Compton Sources of Electromagnetic Radiation*

Geoffrey A. Krafft Jefferson Lab, Old Dominion University Gerd Priebe Max Born Institute

*Reviews of Accelerator Science and Technology, 3, 147 (2010)

Thomas Jefferson National Accelerator Facility

Outline

- Basic Physics
 - Compton Effect
 - Energy
 - Flux
 - Energy Spread
 - Pulse Length
 - Brilliance
 - Harmonics/ Broadening
- Laser Performance
 - Self-Excited Arrangements
 - External High Power Optical Cavities
 - High Peak Power

- Ring Sources
 - Direct Illumination
 - Self Excited
 - External Cavities
- Linac/ERL Based Sources
 - Self Excited
 - Direct Illumination
- Future Proposals
 - X-Rays
 - Gamma-Rays
- Conclusions

Compton Effect

TABLE I

Wave-length of Primary and Scattered y-rays

Fig. 4. Spectrum of molybdenum X-rays scattered by graphite, compared with the spectrum of the primary X-rays, showing an increase in wave-length on scattering.

Thomas Jefferson National Accelerator Facility

Fig. 7. Comparison of experimental and theoretical intensities of scattered γ -rays.

Thomas Jefferson National Accelerator Facility

• Layout

• Energy

$$E_{\gamma} \boldsymbol{\Theta}, \boldsymbol{\varphi} = \frac{E_{\text{laser}} \boldsymbol{\langle} - \boldsymbol{\beta} \cos \boldsymbol{\Phi} \big]}{1 - \boldsymbol{\beta} \cos \boldsymbol{\theta} + E_{\text{laser}} \boldsymbol{\langle} - \cos \Delta \boldsymbol{\Theta} \big] E_{e^{-}}}$$

• Thomson limit

$$E'_{\text{laser}} \ll mc^2$$
, $E_{\gamma} \ \theta, \phi \ \approx E_{\text{laser}} \frac{1 - \beta \cos \Phi}{1 - \beta \cos \theta}$

Thomas Jefferson National Accelerator Facility

Field Strength Parameter

- Early 1960s: Laser Invented
- Brown and Kibble (1964): Earliest definition of the field strength parameters (normalized vector potential) K and/or a in the literature that I'm aware of

$$a = \frac{eE_0\lambda_0}{2\pi mc^2}$$
 Compton/Thomson Sources $K = \frac{eB_0\lambda_0}{2\pi mc}$ Undulators

Interpreted frequency shifts that occur at high fields as a "relativistic mass shift".

- Sarachik and Schappert (1970): Power into harmonics at high K and/or a. Full calculation for CW (monochromatic) laser. Later referenced, corrected, and extended by workers in fusion plasma diagnostics.
- Alferov, Bashmakov, and Bessonov (1974): Undulator/Insertion Device theories developed under the assumption of constant field strength. Numerical codes developed to calculate "real" fields in undulaters.
- Coisson (1979): Simplified undulater theory, which works at low K and/or a, developed to understand the frequency distribution of "edge" emission, or emission from "short" magnets, i.e., including pulse effects

Spectrum from a "Short" Magnet

Coisson low-field strength undulater spectrum*

$$\frac{dU_{\gamma}}{d\nu d\Omega} = \frac{r_e^2 c}{\pi} \gamma^2 \left[1 + \gamma^2 \theta^2 \right]^2 f^2 \left| \tilde{B} v \left[1 + \gamma^2 \theta^2 \right] / 2\gamma^2 \right|^2$$

$$f^2 = f_{\sigma}^2 + f_{\pi}^2$$

$$f_{\sigma} = \frac{1}{1 + \gamma^2 \theta^2} \sin \phi$$

$$f_{\sigma} = \frac{1}{1 + \gamma^2 \theta^2} \sin \phi$$

$$f_{\pi} = \frac{1}{1 + \gamma^2 \theta^2} \left(\frac{1 - \gamma^2 \theta^2}{1 + \gamma^2 \theta^2} \right) \cos \phi$$
*R. Coisson, Phys. Rev. A **20**, 524 (1979)

