NSLS-II Lattice Development: Reduced Horizontal Beta Function in Long Straights

Fanglei Lin NSLS-II Accelerator Physics Group

U.S. DEPARTMENT OF

April 27, 2011

Outline

Overview of NSLS-II

The storage ring lattice considerations

- Physics design and parameters (linear)
- Dynamic aperture optimization (nonlinear)
- Lattice development with lower horizontal beta function in long straights
 - Motivation
 - Linear lattice solutions
 - Nonlinear dynamic aperture optimization

Summary

NSLS-II Main Parameters

Spectral flux density

:10¹⁵ ph.s⁻¹ (0.1%BW)⁻¹

Characteristics	Value
Energy [GeV]	3
Total current (mA)	500
Circumference [m]	792
Number of DBA cells	30
βx/βy [m] in 15 9.3m long straights	19.0/3.0
βx/βy [m] in 15 6.6m short straights	2.0/1.0
Horizontal emittance of bare lattice [nm-rad]	2.0
Horizontal emittance with three 7m 1.8T DW [nm-rad]	1.0
Vertical emittance [nm-rad]	0.008
Momentum Compaction	0.00037
Bunch length, RMS [ps]	15-30
Energy spread, RMS	0.094%
RF Frequency [MHz]	500
RF acceptance (%)	3
Harmonic number	1320
Number of bunches at 80% fill	1040
Touschek Lifetime [hrs]	>3

Design of Baseline Lattice

Linear Knobs

• 3QHs(in LS) + 2QMs (in arc) + 3QLs (in SS) = 8 Quad families

Requirements on Dynamic Aperture

□ **Injection** produces particles with initial displacement about 11 mm. Therefore, calculated solutions should provide on-momentum dynamic aperture of >15mm (including IDs and errors)

Touschek lifetime limits the beam lifetime. The Touschek lifetime can be >3hrs with our goal of achieving a calculated energy acceptance of +/-2.5% for scattering at low dispersion and +/- 2.0% for scattering at high dispersion.

$$\frac{1}{\tau_{touschek}} = \frac{r_e^2 cq}{8\pi e \gamma^3 \sigma_s} \cdot \frac{1}{C} \cdot \oint_C \frac{F((\delta_{acc}(s) / \gamma \sigma_x(s))^2)}{\sigma_x(s)\sigma_y(s)\delta_{acc}^2(s)} ds,$$

Nonlinear Constraints and Knobs

- Nonlinear Constraints for Sextupole Optimization
 - □ First Order Chromatic Terms (5)

$$h_{11001} \rightarrow \xi_x^{(1)}$$

$$h_{00111} \rightarrow \xi_y^{(1)}$$

$$h_{20001} \rightarrow \frac{d\beta_x}{d\delta}$$

$$h_{00201} \rightarrow \frac{d\beta_y}{d\delta}$$

$$h_{10002} \rightarrow D^{(2)}$$

- Amplitude tune dependence
- Second order chromaticity

$$\begin{aligned} \frac{d\upsilon_{x,y}}{dJ_{x,y}} \\ \xi_x^{(2)} &= -\frac{1}{2}\xi_x^{(1)} + \frac{1}{8\pi}\int ds \{K_2 D^{(2)}\beta_x - [K_1 - K_2 D^{(1)}]\frac{d\beta_x}{d\delta}\} \\ \xi_y^{(2)} &= -\frac{1}{2}\xi_y^{(1)} - \frac{1}{8\pi}\int ds \{K_2 D^{(2)}\beta_y + [K_1 - K_2 D^{(1)}]\frac{d\beta_y}{d\delta}\} \end{aligned}$$

Nonlinear Knobs

3 chromatic sextupoles + 6 geometric sextupoles = 9 sextupoles families / DBA cell

First Order Geometric Terms (5)

 $h_{21000} \rightarrow V_r$

 $h_{30000} \rightarrow 3\nu_x$

 $h_{10110} \rightarrow \nu_x$

 $h_{10020} \rightarrow v_x - 2v_y$

 $h_{10200} \rightarrow \nu_x + 2\nu_y$

Frequency Map in (x, δ) and (x,y) Phase Space

Current baseline lattice solution with chromaticities of (+2,+2) has been found in simulations. It has sufficient dynamic aperture for good injection efficiency, and provides Touschek lifetime > 3 hours.

