

A Possible ERL Test Facility at CERN

Erk Jensen, Ed. Ciapala (with lots of material provided by Rama Calaga, Joachim Tückmantel and many others)

JLAB Seminar, August 2012

- The LHeC Project
- The LHeC Ring-Linac Option with ERL
- The purpose(s) of an ERL Test Facility
- Why at CERN?
- Approximate parameter range

LHeC Goal

- Collide LHC beam with electrons or positrons
 - Required lepton energy is ≥ 60 GeV
 - Luminosity of $\approx 10^{33}$ cm⁻²s⁻¹
 - Polarisation
 - No interference with pp physics
 - Detector acceptance down to 1°
 - Power consumption for lepton complex \leq 100 MW
- Study team provided CDR this earlier this year: <u>http://arxiv.org/pdf/1206.2913v1.pdf</u>
 - The Physics
 - Ring-ring option
 - Linac-ring option
 - Show that a solution exists, will now have to find the best solution
 - Already have a baseline and alternatives for some components
- See also <u>http://www.cern.ch/lhec</u> and <u>https://indico.cern.ch/conferenceDisplay.py?confld=183282</u>

LHeC CDR

A Large Hadron Electron Collider at CERN

Report on the Physics and Design Concepts for Machine and Detector

LHeC Study Group

Submitted to J.Phys. G

LHeC Study Group

J.L.Abelleira Fernandez^{16,23}, C.Adolphsen⁵⁷, A.N.Akay⁰³, H.Aksakal³⁹, J.L.Albacete⁵², S.Alekhin^{17,54} P.Allport²⁴, V.Andreev³⁴, R.B.Appleby^{14,30}, E.Arikan³⁹, N.Armesto^{53,a}, G.Azuelos^{33,64} M.Baj³⁷, D.Barber^{14,17,24}, J.Bartels¹⁸, O.Behnke¹⁷, J.Behr¹⁷, A.S.Belvaev^{15,56}, I.Ben-Zvi³⁷ N.Bernard²⁵, S.Bertolucci¹⁶, S.Bettoni¹⁶, S.Biswal⁴¹, J.Blümlein¹⁷, H.Böttcher¹⁷, A.Bogacz³⁶ C.Bracco¹⁶, G.Brandt⁴⁴, H.Braun⁶⁵, S.Brodsky⁵⁷, O.Brüning¹⁶, E.Bulyak¹², A.Buniatyan¹⁷, H.Burkhardt¹⁶, I.T.Cakir⁰², O.Cakir⁰¹, R.Calaga¹⁶, V.Cetinkaya⁰¹, E.Ciapala¹⁶, R.Ciftci⁰¹, A.K.Ciftci⁰¹, B.A.Cole³⁸, J.C.Collins⁴⁸, O.Dadoun⁴², J.Dainton²⁴, A.De.Roeck¹⁶, D.d'Enterria¹⁶, A.Dudarev¹⁶, A.Eide⁶⁰, R.Enberg⁶³, E.Eroglu⁶², K.J.Eskola²¹, L.Favart⁰⁸, M.Fitterer¹⁶ S.Forte³², A.Gaddi¹⁶, P.Gambino⁵⁹, H.García Morales¹⁶, T.Gehrmann⁶⁹, P.Gladkikh¹², C.Glasman²⁸, R.Godbole³⁵, B.Goddard¹⁶, T.Greenshaw²⁴, A.Guffanti¹³, V.Guzey^{19,36}, C.Gwenlan⁴⁴, T.Han⁵⁰ Y.Hao³⁷, F.Haug¹⁶, W.Herr¹⁶, A.Hervé²⁷, B.J.Holzer¹⁶, M.Ishitsuka⁵⁸, M.Jacquet⁴², B.Jeanneret¹⁶ J.M.Jimenez¹⁶, J.M.Jowett¹⁶, H.Jung¹⁷, H.Karadeniz⁰², D.Kayran³⁷, A.Kilic⁶², K.Kimura⁵⁸, M.Klein²⁴, U.Klein²⁴, T.Kluge²⁴, F.Kocak⁶², M.Korostelev²⁴, A.Kosmicki¹⁶, P.Kostka¹⁷, H.Kowalski¹⁷, G.Kramer¹⁸, D.Kuchler¹⁶, M.Kuze⁵⁸, T.Lappi^{21,c}, P.Laycock²⁴, E.Levichev⁴⁰, S.Levonian¹⁷, V.N.Litvinenko³⁷, A.Lombardi¹⁶, J.Maeda⁵⁸, C.Marquet¹⁶, B.Mellado²⁷, K.H.Mess¹⁶ A.Milanese¹⁶, S.Moch¹⁷, I.I.Morozov⁴⁰, Y.Muttoni¹⁶, S.Myers¹⁶, S.Nandi⁵⁵, Z.Nergiz³⁹ P.R.Newman⁰⁶, T.Omori⁶¹, J.Osborne¹⁶, E.Paoloni⁴⁹, Y.Papaphilippou¹⁶, C.Pascaud⁴² H.Paukkunen⁵³, E.Perez¹⁶, T.Pieloni²³, E.Pilicer⁶², B.Pire⁴⁵, R.Placakyte¹⁷, A.Polini⁰⁷, V.Ptitsyn³⁷, Y.Pupkov⁴⁰, V.Radescu¹⁷, S.Raychaudhuri³⁵, L.Rinolfi¹⁶, R.Rohini³⁵, J.Rojo^{16,31} S.Russenschuck¹⁶, M.Sahin⁰³, C.A.Salgado^{53,a}, K.Sampei⁵⁸, R.Sassot⁰⁹, E.Sauvan⁰⁴, U.Schneekloth¹⁷, T.Schörner-Sadenius¹⁷, D.Schulte¹⁶, A.Senol²², A.Servi⁴⁴, P.Sievers¹⁶, A.N.Skrinsky⁴⁰, W.Smith²⁷ H.Spiesberger²⁹, A.M.Stasto^{48,d}, M.Strikman⁴⁸, M.Sullivan⁵⁷, S.Sultansov^{03,e}, Y.P.Sun⁵⁷ B.Surrow¹¹, L.Szymanowski^{66, f}, P.Taels⁰⁵, I.Tapan⁶², T.Tasci²², E.Tassi¹⁰, H.Ten.Kate¹⁶, J.Terron²⁸, H.Thiesen¹⁶, L.Thompson^{14,30}, K.Tokushuku⁶¹, R.Tomás García¹⁶, D.Tommasini¹⁶, D.Trbojevic³⁷, N.Tsoupas³⁷, J.Tuckmantel¹⁶, S.Turkoz⁰¹, T.N.Trinh⁴⁷, K.Tywoniuk²⁶, G.Unel²⁰ J.Urakawa⁶¹, P.VanMechelen⁰⁵, A.Variola⁵², R.Veness¹⁶, A.Vivoli¹⁶, P.Vobly⁴⁰, J.Wagner⁶⁶ R.Wallnv⁶⁸, S.Wallon^{43,46, f}, G.Watt¹⁶, C.Weiss³⁶, U.A.Wiedemann¹⁶, U.Wienands⁵⁷, F.Willeke³⁷ B.-W.Xiao⁴⁸, V.Yakimenko³⁷, A.F.Zarnecki⁶⁷, Z.Zhang⁴², F.Zimmermann¹⁶, R.Zlebcik⁵¹, F.Zomer⁴²

LHeC Options

ERL

The Beauty of the ERL

- e-beam power at IP: 384 MW (!)
- Total power consumption: 80 MW!

• Efficiency of 480%

LHeC ERL f Options

1.3 GHz

ILC Collaboration

Standard ILC cryomodule

704 MHz

August 2012

Cryomodule layout

Approx cavity length is similar if not same

ILC type cryomodule can be utilized for both frequencies

E. Jensen: ERL TF @ CERN ?

~13 m, 0.144 GeV/Module

158 CM's

Which frequency?

Advantages 700 MHz

- Synergy SPL, ESS, JLAB, eRHIC
- Smaller BCS resistance
- Less trapped modes
- Smaller HOM power
- Beam stability
- Smaller cryo power
- Power couplers easier

Advantages 1300 MHz

- Synergy ILC, X-FEL
- Cavity smaller
- Larger *R/Q*
- Smaller RF power (assuming same Q_{ext})
- Less Nb material needed

Personal preference: 700 MHz, since beam becomes unstable at higher current.

