An Overview of My Recent Studies

Shahid Ahmed

Center for Advanced Studies of Accelerators JLab

Layout of Presentation

- Beam Dynamics of TEM-type 499 MHz Deflecting Cavities (NC/SC)
- Status of NC RF Deflector for High Power Test
- More Interesting Activities:
 - ✤ HOM Survey
 - Electron-Ion Collider Design Studies
 - Beam Break-up Studies
 - Plasma Cleaning of RF Cavities
 - ✤ G4beamline Computer Code Development

Schematic of Separation Plus Extraction System

- Utilize existing horizontal extraction magnet (Lambertson)
- Vertical separation followed by horizontal extraction
- ✤ 17 mm vertical displacement at entrance of extraction magnet

Deflecting Cavities – NC & SC

Superconducting (SC)

Normal Conducting (NC)

Parameter	SC	NC	Unit
Frequency of π mode	499.2	499	MHz
$\lambda/2$ of π mode	300.4	300.4	mm
Cavity length	394.4	300	mm
Bars width	67	20	mm
Bars length	284	135	mm
Aperture diameter	40.0	15	mm
V _{def} *	0.3	0.3	MV
E _p *	1.85	3.39	MV/m
B _p *	6.69	8.87	mT
$G = QR_S$	67.96	34.9	Ω
$[R/Q]_T$	933.98	24921	Ω
At $E_{T}^{*} = 1 \text{ MV/m}$			

EM Field Distribution of Deflecting Mode

SC Structure

- Fields strongly concentrated within rods
- Strong deflection to beams

Why Need Simulations ?

Two different deflecting cavities :

Normal conducting (exists for 6 GeV CEBAF operation) Superconducting (EM design available)

- ✤ No beam dynamics predictions available
- Require one/two SC but six/eight NC structures
 - Aperture diameter : 40 mm for SC and ~ 15 mm for NC
 - Beam stay clear condition requires 6.5 mm from either wall (SC is OK but NC may not enough)
 - Alignment tolerance for NC arrangement
 - Emittance dilution needs to know

Beam Dynamics : Simulation Schematic

- E:11 GeV, $p = \sqrt{(E^2 m_e^2)} \sim 11 \text{ GeV/c}$
- $\beta = E / p \sim 1$, $\gamma = E / m \sim 2.15264 \times 10^4$

First discussion for SC structure followed by comparison with NC

Transverse Displacement & Deflection

Three distinct tracks for hall A, B and C

- * Non zero residual offset in position (~ 47 μ m) but not in angle
- ✤ All nonlinear phenomena occur inside cavity
- ✤ Results confirmed by CST, GPT and g4beamline simulations

APS Crab Cavity

Presenter: H. Wang

Non-Zero Residual Orbit Offset for Reference Phase

The deflection and the displacement at the exit of a thick ideal pillbox cavity are expressed as follows.

Simulation Results (X):

44 μm (Ideal Pillbox) : comparable to analytical value 43.97 μm. 47.3 μm (SC), 50 μm (3D Pillbox) : (7-13)% of the ideal pillbox cavity.

Displacement & Deflection @ Lambertson Magnet

Noteworthy points: ≻Three distinguishable tracks ≻Non-linear effects vanish

Normalized RMS Emittance

For uniform distribution corresponding to $\varphi = \varphi_{ref}$:

 $\varepsilon_{n,rms} = \frac{q_e V_{def}}{4\sqrt{3}m_e c^2} kr_b l_b = 0.15 \text{ mm-mrad agrees with simulation}$ $\varepsilon_{n,rms}^{\text{def}} = 0.5 \text{ x } \varepsilon_{n,rms}^{\text{ref}} \text{ ; as deflecting gradient is half.}$

Normal Conducting Cavity

Deflecting Rods

8-Cavity Arrangement

Cavity Length = 601.2 mm (a) f = 499 MHz, $c = 3 \times 10^8$ m/s Gap = 130.06 mm Center-to-center distance = 731.26 mm Time-Delay = $(731.26 \times 10^{-3})/(3 \times 10^8) = 2.44$ ns Phase Delay = $2\pi f \propto Time-Delay = 437.88$ deg