Lattice Development

Motivation : Increase the brightness of IDs by reducing the horizontal beam size in the long straights

Requirements :

- maintain 3-fold symmetry of the lattice
- maintain baseline lattice beta functions in the short straight
- maintain baseline lattice properties, such as emittance and natural chromaticity

Approach

- : lower the horizontal beta function in the long straights(I) using the existing quadrupoles
 - No more quads are needed
 - (II) adding additional quadrupoles at the center of long straights
 - Two source points are produced in one long straight

Lattice Layout for Two Approaches

Lattice with 3-fold symmetry

Injection RF DW LSH: long straight with high horizontal beta function LSL: long straight with low horizontal beta function LS2L: long straight with two low horizontal beta functions

Approach (I) : Linear Optimization

- Natural chromaticity : ~ (-110, -45)
- Similar lattice function in the LSHs and SS

- Linear Knobs
 - 3QHs(LSH) + 2QMs + 3QLs + 3QHNEWs (LSL) = 11 Quad families

Local Lattice Functions Studies Results

Method: locally change the 3 QH families to scan the horizontal beta function at the center of long straight with 1m unit step

Linear Lattice Tunability

Tune scan for the 3-fold symmetric high-low horizontal beta function lattice All 11 quad families are used $v_x \sim 37$ and $v_y \sim 16$ • Quads Strength $\frac{B'}{BQ} \le 2.1(1/m^2)$ $v_x = 36.40 \rightarrow 37.40$ $v_y = 15.49 \rightarrow 16.49$ 2.5 QH1NEW 2 1.5 1 Strength of Quads (1/m²) QM1 QM2 0.5 0 -0.5 -1 -1.5 -2 36.4 36.6 36.8 37.0 37.2 37.4 -2.5 0 20 40 60 80 100 120 140 $\nu_{\rm x}$ Index

Ensemble of Lattice Functions

One Linear Solution

Frequency Map and Tune Footprint in (x,δ) **and** (x,y)

Approach (II) : Linear Optimization

Schematic Drawing of the long straight with additional quads. at the center

Constraints

- mirror symmetric condition at the centers of straights and arcs
- achromatic with zero dispersion in all straights
- designed linear functions at the centers of straights
- proper maximum dispersion at the center of arc to facilitate chromaticity correction
- Iattice properties: natural emittance ~ 2nm and natural chromaticity ~ (-110 / -45)
- practical maximum strength of quads $B'_{\text{max}} = 22(T/m)$
- mirror symmetry of the vertical beta function at the center of insertion devices
- $\phi \beta_{v} \sim 1.5$ m for an optimum vertical gap of ~3 m long IDs
- \diamond small β_x as much as possible for optimum brightness

