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Outline 
  

• MESA as research ‘engine’  

• Accelerator physics issues at MESA 

• Polarimetry for MESA-PV 

  ….the eight-fold way to achieve P/P <0.5%? 
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 MESA surroundings 

MAMI-C: 

operational for 6000-7000h/year 

for exp A1/A2/A4 

...probably the final word in normal  

conducting microtron- recirculators  

• no new buildings necessary  

• heavily shielded area available  

• MAMI and MESA will be  

   operated independently  

MESA 

MESA 

Ex-1: 

Ex-2 
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  MESA accelerator 

project   rationale   

  
1. Energy recovery linac (ERL) 

2. Improvements on high gradient-c.w.-SRF   

 

• Experiments   require a new & innovative accelerator 

• low energy (100-200MeV)  therefore accelerator ‘affordable’  

• MAMI acc. team competence represents basis for development  

• Project will be attractive for young students and researchers  

Make use of innovations in SRF accelerator science:  

 Beam parameter goals in two different modes of operation:  

1.) EB-mode External spin-polarized c.w. beam (EB-mode) at 137 MeV  

  (Q2=0.005GeV/c at 30 degree). L>1039 cm-2s-1 

2.) ERL-mode: 10mA at 100 MeV with L~1035   cm-2s-1  
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MESA-experiments:  

1.)  Parity violating  elastic electron scattering  

• Measurement of PV asymmetry  

at low Q2 is sensitive to ‘new physics’  

• JLAB runs  ‘Qweak’ at Q2=0.02(GeV/c) 

   Ebeam=1.2GeV 

• Exp. Asymmetry  

   Aexp~ (1-4sin2( W))~140ppb (!) 

• 3% Accuracy in Aexp0.5% in sin2( W) 

• model dependent corrections   ~E0 

Improved parity experiment: 

• low energy E0 (small theory  uncertainty) 

• and even lower Q2 (0.005(GeV/c)2) 

• optimized for control of  

   systematic contributions to Aexp 

• exclusive machine access and  

   low running costs  

 MESA’ workhorse’ experiment 

better statistics AND systematics: 

 1% Accuracy in Aexp0.15% in sin2( W) 

 

MESA-PV 
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MESA-experiments-2- Search for Dark photon  at MAMI/MESA 

H. Merkel et al. (A1 collab. at MAMI): suggest  to measure e+/e- pair   

invariant mass with double spectrometer set up at MAMI.  

Demonstration experiment at 

MAMI 100 A/855MeV on  

0.4% rad. length Tantal 

(2 weeks runtime)   

(accepted for pub by  PRL) 

Limits:  

- Low energy regime (background)  

- other decay modes of A’ ?  

- runtime (several years  ???) 

MESA: Dedicated machine for m A’ <100MeV with optimized background 

MESA’s corner is adjacent  

to most of the a  region  

(interesting because of   

3  deviation of a   from SM ) 

MESA 
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MESA-experiments-3: Applied physics 

High beam power electron beam may be used for: 

•  ERL-mode: Production of NV-nanodiamonds (e.g. medical markers) 

•  EB-mode: High brightness source of cold (polarized) positrons   

Color: NV-centers introduced  

in Diamond.   

Irradiated at MAMI  

for 3 days, 50 A at 14MeV 
(J. Tisler et al. ACS NANO 3,7 p.1959 (2009)) 

 

G. Werth et al. : 

Appl. Phys. A 33 

59 (1984) 

 

MESA  

can produce  

~109 positrons/s  

in a beam of <1cm  

diameter at 120eV 

surface science:  

   magnetic structures 

positronium  

   production   
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KEY:  

PS:  Photosource (polarized or unpolarized beam) 

IN:    2.5-5 MeV – NC injector   

SC:  3 Superconducting cavities,   @ 13  MV/m.  

        Energy gain 34  MeV per pass. 

