

... for a brighter future

Updates of the SRF work at ANL: from fundamental dissipation mechanism to Atomic layer deposition

Th. Proslier, A. Glatz, W. Walkosz, P. Zapol and M. Pellin (ANL)

M. Kharitonov (Rutgers University)

J.F. Zasadzinski (IIT)

G. Ciovati, P. Kneisel (JLAB)

A. Romanenko (FNAL)

N. Groll, I. Chiorescu (NHMFL)

U.S. Department of Energy UChicago Argonne

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Funded by ARRA-DOE, Office of science, High Energy Physics.

Part 1/ dissipation mechanisms

- Experimental evidence: PCT, SQUID, EPR.
- Theory: surface impedance & residual resistance
- Conclusion

Part 2/ Atomic layer deposition for SRF

- Dielectric coatings
- Superconducting hetero-structures

Niobium surfaces are complex, important, and currently poorly controlled at the nm level

Probe the surface superconductivity

Experimental evidences of Magnetism: Point Contact

6 Tesla magnet

1.6-300 K

- Measure of the surface superconducting gap Δ
- The ZBC value -> Number of normal electron

Normal electrons in gap => dissipation and lower Q

Ideal BCS superconductor

PCT Tunneling Data: Correlation of the local DOS with the low field Q

Oxide free Sputt. films

- Chemically etched ZBC ~ 0.3-0.2, Group II
- UHV annealed ZBC ~ 0.05-0.1, Group I
- Superconducting DOS depends: on oxide on surface treatement

T.Proslier, J.Zasadzinski, L.Cooley, M.Pellin et al. APL 92, 212505 (2008)

Experimental evidences of Magnetism: Point Contact

Hot and cold spots in Nb SRF cavity, Origin

Zero Bias Conductance (ZBC) peak: Spin Flip Tunneling

Kondo effect

Definite proof for localized paramagnetic moments in the Niobium oxide

Hot and cold spots in SRF cavity, Origin

Enhanced dissipation -> lower gap + higher conc. mag. impurities

Experimental evidences of Magnetism: Superconducting Quantum Interference Device (SQUID)

Experimental evidences of Magnetism: SQUID

Dislocations-role ?

Experimental evidences of Magnetism: SQUID

Raman spectroscopy

Connection between Q-slope (onset above 100 mT) and small near-surface hydride precipitates!

DFT-Simulation:

Nb₂O₅ : Monoclinic (B2/b symmetry)

SC	vaca o y	E _{vac} (eV) vac	mµ _B)
1x1x1	01	5.86	0.00
	O2	5.42	1.82
	O3	5.89	0.00
1x1x2	01	5.73	0.00
	02	4.93	0.00
	03	5.61	0.00

H_Interstit	Eform(eV)/vac	m (µ ₈)
cose to 02	0.274101	0.8944671
cose to 01	0.572353	0

- For O2 vacancy magnetism was detected in (1x1) cell
- H interstitial close to O2 vacancy also shows magnetism
- In bulk metal: Nb vac / O / H interstitial -> no magnetism
- In bulk metal: Nb vac + O + H -> magnetism!
- Energetically favorable to have antiferromagnetic order.

Theory: The residual resistance

Theory: the residual resistance

Arbitrary mean free path, I and $\kappa,$ homogeneous conc. in ξ

$$\zeta(\omega) = -\mathrm{i} \frac{\omega \, \delta(\omega)}{c}, \ \delta(\omega) = \frac{2}{\pi} \int_0^{+\infty} \frac{\mathrm{d}k}{k^2 + 4\pi Q_\perp(\omega, k)/c}$$

 $Q_{\alpha\beta}(\omega,\mathbf{k}) = \frac{e^2 N_0}{mc} \bar{Q}_{\alpha\beta}(\omega,\mathbf{k}), \ \bar{Q}_{\alpha\beta}(\omega,\mathbf{k}) \approx [\bar{Q}^0_{\alpha\beta}(\mathbf{k}) - \mathrm{i}\bar{Q}^1_{\alpha\beta}(\omega,\mathbf{k})] \text{ at } \omega \ll \Delta, 1/\tau$

$$\bar{Q}^{0}_{\alpha\beta}(\omega,\mathbf{k}) = 3 \cdot 2 \cdot 2\pi T \sum_{\varepsilon > 0} f^{2}_{M}(\varepsilon) \langle n_{\alpha} n_{\beta} D^{M}_{0} \rangle \qquad \text{superfluid}$$

$$\bar{Q}_{\alpha\beta}^{1}(\omega,\mathbf{k}) = 3\frac{\omega}{2} \int_{-\infty}^{+\infty} \mathrm{d}\epsilon \, \left(-\frac{\mathrm{d}n_{0}(\varepsilon)}{\mathrm{d}\epsilon}\right) \left\{ [f(\epsilon)]^{2} \langle n_{\alpha}n_{\beta}D_{0}^{RR} \rangle + [f^{*}(\epsilon)]^{2} \langle n_{\alpha}n_{\beta}D_{0}^{AA} \rangle \right\}$$