Jefferson Lab

Thomas Jefferson National Accelerator Facility

Dipole Radiation

Polarized in the plane containing $\hat{r} = \vec{n}$ and \hat{x}

Dipole Radiation

Define the Fourier Transform

$$\widetilde{d} \, \mathbf{\Phi} = \int d(t) e^{-i\omega t} dt \qquad \qquad d(t) = \frac{1}{2\pi} \int \widetilde{d} \, \mathbf{\Phi} \, \mathbf{e}^{i\omega t} d\omega$$

With these conventions Parseval's Theorem is

$$\frac{dU_{\gamma}}{d\Omega} = \frac{e^2}{16\pi^2 \varepsilon_0 c^3} \int \vec{d}^2 t - r/c \quad dt = \frac{e^2}{32\pi^3 \varepsilon_0 c^3} \int \omega^4 \left| \vec{d} \right|^2 \omega d\omega$$
$$\frac{dU_{\gamma}}{d\omega d\Omega} = \frac{1}{32\pi^3 \varepsilon_0} \frac{e^2 \omega^4 \left| \vec{d}(\omega) \right|^2}{c^3} \sin^2 \Theta \quad \text{Blue Sky!}$$

This equation does not follow the typical (see Jackson) convention that combines both positive and negative frequencies together in a single positive frequency integral. The reason is that we would like to apply Parseval's Theorem easily. By symmetry, the difference is a factor of two.

Thomas Jefferson National Accelerator Facility Accelerator Division Seminar, 5/12/2011

Comments/Sum Rule

- There is no radiation parallel or anti-parallel to the *x*-axis for *x*-dipole motion (gives the 0.5 in Compton's curve)
- In the forward direction $\theta' \rightarrow 0$, the radiation polarization is parallel to the *x*-axis for an *x*-dipole motion

$$\frac{dU_{\gamma,\sigma}}{d\omega'} = \frac{1}{32\pi^{3}\varepsilon_{0}} \frac{e^{2}\omega'^{4}}{c^{3}} \left| \tilde{d}_{x}' \omega' \right|^{2} + \left| \tilde{d}_{y}' \omega' \right|^{2} 2\pi$$

$$\frac{dU_{\gamma,\pi}}{d\omega'} = \frac{1}{32\pi^{3}\varepsilon_{0}} \frac{e^{2}\omega'^{4}}{c^{3}} \left[\left| \tilde{d}_{x}' \omega' \right|^{2} + \left| \tilde{d}_{y}' \omega' \right|^{2} \frac{2\pi}{3} + \left| \tilde{d}_{z}' \omega' \right|^{2} \frac{8\pi}{3} \right]$$

$$\frac{dU'_{\gamma}}{d\omega'} = \frac{1}{32\pi^{3}\varepsilon_{0}} \frac{e^{2}\omega'^{4} \left| \tilde{\vec{d}} \cdot \omega' \right|^{2}}{c^{3}} \frac{8\pi}{3}$$

Generalized Larmor (in frequency space)

Thomas Jefferson National Accelerator Facility

Total energy sum rule

$$U_{tot}' = \int_{-\infty}^{\infty} \frac{1}{12\pi^2 \varepsilon_0} \frac{e^2 \omega'^4 \left| \tilde{\vec{d}}' \omega' \right|^2}{c^3} d\omega'$$

Parseval's Theorem again gives "standard" Larmor formula

$$P' = \frac{dU'_{tot}}{dt'} = \frac{1}{6\pi\varepsilon_0} \frac{e^2 \vec{\vec{d}}'^2 t'}{c^3} = \frac{1}{6\pi\varepsilon_0} \frac{e^2 \vec{a}'^2 t'}{c^3}$$