RC:  Beam recirculation 3  times 

HW: Third recirculation option ‘half wave’:  

        Energy Recovery Linac (ERL-) Mode 

FW: Third recirculation option: ‘full wave’  

        External Beam (EB-) mode  

PIT:  Pseudo Internal target (ERL mode)  

PV:   Parity violation experiment (EB-mode) 

DU:  2.5 MeV beam dump in ERL-mode 

EX:   Experimental areas 1 and 2  

 

 

EXPERIMENTAL BEAM PARAMETERS: 

1.3 GHz c.w. 

EB-mode: 150 A, 137 MeV  polarized beam  

(liquid Hydrogen  target L~1039)   

ERL-mode: 10mA, 104 MeV unpolarized  beam  

(Pseudo-Internal Hydrogen Gas target, L~1035)  

DU 

IN 

SC 
PIT 

HW 

FW 

RC 

MESA-LAYOUT 

2
2
m

 

to PV-experiment 

PS 

EX-2 

EX-1 

Existing walls: 2-3m thick shielding 

MESA-Layout 
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Project/Purpose 

(status) 

Av. Beam 

current (mA) 

# of Recirc. Norm. emit. 

 ( m) 

Bunch charge 

(pC) 

Time 

structure 

MESA/ particle physics 

(under design) 

10 2-3 1-10 7.7 1300 MHz 

c.w. 

JLAB/ light source  

(achieved) 

10 1 7 135 75 MHz, c.w. 

BERLinPro/light source 

demonstrator 

(under design, funded) 

100 1 1 77 1300 Mhz, 

c.w. 

eRHIC/particle physics 

(under design) 

50 6 

• MESA will not have to provide  extreme bunch parameters (....is not a light source)  

• New issue: multi-turn recirculation  MESA may  be useful  

  as a test-bench  for LHeC, eRhic, or others….  

• A challenge is compliance between ERL and EB operation 

•  costs,costs,costs! (minimize investment for cryogenics!) 

MESA-beam parameters in comparison 
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 Injector issues 

  Pro‘s for normal conducting injector:  

• considerably lower cost, established  design  

• budget for cryogenics can be minimized 

• RF/beam-power:   ~ 3  at 10mA/5MV  (300kW wallplug) 

• compatibility between EB/ERL probably achievable   

GRP: Gun/rotator/ 

polarimeter (EB-mode) 

CBP: Chopper/buncher 

          Preacc. (g-beta) 

HCI: 511keV high bunch  

        charge injection 

       (ERL-mode) 

SC:  three (four) cavities  

       33 (50) MeV/pass   

       13 (15)MeV/m 

        3  (2) recirculations 

RC  Recirculations 

DU 5 MeV dump  

 

PV 

IN GRP CBP HCI 

DU 

RC 

2m, 2MeV at PHF=30kW 

5MeV 
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 Spin rotation  

  

V. Tioukine, K.A. NIM A 568  537 (2006) 

L
T
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100kV Filter, L=0.3m  

operated at 23kV over 2cm gap 

 

not practical  to handle filter  

   at 500keV ( =2), difficult at 200 

 

For PV helicity switch (independent from fast optical switch) is desirable  

 realized at JLAB by double Wien (3-axis Spin roator for QWEAK)  
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 Polarized injection layout 

  

GUN /2 

 

Ө 
/2 var DSP 

 

graded-Chop.
550keV  

Injection of 550kV  

high charge source 

buncher

3m 

2.5m 

Spin rotation axis 

Spin direction 

to second part 

First part of pol. 100keV injector with spin rotator  similar to JLAB/QWEAK 

second part of pol. injector identical to MAMI 

from first 

 part 
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 Recirculator challenges 

  
•  10 mA in 2-3 fold SRF-recirculating system calls for specific HOM-control 

•   space & budget restrictions!  

•   So far no SRF infrastructure in house (but clean room & HPR… etc will be available)   

„Hydro-Möller“ 

PV-Target/Det 

150MeV/20-100kW-Dump 

40m 

Dark photon-exp. 
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PV is a simple experiment 
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Penalty for choosing low Q2: APV becomes very small ( roughly 50 ppb) 

 Even at L>1039 the experiment will need  about 10000 hours BOT: Experiment  

     cannot be done at MAMI without strong interference with ongoing program.   

     AFalse must be controlled to <0.4 ppb: Improve  established techniques from PVA4  

   by about an order of magnitude  

  APV/APV =1%    P/P < 0.7%, better <0.5%.  