🖵 Linear Knobs

□ 11 Quad families + 3 QHIDNEWs + QIDF + QIDD + L_{FD} = 17

One Linear Solution

	Linea utur na	r Optio ne tural emi	CS ttance	: 37.1 : 2.0	6,17.22 nm-rad	C	 natural chromaticity : (-112, -47) emittance (w 3 DW) : 0.87 nm-rad 	
$\beta_x \beta_y \eta_x *10$	35 30 25 20 15 10 5 0	50 LSL	1 00 5 LSL	150 (m) LS2L	200 LSL (DW)	250 LSH	$\begin{array}{c} 35\\ 30\\ 25\\ 20\\ 15\\ 10\\ 5\\ 10\\ 5\\ 10\\ 5\\ 10\\ 5\\ 10\\ 5\\ 10\\ 10\\ 20\\ 30\\ 40\\ 5\\ 10\\ 5\\ 10\\ 5\\ 10\\ 5\\ 10\\ 5\\ 10\\ 5\\ 10\\ 5\\ 10\\ 5\\ 10\\ 10\\ 20\\ 30\\ 40\\ 50\\ 5\\ 10\\ 5\\ 10\\ 5\\ 10\\ 5\\ 10\\ 5\\ 10\\ 5\\ 10\\ 10\\ 20\\ 30\\ 40\\ 50\\ 5\\ 10\\ 5\\ 10\\ 5\\ 10\\ 5\\ 10\\ 10\\ 5\\ 10\\ 5\\ 10\\ 10\\ 10\\ 20\\ 30\\ 40\\ 50\\ 5\\ 10\\ 5\\ 10\\ 5\\ 10\\ 10\\ 5\\ 10\\ 10\\ 10\\ 20\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 1$	
	Straights	LSH	SS	LSL	LS2L	LSL (DW)		
	β _x (m)	23.65	1.33	2.02	8.49	2.07		
	β _y (m)	3.53	1.72	2.47	1.02	1.91	140 150 160 170 180 s (m)	
							SS LS2L SS	

Frequency Map and Tune Footprint in (x,δ) **and** (x,y)

Summary

NSLS-II is a 3 GeV third-generation synchrotron light source with low emittance
 < 1nm and high current electron beam at 500 mA

□ The baseline storage ring has 30 DBA cells with alternate long and short straights. Damping wigglers help lower the horizontal emittance down to sub-nm-rad. 3 chromatic and 6 geometric sextuples families are used to optimize the dynamic aperture for good injection efficiency and >3 hrTouschek lifetime.

□ Lattice developments are performed to to reduce horizontal photon source size by reducing the horizontal beta function in 12 long straights. This can be accomplished by

(i) using the existing quads

(ii) introducing additional quads at the center of the long straights.

Both of the two approaches show the possibilities of stable linear solutions and good dynamic apertures for enough injection efficiency and adequate Touschek lifetime.

Acknoledgement

All NSLS-II project colleagues

Accelerator Physics Group: S.Krinsky (group leader), A.Blednykh,

J.Bengtsson, G.Bassi, W.Cheng, J.Choi, W.Guo, P.Ilinski, S.Kramer, Y.Li,

I.Pinayer, L.Yu, L.Yang,

Thank You for your attention !

back up

Accelerator Overview

2 dipoles per DBA cell with 0.4 T normal bending field at 3 GeV and 25 m bending radius, radiated energy 288keV/turn

• 8 quad families (10 quad magnets) individually powered per cell (allow dispersion to be corrected cell-by-cell for any dipole variations), maximum gradient <22 T/m, quad field transverse alignment = $30 \ \mu m$

 3 chromatic sextupoles and 6 geometric sextupoles per cell, powered in 2x9 families per pentant

 S.C. RF : 2x500MHz Cavities (4.0MV), 2 x 300kW klystron amplifier, 1 passive 1.5GHz landau cavity: 1MV field @+ 90 degree for bunch lengthening.

Damping wigglers: B=1.8T, λ =100mm, 15mm vertical magnetic gap, radiation energy loss per DW 129 keV

3-pole wigglers as wave length shifter next to soft dipoles (1 in baseline, more in early operation), 28 mm vertical magnetic gap (for the current users of hard X-ray bending magnets at NSLS)

Insertion devices: 4 IVU (2x3m, λ =20mm, 5mm vertical gap; 1x 3m, λ =22mm, 7mm vertical gap; 1 x 1.5m, λ =21mm, 5.5mm vertical gap), 2 EPUs (2x 2m, λ = 49mm, 11.5mm vertical gap)

- BPM system with 0.1-0.2 μm resolution and stability
- Injection Straight with 4-kicker closed bump for Top-off injection
- 200MeV Linac and 3GeV Booster
- G project beamlines, and space for at least 58 beamlines