 $+ \langle n_{\alpha} n_{\beta} D_0^{RA} \rangle [1 + g(\epsilon) g^*(\epsilon) + f(\epsilon) f^*(\epsilon)] \}$

Dissipative part

Theory: The surface impedance

Theory: The residual resistance

 α ~4.10⁻² meV & η =0.25 -> 800 ppm in Nb -> 6.10¹² /cm² in Nb oxides

Th. Proslier, M. Kharitonov submitted to PRL (2011)

Theory: residual resistivity

- Mean free path decreases after baking
- Concentration of mag. Impurities increase after baking

conclusion:

- Magnetic impurities present at the surface of Nb Nb₂O_{5-δ} is magnetic [1], H-O-dislocation complex
- Concentration is modified by surface treatment (mild, High T)
- Dissipation & higher concentration of Mag. Moments
- Theory: surface impedance [T] reproduce the R res
- Paramagnetic Meissner effect + 1/f noise in Q-bits

1: Cava et al. Nature 350, 598 (1991) & PRB 41, 13 (1991) & PRB 72, 033413 (2005)

Part 2: Atomic layer deposition - dielectric coatings

1. Begin with EP, Clean, Tested Cavity

2. ALD with 10 nm of Al_2O_3

3. Add a low secondary electron emitter 4. Bake (>400 C) to "dissolve O into bulk

coupons test

Atomic layer deposition (ALD)

Th.Proslier, J. Zasadzinski, M.Pellin et al. APL 93, 120958 (2008)

J Lab Cavity 3: Annealing 450C/20hrs + Coating: 5nm Al₂O₃+15 nm Nb₂O₅

ALD 3 - CEBAF Shape

Dielectric coatings: multilayer (T. Tajima)

 MgB_2 dep at 600 °C ~ 80 nm ALD insulator at 300 °C ~ 10 nm Inter-diffusion !

Alumina coatings

Dielectric coatings: multilayer (T. Tajima)

ALD coating cavities in UHV

Characteristics: 650 C – UHV (10⁻⁹ T) 17"OD x 24" deep Support for cavity 48 k\$.

ALD of superconductors

Nb_{1-x}Ti_xN: Superconducting T_c (SQUID)

ALD of hetero-structures: superconductors-insulators

Aluminum nitride: AIN

- Wide-gap (6 eV) semiconductor
- Oxygen-free, stable interface with Nb(Ti)N
- Similar structure to Nb(Ti)N
 - 0.27% mismatch between in-plane spacing of (0001)-oriented AIN and (111)-oriented NbN
- Can be grown with AICl₃ and NH₃ at same temperature as Nb(Ti)N
 - No thermal cycling between deposition steps
 - ALD previously demostrated [K.-E. Elers, et al. J. de Phys. IV 5 (1995)]
- NbN/AIN multilayers grown previously by sputtering
 - Enhanced J_c at high fields [J.M. Murduck, et al. Appl. Phys. Lett. 62 (1988)]
 - Model system for vortex matter in HTS [E.S. Sadki, et al. Phys. Rev. Lett. 85 (2000)]

ALD of hetero-structures: superconductors-insulators

Nb_{1-x}Ti_xN / AIN: Superconducting T_c

Higher T_c with AIN layer

- Unclear why
- Strain? Crystallinity?

Conclusion and future work

- Dielectric coatings + in-situ baking
- Multilayer coatings on coupons and cavities
- New superconductor by atomic layer deposition: Pnictides.

Thanks!

conclusion

Summary

PCT is revealing the bulk Nb gap ~1.55 meV
Clear evidence of magnetic scattering

- EPR and ZBC peaks
- Explanation of residual RF resistance

Future Work

- Transport EPR of Nb films
- Planar junctions (low T, High H, weld pits)
- Co-planar waveguides (Zeeman splitting)
- STM of defects

LLINOIS INSTITUTE

OF TECHNOLOG

Hot and cold spots in SRF cavity (from J-lab)

ASC 2010

Experimental evidences of Magnetism: Mild and HT baking in UHV of EP samples

Sample treatment	C[mK]	θ _{CW} [K]
EP	10	0.3
EP UHV baked 120°C	11.7	0.36
EP UHV 800°C	8.9	0.22
EP UHV 800°C + 120°C	10	0.29

Samples:

-Mild baking Increase conc. of magnetic impurities (similar to Casalbuoni ArXiv:cond-mat /0310565v1) -High Temp. baking decrease it. Cavities:

-at 1.8 K higher Rres after mild baking

-High Temp. baking decrease Rres

Increase conc. of Mag. moments Increase correlations

Theory: The residual resistance

March meeting-2011

Theory: The residual resistance

 Δ and Tc

Mean free path and α

Mean Free path, *l*, increases after baking consistent with BCS surface impedance fits

 α ~2.10⁻² meV & η =0.2 -> 250 ppm in Nb -> 6.10¹² /cm² in Nb oxides

March meeting-2011