Evolution of Deflection

NC Versus SC

Mechanical Vibration : Displacement & Deflection

Conclusion

- One/two SC or an array of NC structures can be used to provide required vertical displacement
- Emittance dilution is small
- Array of NC cavities demonstrated stability against mechanical vibration
- Both SC and NC structures are suitable for 11 GeV RF separation in 12 GeV upgrade of CEBAF
- Results published in PAC'11 and a PRST-AB paper under review

NC Deflecting Cavity High Power Test

CST Simulation: Changed body material from Cu to SS

Q (~ 5200) remains unchanged confirming field concentration mainly near rods

Active Ch/Trace 2 Response 3 Stimulus 4 Mkr/Analysis 5 Instr State

NC Deflecting Cavity Cont'd

- Cavity needs under vacuum to connect ion pump
- Folks in vacuum group baked after no leak confirmed
- Gasket change confirms leak tight, leaks found on joints after baking
- ➢ No baking required
- HP test sometime end of September or early next month

HOM Measurement

Providing support to SRF LabHelping for BBU study

MEIC Design Study

- Medium Energy Electron Ion Collider (MEIC) at JLab -- future high energy particle accelerator beyond 12 GeV upgrade of CEBAF
- Utilize existing polarized electron source complex with 12 GeV upgrade + new ion complex (light to medium ions)
- Collision frequency of 750 MHz with small charge per bunch and large crossing angle
- Increased beam stability and high luminosity

- Beam Dynamics and Instabilities in MEIC Design
- ➢ Impedance Budget for MEIC
- Study of Electron Cloud Effect for MEIC
- Crab Crossing Studies

Publications: 2-IPAC'11, 2-PAC'11

5.6

10

Luminosity per IP $(10^{33} \text{ cm}^{-2} \text{ s}^{-1})$

3

More Activities

Beam Break-up (BBU) Studies:

CEBAF injector upgrade
Single-pass BBU – cumulative effect
Caused due to offset of beam or elements
Nature of effect: random

TDBBU simulations:

$$\begin{bmatrix} V_{\mathbf{r}} \\ V_{\mathbf{i}} \end{bmatrix}_{t'} = \exp\left(-\frac{\omega_{\mathrm{H}}\Delta t}{2Q_{\mathrm{H}}}\right) \begin{bmatrix} \cos(\omega_{H}\Delta t) & -\sin(\omega_{H}\Delta t) \\ \sin(\omega_{H}\Delta t) & \cos(\omega_{H}\Delta t) \end{bmatrix} \begin{bmatrix} V_{\mathbf{r}} \\ V_{\mathbf{i}} \end{bmatrix}_{t}$$

Noteworthy points:

- Transient onset of beam blowup, settles down with damping time of HOMs
- Blow-up displacement amplitude varies linearly with initial offset and quadratically with current
- Stability for wide range of current 1-100 mA with $Q = 5 \times 10^{10}$

Publications: 2-PAC'11

Plasma Cleaning of RF Cavity

Improve cavity performance

- Removal of surface contaminants causing field emission
- Removal of hydrogen from bulk Nb
- Vacuum performance by removing absorbed contaminants from surface

- ➢ Gas bottles are available
- \succ Vertical test of cavity needs to be done
- ➢ Working on RF source
- ➤ Safety procedure and talk with Radcon folks
- Purchase a compact plasma processing chamber to test small samples

G4Beamline Software Development

Publication: PAC'11

Modeling of Space Charge

A cylindrical beam having laminar, parallel beam particles with uniform density propagating in a drift tube (i.e. no external field).

Parameters of study:

Particles = electron Number of macro-particles = 500 Each macro-particle = 2.0×10^7 particles $P_z = 0.4 \text{ MeV/c}$ $\beta = 0.615$ $\gamma = 1.27$ Bunch shape = cylindrical Bunch length = 200.0 mm Initial radius = 2.0 mm

Ref: Theory and Design of Charged Particle Beams – Martin Reiser

Time Evolution of Beam Envelope

PIC Simulation

Martin Reiser estimates doubling of beam size (r = 4 mm) when beam-centre reaches at z = 248 mm, PIC simulation gives 3.9 mm

Comparison of Results

PIC and G4BL Simulations agree well with the analytical result

Thanks!

