

and Detector Development

Transverse-to-Longitudinal Phase-Space Exchange: Recent Experiments and Future Applications

Philippe Piot Northern Illinois University and Fermilab

Funded by DOE DE-FG02-08ER41532 and DE-AC02-07CH11359 and DARPA N66001-11-1-4192

P. Piot, CASA Seminar, Jefferson Lab.

Credit

- A0 experiment:
 - Students: T. Maxwell,
 - Staff: H. Edwards, R. Fliller, A. Johnson, T. Koeth,
 A. Lumpkin, J. Ruan, Y.-E Sun, R. Thurman-Keup, J. Thangaraj,
- Modeling/theory:
 - Student: C. Prokop, F. Lemery
 - Staff: Y.-E Sun, D. Mihalcea
 - Collaborators: W. Graves (MIT), B. Carlsten (LANL)

Outline

- Introduction and motivation for transverse-tolongitudinal phase space exchange (PEX),
 - Emittance exchange,
 - Pulse shaping.
- Theoretical background
- Experimental demonstrations
- Future plans at Fermilab

Introduction

- Historically phase space manipulations occurs in one degree of freedom (e.g. bunch compression, beam focusing, emittance compensation,...)
- Phase space manipulations between two (or three) degrees of freedom
 - Flat beams generation,
 - Transverse to longitudinal phase space exchange
 have become available
- New opportunities...

Emittance exchange

6/7/12

Pulse shaping for radiation sources

- Bunch/modulate the beam at the desired radiation wavelength
- Coherent enhancement

Pulse shaping for wakefield acceleration

Principle of PEX

• Beam line composed of a deflecting cavity flanked by two dispersive sections

Limitations for emittance exchange

- Thick-lens effect $(L_c \neq 0)$ $M_C = \begin{bmatrix} 1 & L_c & \kappa L_c/2 & 0 \\ 0 & 1 & \kappa & 0 \\ 0 & 0 & 1 & 0 \\ \kappa & \kappa L_c/2 & \kappa^2 L_c/4 & 1 \end{bmatrix}$
- Non-zero M65 $\begin{bmatrix} \kappa & \kappa L_c/2 & \kappa^2 L_c/4 & 1 \end{bmatrix}$ results in spurious coupling between (x,x') and (z, δ) phase spaces downstream of PEX -> Non-perfect emittance exchange $\delta \varepsilon_z \equiv \varepsilon_z / \varepsilon_{x,0}$ -
- Can be corrected
 - Optimum incoming chirp, Twiss param.,
 - Add a $\rm TM_{010}$ cavity

Pulse Shaping

Generation of train

 Generation of bunches with linearly-ramped current profiles

[P. Piot et al., PRSTAB 14, 022801 (2011)] Jefferson Lab. 12

The A0 photoinjector (1996-2011)

- Electron accelerator based on 1.3 GHz rf-gun with Cs₂Te photocathode → Q< 10 nC
- TESLA SCRF cavity → E=16 MeV
- Emittance exchange beamline $(\varepsilon_x, \varepsilon_z) \rightarrow (\varepsilon_z, \varepsilon_x)$
- Round-to-flat-beam transformer $\rightarrow \epsilon_x/\epsilon_y = 100$
- Extensive diagnostics
- Two photocathode lasers (Nd:YLF + Ti:Sp)

P. Piot, CASA Seminar, Jefferson Lab.

Experimental methods

[A. Lumpkin et al., PRSTAB 14, 060704 (2011)]

- Transverse emittances measured at X3, X24 with mutlislit technique
- Longitudinal emittances (over)estimated as $\varepsilon_z \simeq \sigma_\delta \sigma_z$ phase space is made upright
- Bunch length measured using autocorrelation
 vertical
 vertical

Quadrupole magnets to compress!

