeak to Epeak is proportional to fres
- *B*max ≈ 60 mT
- Temperatures 1.6 -12 K
- Reproducible measurements
- Upgrade design in collaboration with HZB, Berlin

SIC (TE011) cavity @ Jlab

- 7.5 GHz sapphire-loaded TE011
- Calorimetry
- Bmax ≈ 20 mT currently, improving to higher fields
- Temperatures 1.6 ~50 K
- λ measurements thru frequency shift (T)
- Reproducible measurements

collaboration with Jlab for ECR Nb/Cu and ML/Nb measurements

C. Baumier, C. Antoine, G. Martinet...

Fields up to 150mT, 2-40K

H_{c1} direct value Perpendicular Local No border effect

Nb₃Sn @ Cornell

Nb₃Sn @ JLab

- Preliminary studies with samples have been done. RF measurements on a sample indicated the transition temperature of 17.9 K and RF surface resistance of about 30 $\mu\Omega$ at 9 K and 7.4 GHz.
- The horizontal insert has been built and inserted in the furnace. The first furnace run has been done at 1200 °C for 2 hours.
- R&D furnace for Nb₃Sn development was ordered in October 2012, delivered in August 2013, and is being commissioned.

G. Eremeev

Transition temperature is \sim 17.85 K. The best of three samples shows very smooth surface with no residual tin contamination

MgB₂- Hybrid Physical Chemical Vapor Deposition

MgB2 thin film samples especially prepared by HPCVD have shown excellent properties relevant to SRF applications, which warrants the coating of practical-size cavities and study the performance as a cavity.

LANL is implementing a cavity coating system based on HPCVD Challenges in reproducing the results from Temple University

MgB_2

Multilayers – the Model

Work from Cornell - S. Posen et al.

Evaluation of the thermodynamic potential G(x) of single vortex as function of its position across the SIS structure and evaluation of HSH from evaluation of the vortex entry energy barrier in the London theory

SIS multilayer films have B_{c1} = 0 & rely on energy barrier as the bulk does

SIS B_{sh} is very close to bulk B_{sh}

Small potential gain but very difficult to fabricate

See reply from A. Gurevich in ArXiv

•May not be superior for SRE applications—they are useful in DC a

•May not be superior for SRF applications—they are useful in DC applications

•B_{c1} is not a limit for cavities made from small- ξ superconductors! No need for B_{c1} enhancement!

•Strong optimism for bulk films

Work from KEK (Kubo et al.)

Formulation derived from Maxwell equation and London equation to describe the RF electromagnetic field attenuation for the multilayer coating model

Some SC material may be more suitable than others and thickness is critical

Proof of principle is necessary ... now more than ever...

Multilayers – based on NbN

College William & Mary

"Magnetic Shielding Larger than the Lower Critical Field of Niobium in Multilayers" W. M. Roach, D. B. Beringer, Z. Li, C. Clavero, and R. A. Lukaszew, IEEE Trans. Appl. Supercond. 23, 8600203 (2013).

By tailoring thin film growth parameters, and also using SQUID magnetometry we were able to demonstrate shielding beyond the critical field of Nb also using NbN-based trilayers.

Multilayers – based on NbN

CEA Saclay – Molecular Beam Epitaxy

C. Baumier et al.

Strong indication that $\mathrm{R}_{\mathrm{BCS}}$ is improved with ML

Could probably be improved with the use of thicker layers (complete screening)

Very promising preliminary results

Effective screening of the surface, prevents early vortex penetration

-RBCS is improved with the use of higher TC SC

-Rres is not dramatically degraded compared to Nb

-Room for improvement: better understanding of interaction with substrate needed

Multilayers-based on NbTiN

JA

Multilayers-based on NbTiN

NbTiN/AIN by Sputtering-JLab

SIS structures based on NbTiN and AIN have been coated at 450°C in-situ on bulk Nb and Nb/a-Al₂O₃ substrates after a 24h-bake at 600°C. The samples are ^C then annealed at 450°C for 4 hours.

Rs [µΩ]

The SIS structure coated on the Nb exhibits a T_c for the NbTiN of 16K . RF measurements are on going [6] .

The SIS structure coated on the ECR Nb/(11-20) AI_2O_3 film exhibits a suppressed Tc for the Nb film compared to the measurement prior to the SIS coating. This is most likely due to the Nb oxide reduction and oxygen diffusion during the bake at 600°C. The NbTiN has a Tc of about 15K.

Multilayers-based on MgB₂

Beyond bulk Nb material

- □ In depth sample studies. Quality samples produced.
- □ First results with multilayers show some field enhancement
- □ Undisputable proof of principle for the S-I-S multilayer structure concept needed
- Progress towards cavity coating both for Nb films and multilayers in most institutions involved
- Significant synergy between all the institutions active in the field of materials beyond bulk Nb:

Jlab closely collaborates with College William & Mary, ANL, LBNL, MIT, AASC Inc., Temple university, CERN on the development of Nb films and S-I-S Multilayer structures

Key note talk:"Quantum Measurement with "Trapped" Microwave Photons in a SRF Cavity"-M. Brune – S. Harouche Team (2012 Nobel Prize Laureat), Laboratoire Kassler-Brossel

Collaboration with JLab for ECR Nb based torroidal mirrors

Report from SRF2013 Accelerator Seminar: The SRF World Today

Nb high-Q pursuits - what is new, what is the best seen, what understanding/control is needed yet?

