Flux pinning mechanism and RF
properties of ingot Niobium used in
SRF cavity fabrication
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Residual Loss

Magnetic vortices trapped at the surface of SRF Nb cavities are a well-known source of RF
residual losses.

1. Vortices pinned near the surface oscillate
under the Lorentz force given by the RF field

2. At higher field the vortices oscillates and
propagates into the materials, resulting the
increase in surface resistance.

Magnetic Vortices can be produced due to
sImperfect shielding of the Earth’s magnetic field
*thermoelectric currents during cavity cool down across the critical temperature

Magnetic flux can be pinned in material defects, such as grain boundaries, dislocations or
clusters of impurities

Experiments are in progress to remove the magnetic vortices pinned near the surface by
means of heat. Ciovati et al., SRF 2011




High-field Q slope
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Motivations

/&5 Understanding the flux-pinning mechanisms and trapping

efficiency in Nb material of different grain size and purity is
important for the fabrication of SRF cavities with high quality
factor.

&5 Effect of surface and heat treatments on RF properties on
sample rods.
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Type-l vs Type-ll Magnetization
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Sample Preparation
Previously  Mondal et al., SRF 2009

LG (4 Samples)
. About 180 um BCP

. Heat treatment at 600 °C/10 hrs in a UHV furnace

. ~ 24 um BCP

. Baking in UHV at 100°C/12hrs, 120 °C/12hrs, 140 °C/12hrs and 160 °C/12hrs.
About 10 um were etched by BCP after each bake.

FG

. ~65 um BCP

. Heat treatment at 800 °C/2 hrs in a UHV furnace

. ~ 140 um BCP

. Heat treatment at 600 °C/10 hrs in a UHV furnace

. Post-purification heat treatment at 1250 °C for 3 hrs using Ti as solid state getter

. ~ 100 um BCP

Now

. 50 pm material removal by electropolishing (EP) with HF:H,SO, =
1:10 acid mixture.
. Baking in UHV at 120 °C/48 h (LTB)
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Sample Ta H C O N RRR
(ppm) (ppm) (ppm) (ppm) (PpPm)
A 1295 2 <10 21 10 62 Magnetization shows the same
B 1310 5 <10 9 3 164 behavior irrespective to the impurities
C 603 4 <10 14 9 159 | LTB doesn’t affect the bulk properties
D 644 3 <10 7 7 118
FG <100 <3 <20 <40 <20 280
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Sample EP EP+LTB (120 °C for 48 hrs)
HoH1p(0) HoHc2(0) T (K) HoHip(0) (MT)  £4H,(0) T (K)
(mT) (mT) (mT)
A 18714 418+8 9.2510.01 19017 427+8 9.22+0.02
B 18343 411+10 9.12+0.02 18514 421+8 9.26+0.02
C 19415 443+11 9.21+0.02 193+11 44512 9.24+0.01
D 18815 44010 9.21+0.03 19249 439+11 9.24+0.02
FG 18743 420+8 9.34+0.04 191+10 42017 9.27+0.03

Measured bulk properties are average and hence not sensitive to surface treatments.
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A 178+10  384+10 [736+15  173+7  373+11 | 766+12 | Reduction of the
B 17016 336+7 70512 1737 365110 >1000 electron mean free
C 16048 333:6  753+10 1656  353:9 | ~1000 | Path takesplace due
D 16547 3456  710+13  166:6  347+9  745¢12 | to the.d.'ff“;'o_“ OfLTB
FG 168+10 358+ 689415  171+5  362+¢8 | >1000 | 'MPurities during LI5.

LTB enhance the surface critical field H_; and hence the ratio H_;/H,_,-




Critical State

Once flux penetrates static magnetic flux distribution is determined by the balance
between the Lorentz force and pinning force
F,=J.xB

Critical State Models

J(B)=1J, Bean
J(B) = Je FixedPinning (Jietal,1989)

B(x)/B,

J
J(B) = ‘ SquareRoof(Le Blancand Le Blanc,1992
(B) €(x)/B. > v ( )

J(B) = S, Kimetal.,1962

1+ B(x)/B,
J(B)=J_exp[-B(x)/B,] Fietz etal,1964
J(B)=1J, 3B Linear, Watson1968

0

Many More

In all these models, the magnetic field and the current density are coupled through the
Maxwell relations [1xB = pJ

These models don’t really explains the nature of superconductivity but provide the
convenient means of describing some experimentally observed phenomena.




Static magnetic flux distribution is determined by the balance between the Lorentz
force and pinning force
F,=J.xB

Experimentally, Critical current can be calculated from magnetization measurements
as

R, —R,°’
J.6 = EAM 6 R°“t3 R'”3 (widely used Bean model)

out In

Even though the Bean model successfully explained the critical state of
high k type-Il superconductor, it deviates for the low k and weakly
pinned superconductors where the diamagnetic contribution to critical
state is significant.