• Scanning Q1 and Q2 affects bunch final bunch length

$$\begin{cases} z = -\frac{\xi}{\eta}x_0 - \frac{L\xi - \eta^2}{\eta}x'_0 \\ \delta = -\frac{1}{\eta}x_0 - \frac{L}{\eta}x'_0, \end{cases} \quad \widehat{\mathfrak{S}}$$

f-integrated CTR intensity "quadscan map"

 Method can be used to insure_1 final ellipse is upright

Observation of emittance exchange

[J. Ruan et al., PRL 106 244801 (2011)]

- **Demonstrated emittance** can be swap $\varepsilon_z \leftrightarrow \varepsilon_x$
- Q=250 pC

In

2.9

2.4

13.1

Q1 Q2

4563

X7

3765

beam

 ε_{x}^{n} ε_{y}^{n} ε_{z}^{n}

X3 X5

P. Piot. CASA Seminar. Jefferson Lab.

Fragmented longitudinal phase spaces (1)

- Set of slits upstream PEX -> transverselysegmented beam
- PEX maps modulation in the longitudinal phase space -> train of µbunches
- Initial beam parameters:

• Used 50- μ m slits with 1-mm spacing

^{6/7/12}

P. Piot, CASA Seminar, Jefferson Lab.

Sub-picosecond bunch trains (1)

[Y.-E. Sun et al., PRL 105, 234801 (2010)]

- Effects of slits -> "island of coherence" in quadscan maps
- Evidence of current modulation -> μbunches?

P. Piot, CASA Seminar, Jefferson Lab.

Sub-picosecond bunch trains (2)

• Quadrupoles can be used to vary the microbunches spacing within the train

P. Piot, CASA Seminar, Jefferson Lab.

Production of narrowband THz CTR

[P. Piot et al., APL 98, 261501 (2011)]

• Train of 6 µbunches used to generate narrowband CTR with tunable frequency

Mask-free double-bunch generation

 Interceptive mask introduces limitations
 -> transverse shaping of photocathode laser

6/7/12

A0 last day 10/31/2012...

- Operated from 1996 to 2011
- Next steps:
 - High-Brightness Electron
 Source Laboratory (HBESL)
 - RF gun,
 - Concentrate on new cathodes (especially field emitters) + low energies (< 5 MeV) beams.
 - The Advanced
 Superconducting Test
 Accelerator (ASTA):
 - Eventually 900-MeV beams,
 - User-driven facility

Optically-modulated bunches at HBESL

- RF gun to produce
 4.5 MeV beam
- Nano-structured cathode (fieldemission array)
 triggered with <30 fs laser
- PEX produce an opticallymodulated bunch train
- Goal is to observed COTR

[Y.-E Sun, et al. to be presented at FEL12]

Concept for a compact VUV ICS source

[W.S. Graves, F. Kaertner, D. Moncton, P. Piot, PRL, in press (2012)]

3D bunch manipulation at ASTA

• Flat beam transform + PEX

P. Piot, CASA Seminar, Jefferson Lab.

PEX beamline for ASTA

• Chicane-type PEX

- Emittance exchange of incoming flat beams
- "Doubly-ramped" bunches with witness for wakefield acceleration (f~1 THz)

Application: wakefield acceleration in dielectric slabs

(b) (a) **NIU-TechX-Fermilab** 2 ŷ electror Er bunch experiment in preŷ a bmetallic paration at ASTA surface` ϵ_{r} dielectric layer, 1060 Witness Beam 1040 Energy (MeV) 1020 2 Ŧ I y (mm) 1000 0 44 11 ## 5 - **#** - 7 ** ** -2980 **Drive Beam** 960 102030 -30-20-100 z (mm) 940 22 20 12 18 z (cm) [D. Mihalcea, P. Piot, P. Stoltz, ArXiV 1204:6724 (2012)]

P. Piot, CASA Seminar, Jefferson Lab.

Summary

- PEX techniques have been experimentally investigated,
- PEX have opened new opportunities for emittance repartioning and current shaping,
- Promising applications include acceleratorbased light source, beam-driven acceleration,...
- A second generation of PEX experiments will be carried at Fermilab's ASTA and HBESL facilities (both in construction or commissioning).