

Future Advanced Nuclear Systems And Role of MYRRHA

Multipurpose hYbrid Research Reactor for High-tech Applications

Contributing to the 3rd Pillar of the European Strategy for P&T

Prof. Dr. Hamid Aït Abderrahim, Dr. Dirk Vandeplassche SCK•CEN, Boeretang 200, 2400 Mol, Belgium <u>haitabde@sckcen.be</u>, <u>dirk.vandeplassche@sckcen.be</u> or myrrha@sckcen.be

Nuclear energy in Europe

- 152 reactors in 15 countries in EU-27, producing 31% of EU's electricity
- The largest source of low carbon energy
- Excellent safety record
- Europe, a world leader –
 but competition is building up (Russia, Japan, USA, China, India)

Power generation infrastructures

- Fossil and nuclear power generation plants are ageing
- Need to invest in plant lifetime management and
- Large investments are necessary to build new plants to satisfy demand - For nuclear, Gen III reactors (Finland, France)
- Action is needed **now** for paving the road for Gen IV!

Nuclear fission in Europe's low carbon energy policy

- Nuclear fission contributes today 31% of EU electricity – the largest low carbon energy source →2020 : Maintain competitiveness in fission technology and
 - provide long term waste management solutions
- For the longer term as indicated in the SET Plan, we need to act now to:
 - Complete the demonstration of Gen IV with closed fuel cycle for increasing sustainability,
 - Enlarge the nuclear fission applications beyond electricity production, namely towards H₂, Heat, H₂0 desalination.

Ambitious R&D and Demo programme need to start <u>now</u> to meet the required breakthroughs

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE

A collective vision: endorsers and contributors

SNETP strategy structures the SRA (Strategic Research Agenda)

CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE

SNETP vision:

- Maintain safety and competitiveness of today's technologies,
- Develop Gen IV FR with closed cycle to enhance sustainability,
- Enlarge the nuclear fission portfolio beyond electricity production:

 H_2 , Heat, H_20 desalination

SNETP strategy structures the SRA (Strategic Research Agenda)

SNETP vision:

Beyond the 3 pillars, a common trunk of activities:

- Material & Fuel research,
- Simulation, modeling and validation experiments,
- Dedicated / multipurpose research facilities,
- Last but not least:

well trained and educated specialists in the various fields related to nuclear fission

Conclusions Future of Nuclear Energy towards sustainability

- Europe is a world leader in nuclear energy and SNETP helps holding this position
- Nuclear energy is competitive and is the largest low carbon source in the energy mix of Europe. It is contributing to Europe's security of supply.
- Nuclear energy path towards sustainability:
 - Today Gen II = PLIM (→ 2040)
 - Tomorrow Gen III = Deployment of new fleet (2010 → 2030) → 2100
 - After-tomorrow = Gen IV + Advanced fuel cycle + beyond electricity application, SMRs (R&D → 2020, prototypes → 2030, deployment beyond)
- Industry & utilities ready to invest in Gen II & III but need a climate of political trust
- Private & public funding & EC contribution needed for the Gen IV EII through new financial vehicle

Fukushima effect

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE

- Some countries decided to consider abandonning or not restarting nuclear energy (DE, CH, IT, ...)
- Some are still in a position of wait and see (BE, SP,)
- Some are not changing their policy even increasing their engagement in nuclear energy (FR, FI, CZ, SK, BG, UK, RO, ROK, CN, RU, IN ...)
- SRA of SNETP is in updating phase => Safety chapter resulting from lessons of the stress tests

MYRRHA

Multipurpose hYbrid Research Reactor for High-tech Applications Contributing to the 3rd Pillar of the European Strategy for P&T

MYRRHA - Accelerator Driven System

Accelerator

(600 MeV - 4 mA proton)

Reactor

- Subcritical or Critical modes
- 65 to 100 MWth

The MYRRHA linear accelerator

Dirk Vandeplassche, Luis Medeiros Romão

MYRRHA Accelerator Challenge

fundamental parameters (ADS)					
particle	р				
beam energy	600 MeV				
beam current	4 mA				
mode .	CW				
MTBF challenge	> 250 h				
failure = beam trip > 3 s					

mn	lame		n
		7	

superconducting linac						
frequency	176.1 / 352.2 / 704.4 MHz					
reliability = redundancy	double injector					
	"fault tolerant" scheme					

