Real Beam Optics
From A “Synthetic” Beam

Ryan Bodenstein
University of Virginia
5/10/2011

Jeffergon Lab

®Thomas Jefferson National Accelerator Facility




Abstract

 CEBAF cannot use the same methods as a ring to measure
Twiss parameters.

e Developing procedure to measure the evolution of the
Twiss parameters with a “synthetic” beam.

« Talk will focus on current state of procedure and where it
1s expected to progress.
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Outline

e Goal: Provide understanding of rayTrace procedure, and
why it 1s useful.

« Basic accelerator physics background.

e Current methods used by CEBAF:
— Beamline characterization and tuning.
— Weaknesses.

* rayTrace method.

* An example of use.

* What 1s still to be done.
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The Matrix Formalism

« A transfer matrix connects the phase space coordinates at
point 2 to those at point 1.

=M(1-2)

- 12 A

« Example transfer matrices for thin lenses and a drift look
like these:
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Twiss Parameters

 First, the classic phase ellipse, with labeled Twiss

parameters: , ,
a 1s related to the distance

X to the geometric focus.

s 7 B is the amplitude
/ function.
4 I X
JB
A=zl v ¢ 1s proportional to the area a

set of beams will occupy in
phase space.
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RMS Parameter Definitions
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Transfer Matrix vs. Twiss Parameters

* M is transport matrix containing Twiss parameters.

=M(1-2)
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RelationshiE of Beam and Twiss
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RelationshiE of Beam and Twiss
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Closed vs. OEen-Ended sttem

Circular Machine Open-Ended Machine
* Many passes * Single pass through system
o Equilibrium orbit o No equilibrium orbit
* Global, self-consistent * No periodicity constraints
lattice like circular
* Periodic condition » Lattice defines path of beam
» Lattice defines Twiss » Lattice transforms Twiss
Parameters Parameters
* Beam accommodates Twiss  How can they be measured?
Parameters
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CEBAF’s Methods: Szuadrunole Scan

» Twiss parameters measured at CEBAF with quadrupole
scan.

e Vary quadrupole strength by known amounts.
e Measure the varying beam size at a beam profile monitor.
e Find the smallest beam size at the monitor.

« Relationship between smallest beam radius to beam radius
at lens can be used to calculate the uncorrelated angular
spread (aka emittance angle).

« Beam that 1s located centrally will keep the same angular
spread, regardless of lens setting.

« Smallest waist achievable gives emittance angle.
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uadrupole Scan cont.
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Szuadrugole Scan gcont.z
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Szuadrugole Scan: Weaknesses

* Noisy electronics (harps).
* Sparse coverage.
« Small emittance.

e Time consuming. Takes ~30 minutes to find complete for
ONE location.

« Invasive. In order to characterize a section of the
beamline, the nuclear physics program must be put on hold
for a long time.
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CEBAF’s Methods: Courant-Snyder

« Used to maintain beam envelope matching.

e Takes x and x’ from measured trajectories, and uses a and
B from the design model to calculate the matched phase
ellipse corresponding to the measured trajectory.

¥
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Courant-Snvder

X

+ = trajectory




Courant-Snxder

+ = trajectory
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Courant-Snvder
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Courant-Snxder: Weaknesses

* Unguided, guess-and-check tuning.
» Ignores phase advance

— Leads to problems with degeneracy in severely
mismatched beams.

(\\1"‘9”#,) ‘-)
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Soz what is the answer?

 CEBAF needs a method that 1s minimally invasive to the
nuclear physics program.

* Must be able to either take into account cumulative phase
advance errors, or provide a way 1n which it can be ignored
without detriment.

e Must be able to characterize the beamline both locally and
globally.

* We have an answer:
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raxTrace: What is it?

e Measures the differential orbit of the real beam at every
location simultaneously.

» Corrector kicks are set to follow the boundary of the
model’s phase ellipse.

« Allows for calculation of the Twiss parameters of the real
beam.
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raXTrace — How it Works

RayTrace Data Collection Tool

Coniguraton _—1. Select plane.

- ot — 2. Choose launchpoint. o and 3
Bt osH are automatically entered from
the design model at the

Corrector 1:

Corrector 2

£ (cm*rad) | 1.0e-5

o | B (erm) |

ortst iy [T, Turns 8] P [T8 launchpoint. They can also be
Logger Controls manually entered.
Sar www AGE | 3. Set orbit size/emittance.
S 4. Choose number of turns and
\ points/turn.
5. Start Logging.