Thomas Jefferson National Accelerator Facility

Weak Field Undulator Spectrum

$$\begin{split} \widetilde{d}' \, \mathbf{\Phi}' & = \widetilde{d}' \, \mathbf{\Phi}' \, \mathbf{\hat{s}} = -\frac{ec}{mc^2} \, \frac{\widetilde{B} \, \mathbf{\Phi}' / c\beta_z \gamma}{\omega'^2} \, \mathbf{\hat{s}} & \widetilde{B} \, \mathbf{\Phi} = \int B \, \mathbf{\Phi} \, \mathbf{\hat{e}}^{-ikz} dz \\ \\ \frac{dU_{\gamma,\sigma}}{d\omega d\Omega} &= \frac{1}{32\pi^3 \varepsilon_0} \, \frac{e^4}{m^2 c^5} \, \frac{\left| \widetilde{B} \, \omega \, 1 - \beta_z \cos\theta \, / c\beta_z \, \right|^2}{\gamma^2 \, 1 - \beta_z \cos\theta^{-2}} \sin^2 \phi \\ \\ \frac{dU_{\gamma,\pi}}{d\omega d\Omega} &= \frac{1}{32\pi^3 \varepsilon_0} \, \frac{e^4}{m^2 c^5} \, \frac{\left| \widetilde{B} \, \omega \, 1 - \beta_z \cos\theta \, / c\beta_z \, \right|^2}{\gamma^2 \, 1 - \beta_z \cos\theta^{-2}} \left(\frac{\cos\theta - \beta_z}{1 - \beta_z \cos\theta} \right)^2 \cos^2 \phi \\ \\ \lambda &= \frac{\lambda_0}{2\gamma^2} \qquad \qquad \left(-\beta_z \cos\theta \, \mathbf{\hat{s}} + \beta_z \, \mathbf{\hat{s}} \, \frac{1}{\gamma^2} + \theta^2 + \dots \approx \frac{1 + \gamma^2 \theta^2}{\gamma^2} \right) \end{split}$$

Generalizes Coisson to arbitrary observation angles

Thomas Jefferson National Accelerator Facility

Weak Field Thomson Backscatter

With $\Phi = \pi$ and $a \ll 1$ the result is identical to the weak field undulator result with the replacement of the magnetic field Fourier transform by the electric field Fourier transform

Thomas Jefferson National Accelerator Facility Accelerator Division Seminar, 5/12/2011

Handy Formulas

$$\frac{d^{2}U_{\gamma}}{d\omega d\Omega} = \frac{r_{e}^{2}\varepsilon_{0}}{2\pi c} \left| \tilde{E} \left[\frac{\omega}{c} \frac{1-\beta\cos\theta}{c+\beta} \right] \right|^{2} \times \frac{\sin^{2}\phi (1-\beta\cos\theta)^{2} + \cos^{2}\phi (\cos\theta-\beta)^{2}}{\gamma^{2} (1-\beta\cos\theta)^{2/2}} U_{\gamma} = \gamma^{2} (1+\beta) \frac{N_{e}\sigma_{T}}{\sigma_{e}^{2} + \sigma_{laser}^{2}} N_{\gamma} = \sigma_{T} \frac{N_{e}N_{laser}}{2\pi (\sigma_{e}^{2} + \sigma_{laser}^{2})} N_{\gamma, \text{per }e} = \frac{2\pi\alpha N_{\lambda}a^{2}}{3}$$

Thomas Jefferson National Accelerator Facility

Number Distribution of Photons

Thomas Jefferson National Accelerator Facility

Flux

• Percentage in 0.1% bandwidth ($\theta = 0$)

$$N_{0.1\%} = 1.5 \times 10^{-3} N_{\gamma}$$

• Flux into 0.1% bandwidth

$$\mathcal{F} = 1.5 \times 10^{-3} \dot{N}_{\gamma}$$

• Flux for high rep rate source

$$\mathcal{F}=1.5\times10^{-3}\,fN_{\gamma}$$

Energy Spread

Sources of Energy Spread in the Scattered Pulse

Source Term	Estimate	Comment
Beam energy spread	$2\sigma_{_{E_{e^-}}}$ / $E_{_{e^-}}$	From FEL resonance
Laser pulse width	$\sigma_{_{\! arnow}}$ / ω	Doppler Freq Indepedent
Finite θ acceptance (full width)	$\gamma^2\Delta heta^2$	$\theta = 0$ for experiments
Finite beam emittance	$2\gamma^2arepsilon$ / eta_{e^-}	Beta-function

Spectral Brilliance

• In general

$$\mathcal{B} = \frac{\mathcal{F}}{4\pi^{2}\sigma_{x}\sigma_{y}\sigma_{y'}}$$

$$\approx \frac{\mathcal{F}}{4\pi^{2}\sqrt{\beta_{x}\varepsilon_{x}}\sqrt{\varepsilon_{x}/\beta_{x}+\lambda/2L}}\sqrt{\beta_{y}\varepsilon_{y}}\sqrt{\varepsilon_{y}/\beta_{y}+\lambda/2L}}$$

