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Outline 

• Basic Physics 

– Compton Effect 

– Energy 

– Flux 

– Energy Spread 

– Pulse Length 

– Brilliance 

– Harmonics/ Broadening 

• Laser Performance 

– Self-Excited Arrangements 

– External High Power Optical Cavities 

– High Peak Power 
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• Ring Sources 

– Direct Illumination 

– Self Excited 

– External Cavities 

• Linac/ERL Based Sources 

– Self Excited 

– Direct Illumination 

• Future Proposals 

– X-Rays 

– Gamma-Rays 

• Conclusions 
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Compton Effect 

A. H. Compton, Phys. Rev., 21, 483 (1923)  
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Unpolarized Incident 

X-ray Beam 
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Energy 

• Layout 

 

 

 

 

 

• Energy 
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Field Strength Parameter 

• Early 1960s: Laser Invented 

• Brown and Kibble (1964): Earliest definition of the field strength 
parameters (normalized vector potential) K and/or a in the literature 
that I’m aware of 

 

 

 Interpreted frequency shifts that occur at high fields as a “relativistic 
mass shift”. 

• Sarachik and Schappert (1970): Power into harmonics at high K and/or 
a . Full calculation for CW (monochromatic) laser. Later referenced, 
corrected, and extended by workers in fusion plasma diagnostics. 

• Alferov, Bashmakov, and Bessonov (1974): Undulator/Insertion Device 
theories developed under the assumption of constant field strength. 
Numerical codes developed to calculate “real” fields in undulaters. 

• Coisson (1979): Simplified undulater theory, which works at low K 
and/or a, developed to understand the frequency distribution of “edge” 
emission, or emission from “short” magnets, i.e., including pulse effects 
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Spectrum from a “Short” Magnet 

2
2 2 2

2
2 2 2

2
2 1 / 21e

dU r c
f B

d d

Coisson low-field strength undulater spectrum* 

222 fff

2
2 2

2
2 2

2 2

2 2

1
sin

1 1
cos

1

1 1

f

f

*R. Coisson,  Phys. Rev. A 20, 524 (1979) 

4
2

2 2 2 4

016
e

e
r

m c



Accelerator Division Seminar, 5/12/2011 

Dipole Radiation 
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Dipole Radiation 
Define the Fourier Transform 
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This equation does not follow the typical (see Jackson) convention that combines both positive and 

negative frequencies together in a single positive frequency integral. The reason is that we would like to 

apply Parseval’s Theorem easily. By symmetry, the difference is a factor of two. 

With these conventions Parseval’s Theorem is 
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Comments/Sum Rule 

• There is no radiation parallel or anti-parallel to the x-axis 

for x-dipole motion (gives the 0.5 in Compton’s curve) 

• In the forward direction  θ΄→ 0, the radiation polarization 

is parallel to the x-axis for an x-dipole motion 
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Sum Rule 

Parseval’s Theorem again gives “standard” Larmor formula 
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Weak Field Undulator Spectrum 
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Weak Field Thomson Backscatter 

With Φ = π and a << 1 the result is identical to the weak field undulator 

result with the replacement of the magnetic field Fourier transform by 

the electric field Fourier transform 

Undulator Thomson Backscatter 

Driving Field 
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Handy Formulas 
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Number Distribution of Photons 
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Flux 

• Percentage in 0.1% bandwidth (θ = 0) 

 

 

• Flux into 0.1% bandwidth 

 

 

 

• Flux for high rep rate source 
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Energy Spread 

 

 Sources of Energy Spread in the Scattered Pulse 

Source Term Estimate Comment 

Beam energy spread From FEL 

resonance 

Laser pulse width Doppler  Freq 

Indepedent 

Finite θ acceptance (full width) θ = 0 for 

experiments 

Finite beam emittance Beta-function 
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Spectral Brilliance 

• In general 

 

 

 

 

 

 

• For Compton scattering from a low energy beam 
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Compton Polarimetry 

• At high photon energy (in beam frame), scattering 

rate couples to the polarization variables 
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"Figure Eight" Orbits
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Energy Distribution 
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Effective Dipole Motions 
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For a flat incident laser pulse the main results are very similar to 

those from undulaters with the following correspondences 

Undulater Thomson Backscatter 

Field Strength 
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Frequency 
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NB, be careful with the radiation pattern, it is the same at small angles, 

but quite a bit different at large angles 

High Field Thomson Backscatter 
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Modifications at High a 

• Resonance frequency in forward direction red-shifts 

 

 

• Flux into the nth harmonic (n odd) 

 

 

 

 

 

 