6. Corrector conditioning
7. Simultaneously, acquire the
Additional Options model Twiss parameters.
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raxTrace - How it Works

» Acquire Twiss parameters from both design and current
(GOLD) models.
— Using the Accelerator High Level Application (AHLA)
group’s elegant toolkit, acquire values from model.

— Automated process using Perl.
» Also formats data into Twiss tables.

» Twiss tables contain data for element number, element
name, S, § in both planes, a in both planes, n (both
position and momentum), v in both planes, and
momentum.
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raxTrace - Analxsis

 fitphase, written by Yves Roblin, 1s used for the analysis.
* Algorithm originally used to ID ellipses in image data.

— Raw statistical data can provide this information as
well.

 [terating through 1 BPM at a time, fits the model over a
short range to acquire x’ values.

» Trajectory data used to compute €, a, and 3 at each BPM.
» Plots data points, fitted ellipse, and model ellipse.
» Plots variation of o and B along the transverse direction.

* Will show more on this in the example.
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Model Independent

o~ (as long as we agree on ¢)
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razTrace: Tuning

» Have data at every BPM location.

— Known local optics supplies transverse angles.

— Can generate Twiss parameters for every BPM.

— Can discriminate between distributed and point errors.
« Synthetic beam 1s a surrogate for real beam.

— Magnified emittance.

— Same o and f.

— Exact linear model in zero current limit.

» Allows measurement of phase advance.
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raxTrace in Action

« Example of use from earlier stage of development: Hall A
Compton Background Test of October, 2009.

« Hall A reports unreasonably high background count rates
at their Compton polarimeter.

« Limited beam diagnostic tools available.
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raxTrace in Action

« Set the launchpoint at the beginning of ARC 1

* Set € to ~5e-6 cm-rad at this point, and used the model
values for a and .

« Used 32 injected rays to trace out the phase ellipse at the
launchpoint.

» Traced the ellipse twice to check for closure.
CEBAF BEAMLINE

"INJECTION CHICANE"




LaunchEOint
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Evolution through LINAC2
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Entrance of Hall A
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From the Courant-Snyder
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UnexBected Observations

IPM1HO4A {/Symbol a}=1,930794e+00 {/Symbol b}=5,305412e+03 (cm)
—48-05 T T T T

Fit —
model
o fitted position +
-6e-05 F ¥t -
+ +
_+ +
e
— R
—88_05 B I'.\ + \-\‘_. -
\ + N
\\ ++} & ~
3 \'\_ & 00
-0,0001 F +\F N .
= + W * \
[\ ++ - + + \‘_ 3
o % Hagk EN
= g 4, ¥ \\\
-0,00012 F N N, -
> Ty N
W P+ N
T v N
-0,00014 ¢ \\\_ S : A
#\i * + \"-.
\*\# = +_+ + .',\
‘\‘;_\4- ++ Tk
-0,00016 } T
t# s
++¢%
+
-0,00018 A . 1 L s
0 0,5 1k 125 2 2.5 3
¥ (mm)

4effer:5)on Lab



raxTrace in Action

Beam Loss Events at Given Times
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Label step: 2 minutes
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ComEton raxTrace Conclusions

« Beam entered Hall A line mismatched.
— Rematched.
« Partial beam loss in Compton chicane.

— Re-steered to avoid aperture, beamline adjusted,
sychrotron radiation baffled.

« Compared against quadrupole scans
— rayTrace showed appropriate amount of acceleration
damping.
— Some quad scan data had significantly asymmetric
emittances in both planes.
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Future Work

Error Analysis

— BPM noise

— XY Coupling
Injection to terminus transfer function fit
Something about 12GeV. Get help here.

Full deterministic tuning demonstration.
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Summarx

e Current diagnostic tools at CEBAF
— Quadrupole scan
— Courant-Snyder
e raylrace
— Collects data at all BPMs simultaneously.
— Analysis uses model to find x’.
 Data useful without model.
— Enables deterministic retuning.

— Extensible to 4D coupled motion.
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Conclusion

« The rayTrace procedure is a developing diagnostic tool.
» Has been used in beamline diagnostics and tuning.

* The completed procedure promises to be a powerful tool
for characterizing and tuning an open-ended system.
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