Scenario and philosophy

- Structure of collaborations
 - Euratom Framework Programmes 5 6 7
 - core partners
 - CNRS/IN2P3 IPN (Orsay)
 - CEA IRFU (Saclay)
 - U. Frankfurt IAP
 - INFN LASA (Milano)
 - bilateral agreements with research institutes (MoU's)
 - University of Louvain
 - CNRS (several labs)
 - IAP

• CERN

FSS

- GANIL/Spiral2
- privileged industrial partnerships
 - for components (ECR source, RF amplifiers, ...)
 - for global systems (cryogenics, controls, ...)
 - for integration

About beam trips

- requirements from reactor design
- structural tolerance:

Table	1:	Range	of	Parameters	for	Accelerator	Driven	Systems	for	four	missions	described	in	this
white	рар	er												

	Transmutation	Industrial Scale	Industrial Scale	Industrial Scale	
	Demonstration	Transmutation	Power Generation	Power Generation	
			with Energy	without Energy	
			Storage	Storage	
Beam Power	1-2 MW	10-75 MW	10-75 MW	10-75 MW	
Beam Energy	0.5-3 GeV	1-2 GeV	1-2 GeV	1-2 GeV	
Beam Time	CW/pulsed (?)	CW	CW	CW	
Structure					
Beam trips	N/A	< 25000/year	<25000/year	<25000/year	
(t < 1 sec)					
Beam trips	< 2500/year	< 2500/year	<2500/year	<2500/year	
(1 < t < 10 sec)					
Beam trips	< 2500/year	< 2500/year	< 2500/year	< 250/year	
(10 s < t < 5 min)					
Beam trips	< 50/year	< 50/year	< 50/year	< 3/year	
(t > 5 min)					
Availability	> 50%	> 70%	> 80%	> 85%	

About beam trips

MYRRHA linac

INJECTOR BUILDING

Courtesy of Jean-Luc Biarrotte, IPN

MYRRHA linac

- key concepts
 - moderate requirements
 - "conservative" technological solutions
 - modularity for fault tolerance
- keys to reliability (availability) and fault tolerance
 - 1. redundancy
 - common sense, experience
 - modeling confirms
 - 2. powerful diagnostics: predictive and self-diagnostics
 - 3. strict component MTBF control
 - 4. repairability

Linac components: injector

176 MHz, 5mA (MAX)

Linac components: spokes

Linac components: spokes

Linac components: elliptical

Linac components

- power RF : Solid State envisaged
- LLRF for fault recovery < 3 s : 2 digital loops
 - RF loop
 - tuning loop: adaptive and predictive system evaluated
- power converters : modularity
- cryogenics : 2K
- controls : EPICS

MLA R&D program

- 1. reliability focused
- 2. yield vision on MTBF > 250 h
 - reliability modeling for choice of components
 - fault modeling with error analysis
 - on line linac simulation and matching
 - self-diagnostics

⇒ avoid false interlocks

- predictive diagnostics
- 3. address critical issues through prototyping
 - RFQ
 - cryomodules
 - non-interceptive beam diagnostics
 - robust controls

MLA R&D program

4. investigate future oriented solutions

- SS RF
- modular power converters
- µTCA for Physics
- White Rabbit
- 5. initiate collaborations with industry
 - ECR ion source
 - control system
 - cryomodule

MLA R&D diagram

MLA R&D program: RFQ@UCL

Concluding remarks

- Linac for MYRRHA has a credible design
- reliability goal is fundamentally realistic
- conditions are favourable:
 - wide effort on SC RF, synergies between many HPPA applications, reliability is common concern
 - more reliable and fault tolerant auxiliaries (e.g. SS RF amplifiers, modular power converters) contribute to our reliability goal being more practically realistic than ever.

- Reactor Vessel
- Reactor Cover
- Core Support Structure
 - Core Barrel
 - Core Support Plate
 - Jacket
- Core
 - Reflector Assemblies
 - Dummy Assemblies
 - Fuel Assemblies
- Spallation Target Assembly and Beam Line
- Above Core Structure
 - Core Plug
 - Multifunctional Channels
 - Core Restraint System
- Control Rods, Safety Rods, Mo-99 production units
- Primary Heat Exchangers
- Primary Pumps
- Si-doping Facility
- Diaphragm
 - IVFS
- IVFHS
 - IVFHM