Low Energy ERL's/Test Facilities

Low Energy ERL's/Test Facilities

JAERI, Tokai

Low Energy ERL's/Test Facilities

IHEP ERL-TF	HZB BERLinPro	BINP	Peking FEL	BNL ERL-TF	KEK cERL	Daresbury ALICE	JAERI
35 MeV	100 MeV	11-40 MeV	30 MeV	20 MeV	245 MeV	10 MeV	17 MeV
1.3 GHz 9 cell	1.3 GHz	180 MHz	1.3 GHz 9-cell	704 MHz 5-cell	1.3 GHz 9-cell	1.3 GHz 9-cell	500 MHz
10 mA	100 mA	30 mA	50 mA	50-500 mA	10-100 mA	13 µA	5-40 mA
60 pC	10-77 pC	0.9-2.2 nC	60 pC	0.5-5 nC	77 pC	80 pC	400 pC
2-6 ps	2 ps	70-100ps	1-2 ps	18-31 ps	1-3 ps	~10 ps	12 ps
1 pass	1-2 pass	4 passes	1 pass	1 pass	2-passes	1-pass	1-pass
Under construction	Planned / construction	operating		Under construction	Under construction	operating	operating

High Energy ERL's, EIC's (electron-ion)

JLab MEIC	BNL eRHIC	CERN LHeC
5-10 GeV	20 GeV	60 GeV
750 MHz ? passes	704 MHz 6 passes	704 MHz 3-passes
3 A	50 mA	6.4 mA
4 nC	3.5 nC	0.3 nC
7.5 mm	2 mm	0.3 mm
Planned	Planned	Planned

High Energy ERL's, Light sources, FEL

High Energy ERL's, Light sources, FEL's

JLab FEL (IR, UV)	Argonne Light Source	Cornell Light source	Mainz, MESA ERL	KEK-JAEA Light Source	Beijing Photon Source
160 GeV	7 GeV	5 GeV	100-200 MeV	3 GeV	5 GeV
1.5 GHz	1.4 GHz 1-2 passes	1.3 GHz	? 2 passes	1.3 GHz	1.3 GHz 9 cell
10 mA	25-100 mA	100 mA	0.15-10 mA	0.01-100 mA	10 mA
135 pC	77 pC	77pC	7.7 pC	7.7-77 pC	77 pC
0.045-0.15 mm		0.6 mm	- ps	2 ps	2 ps
Operating	Planned	Planned	?	Planned	Planned

Interesting, challenging R&D

- ERL: (almost) no beam loading in steady state, so potentially small RF power.
- R&D for highest possible Q₀!
 Technology? HiPIMMS? Ingot?
- R&D: How large Q_{ext} do you dare?
- R&D: How to get to steady state?
- influence of bunch amplitude jitter, phase jitter?
- Compensation of SR radiation loss
- failure modes

 Q_0 – what is in reach?

ILC Cavities 1.3 GHz, BCP + EP (R. Geng SRF2009)

Power balance (rough estimate)

	Units	721.4 MHz	1322.6 MHz	
Main linacs (no beam loading)				
R/Q	[Ω]	500	1036	
<i>Q</i> ₀ @ 2 К		4.5 x 10 ¹⁰	2 x 10 ¹⁰	
V/cavity	[MV]	15.7	16.3	
P _{RF} /cavity	[kW]	24.6	12.8	
n _{cav}		1260	1318	
total RF power	[MW]	31	16.9	
P _{AC}	[MW]	50	28.2	
Synchrotron radiation compensation				
total RF power	[MW]	10.5 MW		
P _{AC}	[MW]	18 MW		
Heat load (assuming Q ₀ @ 2 K, conversion factor 600)				
P _{AC} /cav	[kW]	4.5	5	
P _{AC}	[MW]	5.7	6.1	
HOM's	[MW]	1.7	5.4	
Static, coupler, interconnects	[MW]	3	3	
0.3 GeV injector				
P _{AC}	[MW]	5		
Total P _{AC}	[MW]	83.4 65.7		

An ERL Test facility ...