• For Compton scattering from a low energy beam

$$\mathcal{B} = \frac{\mathcal{F}}{4\pi^2 \varepsilon_x \varepsilon_y}$$

Compton Polarimetry

• At high photon energy (in beam frame), scattering rate couples to the polarization variables

Thomas Jefferson National Accelerator Facility Accelerator Division Seminar, 5/12/2011

High a/K

 γ = 100, distances are normalized by $\lambda_0/2\pi$

Thomas Jefferson National Accelerator Facility

Energy Distribution

Thomas Jefferson National Accelerator Facility

Effective Dipole Motions

$$D_{t} \ \omega; \theta, \varphi = \frac{1}{\gamma \ 1 - \beta \cos \Phi} \int \frac{eA \ \xi}{mc} e^{i\phi \ \omega, \xi; \theta, \varphi} d\xi$$

$$D_{p} \quad \omega; \theta, \varphi = \frac{1}{\gamma \ 1 - \beta \cos \Phi} \int \frac{e^{2}A^{2} \ \xi}{2m^{2}c^{2}} e^{i\phi \ \omega, \xi; \theta, \varphi} \ d\xi$$

And the (Lorentz invariant!) phase is

$$\varphi \ \omega, \xi; \theta, \phi = \frac{\omega}{c} \left(\begin{array}{c} \frac{1 - \beta \cos \theta}{1 - \beta \cos \Phi} - \frac{\sin \theta \cos \phi}{\gamma \ 1 - \beta \cos \Phi} \int_{-\infty}^{\xi} \frac{eA \ \xi'}{mc} d\xi' \\ + \frac{1 - \sin \theta \sin \phi \sin \Phi - \cos \theta \cos \Phi}{\gamma^2 \ 1 - \beta \cos \Phi} \int_{-\infty}^{\xi} \frac{e^2 A^2 \ \xi'}{2m^2 c^2} d\xi' \right) \end{array} \right)$$

High Field Thomson Backscatter

For a flat incident laser pulse the main results are very similar to those from undulaters with the following correspondences

NB, be careful with the radiation pattern, it is the same at small angles, but quite a bit different at large angles

Modifications at High a

• Resonance frequency in forward direction red-shifts

$$E_{\gamma,n} = n \frac{4\gamma^2 E_{laser}}{1 + a^2 / 2}$$

• Flux into the *n*th harmonic (*n* odd)

$$F_{n} a = \frac{n^{2}a^{2}}{1+a^{2}/2} \begin{cases} J_{n-1/2} \left[\frac{na^{2}}{4 + a^{2}/2} \right] \\ -J_{n+1/2} \left[\frac{na^{2}}{4 + a^{2}/2} \right] \end{cases}$$

 Non-flat illumination pulses give ponderomotive broadening

Flat Illumination Pulse

20-period equivalent undulater: $A_x \notin = A_0 \cos (\pi \xi / \lambda_0)$ $\omega_0 \equiv 1 + \beta_z^2 \gamma^2 2\pi c / \lambda_0 \approx 4\gamma^2 2\pi c / \lambda_0, \quad a = eA_0 / mc$ 10^{3} = 0.50a = 0.01 10^2 10 Effective motion spectrum $D_x(\omega)/\lambda_0$ 10 10 10^{-2} 10⁻³ 10^4 10-5 10-6 0.0 1.0 2.04.0 5.0 6.0 7.0 3.0 8.0 Scaled Frequency (ω/ω_0)

Jefferson Lab

Thomas Jefferson National Accelerator Facility

Thomas Jefferson National Accelerator Facility

Spectral Broadening: Gaussian Pulse

 A_{peak} and λ_0 chosen for same intensity and same *rms* pulse length as previous slide

G. A. Krafft, Phys. Rev. Lett., 92, 204802 (2004)

Thomas Jefferson National Accelerator Facility

Source Illumination Method

- Direct illumination by laser
 - Earliest method
 - Deployed on storage rings
- Optical cavities
 - Self-excited
 - Externally excited
 - Deployed on rings, linacs, and energy recovered linacs
- High power single pulses
 - Deployed on linacs

Early Gamma Ray Sources

Fig. 1. - Overall view of the experimental set-up.