Reactor layout

Core and Fuel Assemblies

- 151 positions
- 37 multifunctional plugs

Core and Fuel Assemblies

- Fuel
 - Cladding in 15-15 Ti
 - Wire wrap
 - Wrapper in T91

Cooling systems

- Decay heat removal (DHR) through secondary loops
 - 4 independent loops
 - redundancy (each loop has 100% capability)
 - passive operation (natural convection in primary, secondary and tertiary loop)
- Ultimate DHR through RVCS (natural convection)

Integration into building

Integration into building

Multipurpose facility

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE

Motivation for transmutation

European Strategy for P&T

- The implementation of P&T of a large part of the high-level nuclear wastes in Europe needs the demonstration of its feasibility at an "engineering" level. The respective R&D activities could be arranged in four "building blocks":
 - 1. Demonstration of the capability to process a sizable amount of spent fuel from commercial LWRs in order to separate plutonium (Pu), uranium (U) and minor actinides (MA),
 - 2. Demonstration of the capability to fabricate at a semi-industrial level the dedicated fuel needed to load in a dedicated transmuter,
 - 3. Design and construction of one or more dedicated transmuters,
 - 4. Provision of a specific installation for processing of the dedicated fuel unloaded from the transmuter, which can be of a different type than the one used to process the original spent fuel unloaded from the commercial power plants, together with the fabrication of new dedicated fuel.

Why ADS Transmutation

- In the frame of the Waste Management research programme of the EC since FP5 till FP7, various project (IP-ADOPT, PATEROS, EUROTRANS, ARCAS) various options of the fuel cycle have been studied and showed the need to consider the progress of ADS R&D and demonstration to allow future decisions when considering:
 - Efficient burning of the LWR MA stockpile legacy
 - Considering the double-strata closed fuel cycle
 - Minimise the MA quantities in the electricity production park (even in the future FR park)
 - Allow regional approach for accommodating various national policies related to nuclear energy

FP6-PATEROS A European approach to P&T

- P&T useful for countries
 - in phase out
 - with active nuclear programme
- Reduction of volume & heat load of waste
- P&T should be seen at a regional/European level
- Scenario studies: 4 country groups
 - A: stagnant or phase-out
 - B: continuation and Pu optimisation for FRs
 - C: subset of A in "nuclear renaissance"
 - D: non-nuclear to go nuclear

FP6-PATEROS A European approach to P&T

Scenario 1 objective: elimination of A's spent fuel by 2100

- 2001: International Strategic Guidance Committee
- 2002: International Technical Guidance Committee
- 2003: Review by Russian Lead Reactor Technology Experts (ISTC#2552p project)
- 2005: Conclusions of the European Commission FP5 Project PDS-XADS (2001-2004)
- 2006: European Commission FP6 Project EUROTRANS (2005-2009): Conclusions of Review and Justification of the main options of XT-ADS starting from MYRRHA
- 2007: International Assessment Meeting of the Advanced Nuclear Systems Institute
- 2008: European Commission FP7 Project Central Design Team (CDT) at Mol for MYRRHA detailed design

2009: MIRT of OECD/NEA on request of Belgian Government

European context

ESFRI European Strategic Forum for Research Infrastructure

SET Plan European Strategic Energy Plan

Belgian commitment: secured International consortium: under construction

CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE

The project schedule

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE

АТОМНАЯ КОМПАНИЯ

MYRRHA: an international project

PSI Colloqium, May 31, 2012, Villingen (CH)

INVESTMENT PHASE

BE

IPR

management

rules tbd

ROW

EU

ROW

.eu

Joining the MYRRHA project

- Belgium is welcoming international participation in the MYRRHA consortium
- Membership eligibility for the international MYRRHA consortium is based on a balanced in-cash/in-kind contribution
- Until end 2014:
 - Partners are invited to express their interest in a participation in the MYRRHA programme by sending an Expression of Interest to SCK•CEN by end of August 2012.
 - After having received this Expression of Interest, the candidate Partner will confirm the contribution level of its commitment by sending a Commitment Letter by end of December 2012.
 - After having received the Commitment Letter, the candidate Partner and SCK•CEN will enter immediately into negotiation on their co-operation aiming at the signature of a **Bilateral Agreement** covering the Investment Phase and/or the Operation Phase. This Bilateral Agreement should be signed and enter into force before the **mid 2013**.

MYRRHA: EXPERIMENTAL ACCELERATOR DRIVEN SYSTEM A pan-European, innovative and unique facility at Mol (BE)