Aexp=(N↑-N↓)/ (N↑+N↓) 

For elastic scattering on Hydrogen 

P 
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Beam polarimetry is a simple experiment 

Desired::  

1.) Online operation at experimental beam conditions,  

2.) P/P <0.5%,  

3.) fast polarization monitoring.  

Probably the best approach: The “Hydro-Möller”-Polarimeter 

• Online operation possible 

• low Levchuk effect (Z=1 vs Z=26 conventional)  

•  very high PTSzz good efficiency in spite of low count rate  

   statistics to 0.5% within   about 30min 

• PTarget=1-  small Target polarization error ~10-5  

•Problem: Not realized yethow does it work?   

  
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Principle of Hydro-Möller 

Proposed by Chudakov&Luppov, Proceedings IEEE Trans. Nucl. Sc. 51 (2004)… 

~1m 

Solenoid traps pure H ⁭  which has a long lifetime due to He-coating 

of storage cell. All other species are removed quickly from the trap.  

1-  Polarization can be reasonably well estimated, but not measured.  

Check these results by a different principle NOT based on estimation  

of an ‚effective analyzing power‘ Seff  

exp. 

idea: 

realize Hydro-Möller at MESA,  

use it later for JLAB-Möller exp. 
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A different aproach 

   Correction motivated exp.Corr    0exp 
effS

Tbeam SCorrPPA

How to avoid the systematic errors caused by  individual factors?  

Apparent attractiveness of Mott-scattering:  

! P No    T0exp 
effS

y

beamCorrSPA

In double elastic scattering Seff  can be measured directly! 

%!3.0Sin accuracy  Claimed

)scattering identical'' provide  toand sasymmetrie apparative

 elliminate todifficult extremly but  simple sounds(

 process scattering identical"" secondAfter 

:)Power Analyzing and polarizing of(Equality 

P

 beam dunpolarize of scatteringAfter 

eff

2
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sc
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SA

S

A. Gellrich and J.Kessler 

PRA 43  204 (1991) 
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 More elaborated double scattering 
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 targetsecondon  beam Pol  :tmeasuremen 1.)

5 equations with four unknowns  

consistency check for apparative asymmetries! 
S. Mayer et al   

Rev. Sci. Instrum. 64 952 (1993) 
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 The MESA Spin chain 

(‘The eightfold way’) 
  

•DSP measures polarization at 100kV 

• tuning of spin angle at  Hydro-Möller  (and PV) by second  

  Wien rotator. 

• Depolarization in MESA <<10-3. (low energy!, no resonances) 

• Monitoring, stability  and cross calibration can be supported by  

  extremely precise&fast 5 MeV  Mott/Compton combination.   

• In general, 8 polarization measurements required  

R. Barday et al. Proc PESP2010 

Polarization Drift consistently observed  

in transvere AND longitudinal observable  

at the <0.5% level.  

Both polarimeters can be used over wide  

range covering operational regime  

of Hydro-Möller 
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ERL- 

DUMP 

Injector 

Main-Linac 

Dark Photon  

Experiment 

ERL-Option: Half-wave-recirculation 

EB Option: (Parity-experiment): 

Full-Wave-recirculation 

Recirculations 

22m 

to PV- 

Detektor 

Hydro- 

Möller 

Polarized  

Source  

Double-scattering 

Polarimeter 

Shielding 

Compton  

Monitor 

Former MAMI  

Beam tunnel 



20.06.2011 
21 

 Conclusion 

  
•  MESA operates in EB-mode for PV and in ERL-mode for  

   Dark Photon experiment. 

•  Main cost factor – building - eliminated, other one –SRF-  

   reduced by multi-turn recirculation.   

•  PV requires extreme beam parameter stability  

•  …and accurate polarization measurement  

   by a polarimeter chain 

•  In ERL mode, the new issue is multi-turn recirculation  
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 Back-ups 
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Emittance requiments 

An emittance of 10 m is the key for successful operation of DM-experment 

With tbunch << taccel we have a lower limit for emittance at the cathode 

GaAs)-(NEA1.0  (KCsSb), 4.0~)(

/1@7.7@2.0~
6

)(
2

0

min

eVeVWE

mMVpCm
mcE

WEq

cath

bunch

But: vacuum space charge destroys beam emittance by nonlinearity of forces!  

 

Countermeasures:  

1.) accelerate with high field to relativistic velocities because  Fq~1/ 2.  