... could help answer some of these questions! But also:

- Physics motivation:
 - ERL demonstration, FEL, γ -ray source, e-cooling demo!
 - Ultra-short electron bunches
- One of the 1st low-frequency, multi-pass SC-ERL
 - synergy with SPL/ESS and BNL activities
- High energies (200 ... 400 MeV) & CW
- Multi-cavity cryomodule layout validation and gymnastics
- Two-Linac layout (similar to LHeC)
 - − ...could test CLIC-type energy recovery from SCL2 \rightarrow SCL1
- MW class power coupler tests in non-ER mode
- Complete HOM characterization and instability studies!
- Cryogenics & instrumentation test bed

• ... for CERN RF Group to re-establish practical expertise in SC-RF, train new people and get ready for the future.

ERL-TF (300 MeV) – Layout

Thanks, Alex (received this morning)!

Alex Bogacz

Two passes 'up' + Two passes 'down'

Thomas Jefferson National Accelerator Facility

LHeo-

Operated by JSA for the U.S. Department of Energy

E. Jensen: ERL TF @ CERN?

ERL-TF (300 MeV) – Lattice Design

Thanks, Alex (received this morning)!

Alex Bogacz

Two passes 'up' + Two passes 'down'

Operated by JSA for the U.S. Department of Energy

Thomas Jefferson National Accelerator Facility

E. Jensen: ERL TF @ CERN ?

HOM Measurements

Complete characterization of HOM

Benchmark simulations

Improvements on damping schemes 🖁

Precision measurement of orbit Cavity & CM alignment

Injector R&D (~700 MHz)

SRF Gun (FZR-AES-BNL)

DC Gun + SRF CM (JLAB-AES)

NC Gun (LANL-AES)

	DC+SRF-CM	NC	SRF
Energy	2-5 MeV	?	2 MeV
Current	100 mA	100 mA	1000 mA
Long. Emit	45 keV-ps	200 keV-ps	-
Trans. Emit	1.2 μm	7 µm	< 1 µm

SRF Gun (BNL-AES)

H

Peak detuning

27

RF Power

→ 5 MeV injector → $P_{beam} \sim 50 \text{ kW} (10 \text{ mA})$ Will need higher powers if we go to 100 mA+

Main LINAC
(zero beam loading)
$$P_g = \frac{V^2}{R/Q} \cdot \frac{\Delta f}{f} \qquad \{Q_{opt} = \frac{1}{2} \cdot \frac{f}{\Delta f}\}$$

	721 MHz	
Q=1 x 10 ⁶	250 kW	Commercial television
Q=5 x 10 ⁶	50 kW	
Q=1 x 10 ⁷	25 kW	Reach steady state with
	E. Jensen	ERL TF @ CERN Increasing beam curren

RF Power

Use of IOTs ~ 50-100 kW at 700 MHz High efficiency, low cost Amplitude and phase stability

Cryogenic System

Can use the SPL like cryo distribution system

No slope at the C-TF \rightarrow the distribution line can be in center ?

V. Parma, Design review of short cryomodule

RF Controls

Development of digital LLRF system (Cornell type ?)

Amplitude and phase stability at high $Q_0 \approx 1 \times 10^8$

Reliable operation with high beam currents + piezo tuners In case of failure scenarios: cavity trips, arcs etc..

RF Failures

Slow failures (for example: power cut)

 Q_{ext} is very high \rightarrow perhaps need to do nothing ...

Fast failures (coupler arc)

If single cavity → additional RF power maybe ok Reduce beam currents or cavity gradients gradually

If entire LINAC \rightarrow lots of RF power

Perhaps play with 2-LINAC configuration for safe extraction of high energy beam

Timeline & Costs

If:

SPL R&D CM can be used, then very fast turn-around (cheap option) Else:

3-4 years of engineering & development (SRF + beam line)

The costs should be directly derived from SPL CM construction (< 5 MCHF ?) Do we need high power couplers ?

R&D of HOM couplers

Will be needed for probing high current & CW

Key question: where to place the ERL-TF to have maximum flexibility ?