Compton Edge 78 MeV

Federici, *et al.* Nouvo. Cim. B 59, 247 (1980)

Thomas Jefferson National Accelerator Facility

Fig. 4 A plan of the LEGS facility at BNL.

Thomas Jefferson National Accelerator Facility

Accelerator Division Seminar, 5/12/2011

PAC83, 3083 (1983)

Electrotechnical Laboratory (Japan)

Fig. 2. Experimental arrangement.

Compton Edge 6.5 MeV

Yamazaki, *et al.* PAC85, 3406 (1985)

Thomas Jefferson National Accelerator Facility

Optical Cavities

Thomas Jefferson National Accelerator Facility

Self Excited

Location	Wavelength	Circulating Power	Spot Size	Rayleigh Range
Orsay	5 microns	100 W	mm	0.7 m
UVSOR	466 nm	20 W	250 microns	0.4 m
Duke Univ.	545 nm	1.6 kW	930 microns	5 m
Super-ACO	300 nm	190 W	440 microns	2 m
Jefferson Lab FEL	1 micron	100 kW	150 microns	1 m

Thomas Jefferson National Accelerator Facility

Externally Excited

Location	Wavelength	Input Power	Circulating Power	Spot Size (rms)
Jefferson Lab Polarimeter	1064 nm	0.3 W	1.5 kW	120 microns
TERAS	1064 nm	0.5 W	7.5 W	900 microns
Lyncean	1064 nm	7 W	25 kW	60 microns
HERA Polarimeter	1064 nm	0.7 W	2 kW	200 microns
LAL	532 nm	1.0 W	10 kW	40 microns

Thomas Jefferson National Accelerator Facility

Modern Ring Based Systems

FIG. 1. Schematic of the OK-4/Duke storage ring FEL and γ -ray source. Two electron bunches spatially separated by one-half the circumference of the ring participate both in lasing and γ -ray production via Compton scattering of intracavity photons. A collimator installed downstream selects a narrow cone of quasimonoenergetic γ rays.

Litvinenko, et al., Phys. Rev. Lett., 78, 4569 (1997)

Duke HIGS Facility

Thomas Jefferson National Accelerator Facility

Some Modern Parameters

Parmeter	Value	Unit
Photon Energy	100	MeV
Production Rate	10 ¹⁰	photons/sec@9 MeV
Laser Wavelength	545	nm
Circulating Power	1.6	kW
Polarization	100%	

Topoff allows larger circulating power now!

H. R. Weller, et al., Prog. Part. Nucl. Phys., 62, 4569 (2009)

Thomas Jefferson National Accelerator Facility

Lyncean Compact X-ray Source

Thomas Jefferson National Accelerator Facility

Lyncean Source Performance

Parmeter	Value	Unit
Photon Energy	10-20	keV
Production Rate	10 ¹¹	photons/sec
Laser Wavelength	1064	nm
Circulating Power	25	kW
Polarization	100%	
Ultimate Brilliance	5 10 ¹¹	p/(sec mm ² mrad ² 0.1%)

Thomas Jefferson National Accelerator Facility

The Jefferson Lab IR FEL

Neil, G. R., et. al, Physical Review Letters, 84, 622 (2000)

Thomas Jefferson National Accelerator Facility

FEL Accelerator Parameters

Parameter	Designed	Measured
Kinetic Energy	48 MeV	48.0 MeV
Average current	5 mA	4.8 mA
Bunch charge	60 pC	Up to 135 pC
Bunch length (rms)	<1 ps	0.4±0.1 ps
Peak current	22 A	Up to 60 A
Trans. Emittance (rms)	<8.7 mm- mr	7.5±1.5 mm-mr
Long. Emittance (rms)	33 keV- deg	26±7 keV- deg
Pulse repetition frequency (PRF)	18.7 MHz, x2	18.7 MHz, x0.25, x0.5, x2, and x4

Thomson Source Scattering Geometry

Thomas Jefferson National Accelerator Facility

60 sec FEL Short-pulse X-ray Spectrum

Boyce, et al., 17th Int. Conf. Appl. Accel., 325 (2002)

Thomas Jefferson National Accelerator Facility

Linac-based Sources aka Blast Away

- Take the biggest laser you can get and focus to smallest spot you can
- Single shots at low repetition rate
- High peak brilliance (but not at FEL levels)

