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Abstract

• CEBAF cannot use the same methods as a ring to measure

Twiss parameters.

• Developing procedure to measure the evolution of the

Twiss parameters with a “synthetic” beam.

• Talk will focus on current state of procedure and where it

is expected to progress.
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Outline

• Goal: Provide understanding of rayTrace procedure, and 

why it is useful.

• Basic accelerator physics background.

• Current methods used by CEBAF:

– Beamline characterization and tuning.

– Weaknesses.

• rayTrace method.

• An example of use.

• What is still to be done.
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The Matrix Formalism

• A transfer matrix connects the phase space coordinates at 

point 2 to those at point 1.

• Example transfer matrices for thin lenses and a drift look 

like these:
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Twiss Parameters

• First, the classic phase ellipse, with labeled Twiss 

parameters:
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α is related to the distance 

to the geometric focus.

β is the amplitude 

function.

ε is proportional to the area a 

set of beams will occupy in 

phase space.
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RMS Parameter Definitions
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Transfer Matrix vs. Twiss Parameters
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• M is transport matrix containing Twiss parameters.
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Relationship of Beam and Twiss
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Relationship of Beam and Twiss
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Closed vs. Open-Ended System

Circular Machine

• Many passes

o Equilibrium orbit

• Global, self-consistent 

lattice

• Periodic condition

• Lattice defines Twiss 

Parameters

• Beam accommodates Twiss

Parameters

Open-Ended Machine

• Single pass through system

o No equilibrium orbit

• No periodicity constraints 

like circular

• Lattice defines path of beam

• Lattice transforms Twiss 

Parameters

• How can they be measured?
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CEBAF’s Methods: Quadrupole Scan

• Twiss parameters measured at CEBAF with quadrupole 

scan.

• Vary quadrupole strength by known amounts.

• Measure the varying beam size at a beam profile monitor.

• Find the smallest beam size at the monitor.

• Relationship between smallest beam radius to beam radius 

at lens can be used to calculate the uncorrelated angular 

spread (aka emittance angle).

• Beam that is located centrally will keep the same angular 

spread, regardless of lens setting.

• Smallest waist achievable gives emittance angle.
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Quadrupole Scan (cont.)
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Quadrupole Scan (cont.)
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Quadrupole Scan: Weaknesses

• Noisy electronics (harps).

• Sparse coverage.

• Small emittance.

• Time consuming.  Takes ~30 minutes to find complete for 

ONE location.

• Invasive.  In order to characterize a section of the 

beamline, the nuclear physics program must be put on hold 

for a long time.
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CEBAF’s Methods: Courant-Snyder

• Used to maintain beam envelope matching.

• Takes x and x’ from measured trajectories, and uses α and 

β from the design model to calculate the matched phase 

ellipse corresponding to the measured trajectory.
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Courant-Snyder

= trajectory
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Courant-Snyder

= trajectory
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Courant-Snyder
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Courant-Snyder: Weaknesses

• Unguided, guess-and-check tuning.

• Ignores phase advance

– Leads to problems with degeneracy in severely 

mismatched beams.
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So, what is the answer?

• CEBAF needs a method that is minimally invasive to the 

nuclear physics program.

• Must be able to either take into account cumulative phase 

advance errors, or provide a way in which it can be ignored 

without detriment.

• Must be able to characterize the beamline both locally and 

globally.

• We have an answer:

rayTrace
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rayTrace: What is it?

• Measures the differential orbit of the real beam at every 

location simultaneously.

• Corrector kicks are set to follow the boundary of the 

model’s phase ellipse.

• Allows for calculation of the Twiss parameters of the real 

beam.
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rayTrace – How it Works

1. Select plane.

2. Choose launchpoint.  α and β

are automatically entered from 

the design model at the 

launchpoint.  They can also be 

manually entered.

3. Set orbit size/emittance.

4. Choose number of turns and 

points/turn.

5. Start Logging.

6. Corrector conditioning

7. Simultaneously, acquire the 

model Twiss parameters.
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rayTrace - How it Works

• Acquire Twiss parameters from both design and current 

(GOLD) models.

– Using the Accelerator High Level Application (AHLA) 

group’s elegant toolkit, acquire values from model.

– Automated process using Perl.

• Also formats data into Twiss tables.

• Twiss tables contain data for element number, element 

name, S, β in both planes, α in both planes, η (both 

position and momentum), ν in both planes, and 

momentum.



24

rayTrace - Analysis

• fitphase, written by Yves Roblin, is used for the analysis.

• Algorithm originally used to ID ellipses in image data.

– Raw statistical data can provide this information as 

well.

• Iterating through 1 BPM at a time, fits the model over a 

short range to acquire x’ values.

• Trajectory data used to compute ε, α, and β at each BPM.

• Plots data points, fitted ellipse, and model ellipse.

• Plots variation of α and β along the transverse direction.

• Will show more on this in the example.
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Model Independent β

(as long as we agree on ε)
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rayTrace: Tuning

• Have data at every BPM location.

– Known local optics supplies transverse angles.

– Can generate Twiss parameters for every BPM.

– Can discriminate between distributed and point errors.

• Synthetic beam is a surrogate for real beam.

– Magnified emittance.

– Same α and β.

– Exact linear model in zero current limit.

• Allows measurement of phase advance.
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rayTrace in Action

• Example of use from earlier stage of development: Hall A 

Compton Background Test of October, 2009.

• Hall A reports unreasonably high background count rates 

at their Compton polarimeter.

• Limited beam diagnostic tools available.
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rayTrace in Action

• Set the launchpoint at the beginning of ARC 1

• Set ε to ~5e-6 cm-rad at this point, and used the model 

values for α and β.

• Used 32 injected rays to trace out the phase ellipse at the 

launchpoint.

• Traced the ellipse twice to check for closure.
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Launchpoint

IPM1A01 X Plane IPM1A01 Y Plane

31.846 4.067 10 25.634 10 1 3.823 10
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Evolution through LINAC2
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Entrance of Hall A

IPM1C00 X Plane IPM1C00 Y Plane
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From the Courant-Snyder
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Unexpected Observations
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rayTrace in Action
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Compton rayTrace Conclusions

• Beam entered Hall A line mismatched.

– Rematched.

• Partial beam loss in Compton chicane.

– Re-steered to avoid aperture, beamline adjusted, 

sychrotron radiation baffled.

• Compared against quadrupole scans

– rayTrace showed appropriate amount of acceleration 

damping.

– Some quad scan data had significantly asymmetric 

emittances in both planes.
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Future Work

• Error Analysis

– BPM noise

– XY Coupling

• Injection to terminus transfer function fit

• Something about 12GeV.  Get help here.

• Full deterministic tuning demonstration.
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Summary

• Current diagnostic tools at CEBAF

– Quadrupole scan

– Courant-Snyder

• rayTrace

– Collects data at all BPMs simultaneously.

– Analysis uses model to find x’.

• Data useful without model.

– Enables deterministic retuning.

– Extensible to 4D coupled motion.
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Conclusion

• The rayTrace procedure is a developing diagnostic tool.

• Has been used in beamline diagnostics and tuning.

• The completed procedure promises to be a powerful tool 

for characterizing and tuning an open-ended system.
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