• Non-flat illumination pulses give ponderomotive 

broadening 
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Flat Illumination Pulse 
20-period 

equivalent undulater: 000 20/2cosAAx

2 2 2

0 0 0 01 2 / 4 2 / ,   /z c c a eA mc
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2/1/1 2a
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Spectral Broadening: Gaussian Pulse 

0
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2 /2cos156.82/exp zAA peakx

Apeak and λ0 chosen for same intensity and same rms pulse length as previous 

slide 
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G. A. Krafft, Phys. Rev. Lett., 92, 204802 (2004) 
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Source Illumination Method 

• Direct illumination by laser 

– Earliest method 

– Deployed on storage rings 

 

• Optical cavities 

– Self-excited 

– Externally excited 

– Deployed on rings, linacs, and energy recovered 

linacs 

 

• High power single pulses 

– Deployed on linacs 
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Early Gamma Ray Sources 

Federici, et al. 

Nouvo. Cim. B 59, 247 (1980) 
Compton Edge 

78 MeV 
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LEGS 

Compton Edge 

270 MeV 

Sandorfi, et al. 

PAC83, 3083 (1983) 

NSLS 
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Electrotechnical Laboratory (Japan) 

Compton Edge 6.5 MeV 
Yamazaki, et al. 

PAC85, 3406 (1985) 
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Optical Cavities 

Quantity Dimensions 

Wavelength 200 nm-10 microns 

Circulating Power 0.1-200 kW 

Spot Size 50-500 microns 

Rayleigh Range 40 cm-5 m 

mirror mirror 
spot 

size w=2σ 

Rayleigh 

Range (w2π/λ) 
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Self Excited 

Location Wavelength Circulating 

Power 

Spot 

Size 

Rayleigh 

Range 

Orsay 5 microns 100 W mm 0.7 m 

UVSOR 466 nm 20 W 250 microns 0.4 m 

Duke Univ. 545 nm 1.6 kW 930 microns 5 m 

Super-ACO 300 nm 190 W 440 microns 2 m 

Jefferson 

Lab FEL 

1 micron 100 kW 150 microns 1 m 

laser 

electrons 
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Externally Excited 

Location Wavelength Input 

Power 

Circulating 

Power 

Spot Size 

(rms) 

Jefferson Lab 

Polarimeter 

1064 nm 0.3 W 1.5 kW 120 microns 

TERAS 1064 nm 0.5 W 7.5 W 900 microns 

Lyncean 1064 nm 7 W 25 kW 60 microns 

HERA 

Polarimeter 

1064 nm 0.7 W 2 kW 200 microns 

LAL 532 nm 1.0 W 10 kW 40 microns 

laser 
electrons 
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Modern Ring Based Systems 

Litvinenko, et al., Phys. Rev. Lett., 78, 4569 (1997) 
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Duke HIGS Facility 
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Some Modern Parameters 

Parmeter Value Unit 

Photon Energy 100 MeV 

Production Rate 1010 photons/sec@9 MeV 

Laser Wavelength 545 nm 

Circulating Power 1.6  kW 

Polarization 100% 

H. R. Weller, et al., Prog. Part. Nucl. Phys., 62, 4569 (2009) 

Topoff allows larger circulating power now! 
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Lyncean Compact X-ray Source 
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Lyncean Source Performance 

Parmeter Value Unit 

Photon Energy 10-20 keV 

Production Rate 1011 photons/sec 

Laser Wavelength 1064 nm 

Circulating Power 25  kW 

Polarization 100% 

Ultimate Brilliance 5 1011 p/(sec mm2mrad20.1%) 
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The Jefferson Lab IR FEL 

Wiggler assembly 

Neil, G. R., et. al, Physical Review Letters, 84, 622 (2000) 
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FEL Accelerator Parameters 
Parameter 

 
Designed 

 
Measured 

 
Kinetic Energy 

 
48 MeV 

 
48.0 MeV 

 
Average current 

 
5 mA 

 
4.8 mA 

 
Bunch charge 

 
60 pC 

 
Up to 135 

pC 

 Bunch length 

(rms) 

 

<1 ps 

 
0.4 0.1 ps 

 

Peak current 

 
22 A 

 
Up to 60 A 

 
Trans. Emittance 

(rms) 

 

<8.7 mm-

mr 

 

7.5 1.5 

mm-mr 

 

Long. Emittance 

(rms) 

 

33 keV-

deg 

 

26 7 keV-

deg 

 

Pulse repetition 

frequency (PRF) 

 

18.7 

MHz, x2 

 

18.7 MHz, 

x0.25, x0.5, 

x2, and x4 
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Thomson Source Scattering Geometry 
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60 sec FEL Short-pulse X-ray Spectrum 

FEL X-ray Spectra
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Boyce, Krafft, et al.