Pogorelsky, *et al., Phys. Rev. ST-AB*, **3**, 090702 (2000) F. Albert, *et al., Phys. Rev. ST-AB*, **13**, 070704 (2010), Daresbury ALICE Group

Jefferson Lab

Thomas Jefferson National Accelerator Facility

BNL Scattering Chamber

Thomas Jefferson National Accelerator Facility Accelerator Division Seminar, 5/12/2011

X-ray Experiment

Thomas Jefferson National Accelerator Facility

Laser	
Repetition rate	10 Hz
Wavelength	532 nm
Bandwidth (FWHM)	0.1 nm
Total pulse energy ^a	150 mJ
Pulse length (FWHM) ^b	16 ps
rms spot size	$34 \times 38 \ \mu m$
Electrons	
Repetition rate	10 Hz
Energy	116 MeV
rms energy spread	0.2%
Beam charge	800 pC
Bunch length (FWHM)	16 ps
rms spot size	$23 \times 42 \ \mu m$
rms normalized emittance	$4 \times 8 \text{ mm} \text{mrad}$

^aEnergy in 100 µm aperture and 16 ps FWHM main pulse: 22 mJ. See text for details. ^bBased on models of frequency conversion.

Thomas Jefferson National Accelerator Facility

D. J.Gibson, et

al., Phys. Rev.

070703 (2010)

ST-AB, **13**,

FIG. 10. (Color) γ -ray beam profiles from scintillator-coupled CCD cameras for the three laser frequencies. The beam energies are: left—295 keV (128.4 MeV + 1 ω), center—466 keV (114 MeV + 2 ω), and right—906 keV (130 MeV + 3 ω).

	Guinna source performance parameters.
Photons per interaction	$1.6 imes 10^5$
Peak (on-axis) energy	478 keV
rms energy spread	12%
Repetition rate	10 Hz
Peak (on-axis) brightness	$1.5 \times 10^{15} \frac{\text{photons}}{\text{mm}^2 \text{ mrad}^2 \text{ s} 0.1\% \text{ BW}}$
Inferred rms spot size	~36 µm
Beam divergence	$10 \times 6 \text{ mrad}$

TABLE III. Gamma source performance parameters.

Thomas Jefferson National Accelerator Facility

High Power Optical Cavities

V. Brisson, *et al., NIM A*, **608**, S75 (2009)

N.B., 10 kW FEL there, sans spot!

In this paper we described our first results on the locking of a Ti:sapph oscillator to a high finesse FPC. For the first time, to our knowledge, we demonstrate the possibility of stacking picosecond pulses inside an FPC at a very high repetition rate with a gain of the level of 10000. By studying the stability of four-mirrors resonators, we developed a new promising nonplanar geometry that we have just started to study experimentally. Finally, we mentioned that we shall next use the recent and powerful laser fiber amplification scheme to reach the megawatt average power inside FPC as required by the applications of the Compton X and gamma ray sources.

Thomas Jefferson National Accelerator Facility

LAL/Thales THomX

BES Workshop on Compact Light Sources (2010)

Thomas Jefferson National Accelerator Facility

Hajima, et al.

Uranium Detection

Fig. 3. Layout of the 350-MeV ERL designed for a high-flux γ -ray source. An electron beam generated by the 7-MeV injector is accelerated up to 350 MeV by the main linac and transported to the recirculation loop. The collision point for LCS γ -ray generation is located in the middle of the straight section.

Hajima, et al., NIM A, 608, S57 (2009) TRIUMF Moly Source?

Thomas Jefferson National Accelerator Facility Accelerator Division Seminar, 5/12/2011

Table 1

Design parameters of a high-flux γ -ray facility.

Electron beam	
Maximum energy	350 MeV
Current	13mA
Bunch charge	100 pC
Normalized emittance (x/y)	2.2/1.0 mm-mrad
Laser and laser supercavity	
Laser	1.8µJ, 1064 nm
Repetition rate	130 MHz
Supercavity gain	3000
γ-ray	
Total flux	$1.0 \times 10^{13} \text{ ph/s}$

In the design, we consider a laser supercavity that stores an intracavity laser power of 700 kW (1.8 μ J, 130 MHz, gain of 3000, Rayleigh length of 1.1 cm). The γ -ray flux in the above-mentioned

Thomas Jefferson National Accelerator Facility

MIT CUBiX

Fig. 2. Major technical components including cryocooled high-power laser and SRF linac.