Biased to diamagnetic side
M para
S~ M
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Effect of diamagnetism can’t be neglected
1. Forsmall x

2. For which pinning force is weak

3. Small sized superconductor

Diamagnetic magnetization is much smaller
than the magnetization due to pinning effect

The magnetization due to pinning is
large in case where diamagnetism is P)
small, critical current density is large,
and superconductor is large in size




LG vs FG (shape of M-H Curve)
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Decreasing Field
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Matsushita Flux line discharge by diamagnetism



Matsushita derived an expression for the magnetization on the basis of a
semi-microscopic model where the superconductor is considered as a
multi-layered structure composed of ideal superconducting layers and
thinner pinning layers. Flux Pinning in Superconductors, Springer

The force balance equation

dH/dx=FJ, @ =FF, @ ]B for H>H_

valid in the remnant state

dH/dX =+€—-bH : for O0<H< H. where trapped fluxoids exist

Relation between B and H

B
~ ~ H —HC H ~
BE =H+ME = 1H - 1Hy 1—(—1j B =@(—02—1} Xeo=€GM/dH
HcZ_Hcl Ho Hcl

Kes et al., 1973 J. of Low Temp. Phys. 10 759

Pinning force density

BY( BY
BcZ BcZ

Campbell A M and Evetts J E 1972 Advances is Phys. 21 199



Doing some math for long hollow cylinder of R
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Fitting Parameters

Sample A Sample B Sample C Sample D
Fitting

ETE EP+Heat

EP+Heat EP+Heat EP+He

at
a (A/mZ) 1.6 x 108 1.35x 108 1.29x 108 1.37 x 108 2.18x 108 2.18x 108 2.8x 108 2.7x108

5.13x10? 5.13x10? 4.26x10? 4.31x10? 7.34x10? 7.34x10? 6.3x10? 6.2x10?

0.135
1 1 1 1 1 1 0.75 1

S 1.25 1.25 1.25 1.25 1.5 1.5 1.5 1.5



Effect of Surface Treatment and Heat
Treatmenton M
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Critical Current

] (a) Sample-D ] (a) Sample-FG

n
1
1
—

.I O Bean model o 0 Bean model
S Modified critical state model E Modified critical state model
£ 1.04 <
< -
o o
-] —
o p—
\-/U —
—

=
N
1

Bean’s model underestimates J. at low magnetic flux densities compared to
other critical state models which better describe magnetization data.

Similar conclusion was obtained from the analysis of magnetization data for
NbTi!

Douine B, Leveque J and Mezani S 2010 /EEE Trans. on Appl. Supercond. 20 (2) 82



Magnetization of FG Sample
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Strange “belly” shaped couldn’t not reproduce in calculations, sample was cut

inspected magneto-optical imaging (NHMFL) and planned to do magnetization
measurement in commercial magnetometer.



Anatolii Polyanskii, NHMFL

- Non Uniform flux penetrations
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Conclusions

&S Even though the LG samples have different RRR values, the magnetic properties
of these large grain samples do not depend on the bulk impurity concentrations.

&5 Using the modified critical state model by Matsushita the irreversible
magnetization was calculated showing good agreement with the experimental data.

&S The calculated J.and F, of LG samples (A-D) are lower than the FG, as expected
because of the fewer grain boundaries.

&S Large-grain Nb would be less efficient in pinning magnetic flux during the

cavity cool-down, compared to fine-grain Nb, because of the lower J_. This would
result in reduced RF losses (higher Q,-value) for large-grain cavities.



RF Measurements
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Original flat base plate

Separation between the operating mode
(TEy,;) and the neighbouring TM;;; mode from

the initial 7 MHz to about 32 MHz.
With modified base plate



RF Properties-Coax Cavity

p,sample

Bp\
| B
With Sample Without Sample
field distribution in cavity
Parameters Empty w. sample
Resonant frequency (GHz) 3.501 3.856
Bp/NU (MmT/) 62.7 114.2
Geometric factor (G) 779.6 Q 532.2 Q

=2.28B

p,cavity
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System capable of measuring RF properties of any superconducting samples.



Conclusions

&S Even though the LG samples have different RRR values, the magnetic properties
of these large grain samples do not depend on the bulk impurity concentrations.

&S Using the modified critical state model by Matsushita the irreversible
magnetization was calculated showing good agreement with the experimental data.

&The calculated J, and F, of LG samples (A-D) are lower than the FG, as expected
because of the fewer grain boundaries.

&S Large-grain Nb would be less efficient in pinning magnetic flux during the

cavity cool-down, compared to fine-grain Nb, because of the lower J_. This would
result in reduced RF losses (higher Q,-value) for large-grain cavities.

&5 RF measurement on TE,,, cavity shows the reduction of surface resistance and
hence the increase in quality factor due to the chemical and heat treatment,

however maximum peak magnetic field is limited due to the critical heat flux of the
niobium rods.
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