Sept. 30, 1999

Preliminary

Boyce, et al., 17th Int. Conf. Appl. Accel., 325 (2002) 
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Linac-based Sources aka Blast Away 

• Take the biggest laser you can get and focus to 

smallest spot you can 

• Single shots at low repetition rate 

• High peak brilliance (but not at FEL levels) 

 

 Pogorelsky, et al., Phys. Rev. ST-AB, 3, 090702 (2000) 

 F. Albert, et al., Phys. Rev. ST-AB, 13, 070704 (2010), 

Daresbury ALICE Group 
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BNL Scattering Chamber 
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X-ray Experiment 
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LLNL 

 D. J.Gibson, et 

al., Phys. Rev. 

ST-AB, 13, 

070703 (2010) 
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High Power Optical Cavities 

In this paper we described our first results on the locking of a Ti:sapph oscillator to a high finesse 

FPC. For the first time, to our knowledge, we demonstrate the possibility of stacking picosecond 

pulses inside an FPC at a very high repetition rate with a gain of the level of 10000. By studying the 

stability of four-mirrors resonators, we developed a new promising nonplanar geometry that we 

have just started to study experimentally. Finally, we mentioned that we shall next use the recent 

and powerful laser fiber amplification scheme to reach the megawatt average power inside FPC as 

required by the applications of the Compton X and gamma ray sources. 

 V. Brisson, et 

al., NIM A, 608, 

S75 (2009) 

N.B., 10 kW FEL there, sans spot! 
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LAL/Thales THomX 

BES Workshop on Compact Light Sources (2010) 
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Hajima, et al. 

 Hajima, et al., NIM A, 608, S57 (2009) 

 TRIUMF Moly Source? 

Uranium Detection 
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MIT CUBiX 

 Graves, et al., NIM A, 608, S103 (2009) 
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Quarter Wave SRF Injector 

Developed in collaborations with 

Niowave Inc, UW-Madison,                        

Naval Postgraduate School 

SRF Injector Parameters 

Energy gain [MeV] 4 

RF frequency [MHz] 176 

Average current [mA] 1 

Operating temperature [K] 4.2 

RF power [kW] 5  

Peak wall E-field [MV/m] 55 

Peak wall B-field [mT] 105 

Accelerating E-field [MV/m] 32 

Cathode E-field [MV/m] 45 

 G. A. Krafft, CUBiX NSF Review (2010) 
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4 K SRF Technology: Spoke cavities 

Lower RF frequency => 4K operation 

More compact for given frequency 

Good mechanical rigidity 

Moderate gradient (10 - 12 MV/m CW) 

4K SRF CW Linac 

SRF Linac Parameters 

Energy gain [MeV] 25 

RF frequency [MHz] 352 

Average current [mA] 1 

Operating temperature [K] 4.2 

RF power [kW] 30 

Jean Delayen developing cavities at 

newly formed Center for Accelerator 

Science at Old Dominion University 

(Chris Hopper of ODU/CASA) has a 

velocity-of-light design 
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• Transverse displacement 

 

 

 

• Modified chicane 

 

 

 

• Modified “π” bend 

 

 

Longitudinal Compression Ideas 

58 

SRF Accelerator 

Optical Cavity 
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SPARC 

 A. Bacci, et al., NIM A, 608, 

S90 (2009) 
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Conclusions 

• Compton sources of high energy photons have 

existed for about thirty years 

• The have followed the usual progression: [1] borrow 

an existing machine (1st generation), and [2] make it 

better by technological innovation (2nd generation?) 

• We are perhaps approaching 3rd generation devices, 

i.e., accelerators specifically designed for 

Compton/Thomson sources. 

• Expect “convergence” with high energy collider 

design ideas 

• Lots of ideas, but still looking for the “killer ap”. 
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Conclusions 
• A “new” calculation scheme for high intensity pulsed 

laser Thomson Scattering has been developed. This 

same scheme can be applied to calculate spectral 

properties of “short”, high-K wigglers. 

• Due to ponderomotive broadening, it is simply wrong to 

use single-frequency estimates of flux and brilliance in 

situations where the square of the field strength 

parameter becomes comparable to or exceeds the (1/N) 

spectral width of the induced electron wiggle 

• The new theory is especially useful when considering 

Thomson scattering of Table Top TeraWatt lasers, 

which have exceedingly high field and short pulses. Any 

calculation that does not include ponderomotive 

broadening is incorrect. 
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