Graves, et al., NIM A, 608, S103 (2009)

Thomas Jefferson National Accelerator Facility

X-ray parameters.		
Parameter	Single shot	High flux
Tunable photon energy (keV)	3-30	
Pulse length (ps)	2	0.1
Flux per shot (photons)	1×10^{10}	3×10^{6}
Repetition rate (Hz)	10	10 ⁸
Average flux (photons/s)	1×10^{11}	3×10^{14}
On-axis bandwidth (%)	2	1
RMS divergence (mrad)	5	1
Source RMS size (mm)	0.006	0.002
Peak brilliance (photons/(smm ² mrad ² 0.1%bw))	6×10^{22}	6×10^{19}
Average brilliance (photons/(smm ² mrad ² 0.1%bw))	6×10^{11}	2×10^{15}

numerical simulation results assuming parameters of E = 25 MeV, $\varepsilon_{nx} = 0.1 \,\mu\text{m}$, $x_e = 2 \,\mu\text{m}$, $\Delta t_L = 0.3$ ps, $\lambda = 1 \,\mu\text{m}$, $Q_e = 10$ pc, and $W_{\gamma} = 10$ mJ. Note that no nonlinear effects were included in this

Table 1

Thomas Jefferson National Accelerator Facility

Quarter Wave SRF Injector

Developed in collaborations with Niowave Inc, UW-Madison, Naval Postgraduate School

SRF Injector Parameters	
Energy gain [MeV]	4
RF frequency [MHz]	176
Average current [mA]	1
Operating temperature [K]	4.2
RF power [kW]	5
Peak wall E-field [MV/m]	55
Peak wall B-field [mT]	105
Accelerating E-field [MV/m]	32
Cathode E-field [MV/m]	45

G. A. Krafft, CUBiX NSF Review (2010)

Thomas Jefferson National Accelerator Facility

4K SRF CW Linac

SRF Linac Parameters	
Energy gain [MeV]	25
RF frequency [MHz]	352
Average current [mA]	1
Operating temperature [K]	4.2
RF power [kW]	30

Jean Delayen developing cavities at newly formed Center for Accelerator Science at Old Dominion University (Chris Hopper of ODU/CASA) has a velocity-of-light design <u>4 K SRF Technology: Spoke cavities</u> Lower RF frequency => 4K operation More compact for given frequency Good mechanical rigidity Moderate gradient (10 - 12 MV/m CW)

Thomas Jefferson National Accelerator Facility

Longitudinal Compression Ideas

SPARC

Fig. 1. Lay-out of the dog-leg like electron beam line for the TS experimental area.

A. Bacci, *et al., NIM A*, **608**, S90 (2009)

Table 1

Electron beam at the interaction point.

Parameter	Value
Bunch charge (nC)	1-2
Energy (MeV)	28-150
Length (ps)	15-20
$\varepsilon_{n,x,y}$ (mm-mrad)	1-5
Energy spread (%)	0.05*-0.2
Spot size at interaction point rms (µm)	5-10

Thomas Jefferson National Accelerator Facility

Conclusions

- Compton sources of high energy photons have existed for about thirty years
- The have followed the usual progression: [1] borrow an existing machine (1st generation), and [2] make it better by technological innovation (2nd generation?)
- We are perhaps approaching 3rd generation devices, i.e., accelerators specifically designed for Compton/Thomson sources.
- Expect "convergence" with high energy collider design ideas
- Lots of ideas, but still looking for the "killer ap".

Conclusions

- A "new" calculation scheme for high intensity pulsed laser Thomson Scattering has been developed. This same scheme can be applied to calculate spectral properties of "short", high-*K* wigglers.
- Due to ponderomotive broadening, it is simply wrong to use single-frequency estimates of flux and brilliance in situations where the square of the field strength parameter becomes comparable to or exceeds the (1/*N*) spectral width of the induced electron wiggle
- The new theory is especially useful when considering Thomson scattering of Table Top TeraWatt lasers, which have exceedingly high field and short pulses. Any calculation that does not include ponderomotive broadening is incorrect.

Bend

Undulator

Thomas Jefferson National Accelerator Facility