Pashupati Dhakal Jefferson Lab, USA 10/17/2013

R&D on SRF

- Driven by Project Need
 - * CW applications
 - * Pulse applications
 - * High current
 - * 4.2 K applications
- Conventional R&D
 - * Maximize E_{acc} and Q_0
 - * Search for alternative materials
 - * Process improvement

Overall goal : Minimize construction and operation cost with reliable and efficient SRF cavities

Quality Factor and Surface Resistance

Quality Factor $(Q_0) = G/R_s$ G = Geometry factor (shape dependent)

$$\mathsf{R}_{\mathsf{s}} = \mathsf{R}_{\mathsf{res}} + \mathsf{R}_{\mathsf{BCS}}(\mathsf{f}, \mathsf{T}, \Delta, \lambda_{\mathsf{L}}, \xi_0, \mathsf{I})$$

Possible sources of R_{res}

- Trapped magnetic field
- Normal conducting precipitates
- Grain boundaries, dislocations
- Interface losses
- Subgap states

Remedies:

- High treatment heat treatments
- Magnetic shielding
- ----

At temperature below 2K, R_s is dominated by R_{res}

Quality Factor and Surface Resistance

BCS surface resistance results from the interaction between the RF electric field within the penetration depth and thermally activated electrons in a superconductor.

$$\mathsf{R}_{\mathsf{BCS}}(\mathsf{f}, \mathsf{T}, \Delta, \lambda_{\mathsf{L}}, \xi_0, \mathsf{I}) = (A f^2 / T) e^{-\Delta / k_B T}$$

Minimizing BCS Resistance

- Lower frequency
- Higher T_c superconductors
- Higher energy gap
- Optimal electronic mean free path

2

1

5

 $1 + \pi \xi_0 / 2\ell$

10

350

(a)

20

High Temperature Treatment Results

P. Dhakal et al., Phys. Rev. ST Accel. Beams 16, 042001 (2013)

Extended Q-rise

6

HT results for "All Nb Cavity"

- 3 "all Nb" cavities (2 LG and 1 FG) are heat treated up to 1600 C
- Improvement in Q in medium field range up to ~70%
- No extended Q-rise

HT results for Reactor Grade Nb

- RRR ~ 40
- Extended Q- rise up to 35 mT with factor of 2 improvement in Q at 20 MV/m
- Cavity was purified in the presence of Ti and surface removal of ~30 μm before the baseline test

P. Dhakal et al, TUIOC04, SRF 13

Note: In early 80's those high Q cavities are made from reactor grade and heat treated at very high temperatures.

Thermal Cycling @ HZB

The temperature gradient across the cavity need to be minimized

> <u>Oliver Kugeler</u> Julia Vogt

High Q Cavities for the Cornell ERL Ralf Eichhorn

JSA

Fermi Lab Nitrogen Doping

Fermi Lab started to inject gas in furnace during HT after the initial encouraging results from JLAB

Low field Q-rise similar to that observed at JLAB

Anna Grassellino

Cornell Experience with Nb doping

- Rapid low field Q-rise and tend to saturate at high field
- No clear evidence on how much material should be removed after baking cavity in the presence of N₂

Poster from Cornell

Theoretical Buzz on Q-rise

B. Xiao and C. Reece

JLAB Status in High Q

N₂ treatment procedure

- UHV Heat treatment at 800 °C/3h
- Rapid cooling to 400 °C, admit ~ 5×10^{-6} Torr N₂ for 15 min
- Cool to 120 °C and hold for 12 h (optional)
- No chemical etching afterwards!!! Just degreasing and HPR

Dedicated furnace with controlled

gas injection system

Induction Furnace

Dhakal et al, Rev. Sci. Instrum. **83**, 065105 (2012)

JLAB Status in High Q

- So far the heat treatment are focused on temperature as a parameter (800-1600 C)
- Studies showed the Ti doping in SRF cavities, cause the extended Q-rise
- Sample studies with point contact tunneling, magnetizations and AC susceptibility are underway
- Nitridation in cavities with optimal partial pressure of nitrogen, eliminating final chemistry.

High Q Status

- Search for high Q is an ultimate goal for the future CW accelerators
- Current research is mostly Trial and Error, and lack the physics based research
- Samples studies from the cavity cut out as well as from coupons to understand the loss mechanism is necessary.
- The high Q has been observed in contaminated surface. The role of contaminant in Nb as well as its interactions with other interstitial impurities (H, O, N, C), dislocations and vacancies need to be understood
- The universal theoretical model that fits all Q-rise, Q-slope and Q-drop is still lacking. The current model by Xiao et al explain the extended Q-rise

Conclusions

- Several research lab are pursuing high Q research in both R&D SRF cavities as well as cryomodules.
- Doping in the SRF cavities seem to increase quality factor, however the mechanism hasn't been understood.
- Controlled experiments as well as the sample studies are needed.