ERL-d.c guns ~6MV/m to 0.25-0.5 MeV  

SRF gun with 15MV/m  to ~ 5 MeV (FZD, future: BERLinPRO) 

2.) Note: d.c. acceleration allows long bunches without any correlation  

between phase and energy &d.c acceleration allows for low longitudinal charge density 

Example MAMI-A (1979, with van de Graaf generator) 

1.5MV/m to 2MeV ( =5) at 40ps length with subsequent bunch compression to 4ps. 

MESA baseline:  =2 electrostatic acceleration with E>1MV/m  

Modern times:    Laser will provide 40-100ps bunches,  power supply  

(e.g. ICT, now available at 2MV with 20kWHIM/FZJ ‚cooler‘-collaboration)  

will replace van de Graaf 
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405nm Laser  

• Advantage of 405 nm: KCsSb  QE~30mA/Watt.  Cost ~ 3k€/watt (d.c.);  

•  optimum beam quality: 1mm dia-spot at 1m only with collimation tube!  

• electron gun current presently limited by power supply (<3mA) 

• Diode is well suited  for pulsing at GHz-frequencies , (<40ps at full power)  

• Could provide ~1W  (40ps, r.f. synchronized) for MESA (1 lifetime ‘overhead’) 

    five DVD-player diodes  in  parallel!  

d.c or 

R.f 

Laser-out 

collimation 

tube 

2cm 
€100 purchase from eBay 

Diploma thesis I. Alexander 
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Lifetime issue 

  

• long lifetime required  KCsSb (unpolarized) photocathode 

GaAs operation  

would be  

possible, but  

inconvenient 

Milliampere- test experiment with NEA-GaAs 
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PCA fabrication chamber at Mainz-HIM 

:  

  

PCA-Apparatus 

•KCsSb technology available at 

Mainz  

• good results >30mA/Watt 

(>10% Q.E)  

•  evidence for *100 stability 

increase with respect to GaAs 

(2000 hours at 10mA?) 
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Stability issues 

EInj 

  

1 

i 

i+1 

B=const. 

E

Bce

E
R

2•R 

Eout=EInj+z• E 

Longitudinal stability due to long. dispersion!  

Transverse stability if ‘Herminghaus Criterion’ is followed  Einj/Eout<10 

Practical criterion Eout  =(EINJ+ E)* (diameter magnet/diameter first orbit) 

practical first orbit diameter > cryostat radius ~0.4m  

 analyze for our case. 
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Microtron based  solution 

  

E

Purpose B/T N E 

MeV 

Einj+ E 

MeV 

2*R0 Rez. Eout Power/ 

current 

PV/high E 0.5 1 5.5 30 0.40 28 180 27kW/0

.15 

ERL 1.4 2 30.8 40 0.20 2 102 100/10 

Orbit separation  

 / *N 

(7.3cm N=1) 

2.4m 

DUMP 9.2 MeV 

Einj 

 RTM-2 stage is the weakest point in the existing cascade  

 high potential for GAIN in stability!  
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 Conclusions 

  

•  Due to the non-extreme bunch parameters MESA does not require  

   the same amount of investment as the light-source demonstrator machines 

• Challenge is the compatibility between PV and ERL, but promising  

   approaches exist.   
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DM: Focusing through the PIT 

length of Meters 2over  mm62.0diameter  beam Maximum

1:choose ))/(1(
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 50nm.~(100MeV)    
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DM: Focusing through the PIT 

6mm dia 

Dublett 
Dublett 

H2 20  beam envelope 

Assuming target density N=2*1018 atoms/cm-2 (3.2  g/cm2, 5*10-8 X0) 

we have (at I0=10-2 A)   luminosity of L= I0/e*N=1.2*1035cm-2s-1 

(average) ionization Energy loss: ~ 17eV 

 could allow  to recuperate more energy than in conventional ERL (2.5MeV).  

RMS scattering-angle (multiple Coulomb scattering): 10 rad 

 single pass beam deterioration is acceptable Note: storage ring:  

     beam emittance lifetime ~ 10milliseconds (stationary vs. variable background…) 

 beam halo & long tails of distribution due to Coulomb scattering have to be studied    

E0=104MeV 

Pump 