Design of the NSLS-II Storage Ring Lattice

- Physics design:
 - double bend achromat (DBA)
 - achromatic arc
 - provide large number of dispersion free insertion straights
 - optimal bend radius (25 m, B=0.4Tesla)
 - reduce both emittance and energy spread
 - enhance the effectiveness of damping wigglers
 - damping wigglers
 - increase emittance damping
 - need small β_y in the damping wiggler to minimize the tune shift due to both linear and nonlinear effect of wigglers
 - quadrupoles (8 families per cell)
 - o optic functions, tune, phase advance
 - beam-based alignment, correction of the linear optics
 - sextupoles (9 families per cell)
 - enough dynamic aperture for beam performance: good injection efficiancy and adequate Touschek lifetime

Prepare for each individual possible questions

Control of the Nonlinear Dynamics

In the nonlinear case, the (symplectic³) one-turn (functional) map can be (formally) represented by a Lie series [7]

$$\mathcal{M} \equiv \mathcal{A}^{-1} e^{:h(\bar{x}):} \mathcal{R} \mathcal{A}$$
(6)

where \mathcal{A} , \mathcal{R} and :*h*: are (functional) operators⁴, and the Lie derivative :*h*(\bar{x}): of a function $f(\bar{x})$ of the phase-space variables is defined by the Poisson bracket

$$:h:f(\bar{x}) = \sum_{i=1}^{n} \frac{\partial h}{\partial x_i} \frac{\partial f}{\partial p_{xi}} - \frac{\partial f}{\partial x_i} \frac{\partial h}{\partial p_{xi}},\tag{7}$$

The generator h is a power series in the phase-space variables

$$h = \sum_{j,k,l,m,n} h_{jklmn} J_x^{(j+k)/2} J_y^{(l+m)/2} \delta^n e^{i[(j-k)\phi_x + (l-m)\phi_y]} + \text{c.c.},$$
(8)

and, to 1st order in the sextupole strength, the driving terms h_{iklmn} are [3]

$$h_{jklmn} \sim \sum_{a=1}^{N} (b_3 L)_a \beta_{x,a}^{(j+k)/2} \beta_{y,a}^{(l+m)/2} \eta_{x,a}^n e^{i[(j-k)\mu_{x,j\to k} + (l-m)\mu_{y,l\to m}]} + \text{c.c.}$$
(9)

Higher order terms are generated by cross terms, i.e., commutators, of these. The driving terms to 2nd order in sextupole strength (and leading order in momentum dependence) are summarized in Tab. 2. Note, the resonance terms have additional momentum dependant terms that have not been listed¹.

1st Order	h ₁₀₀₀₁	h ₂₀₀₀₁	h ₀₀₂₀₁	h ₁₀₁₁₀	h ₂₁₀₀₀	h ₃₀₀₀₀	h ₁₀₂₀₀	h ₁₀₀₂₀
Effect	$d\eta_x/d\delta$	$d\beta_x/d\delta$	$d\beta_y/d\delta$	v_x	v_x	$3v_x$	$v_x + 2v_y$	$v_x - 2v_y$
2nd Order	h ₃₁₀₀₀	h ₀₀₃₁₀	h ₂₀₁₁₀	h ₁₁₂₀₀	h ₄₀₀₀₀	h ₀₀₄₀₀	h ₂₀₂₀₀	h ₂₀₀₂₀
Effect	$2v_x$	$2v_y$	$2v_x$	$2v_y$	$4v_x$	$4v_y$	$2v_x + 2v_y$	$2v_x - 2v_y$

TABLE 2. Driving Terms to 2nd Order in the Sextupole Strength.

J.Bengtsson, NSLS-II Tech Note

Misalignment Errors

Misalignment tolerance specifications:

- 100 μm girder to girder
- 30 µm magnet to girder
- 0.5 mm in the beam direction
- 0.5 mr for the girder roll
- 0.2 mr for the magnet roll

Correction:

 Closed orbit can be corrected using beam-based Alignment like algorithm.
 Each cell has 6 correctors and 6 BPMs.
 Beam is centered at the BPMs.

Residual offset of magnets

• Quadrupoles : $\sigma_x = 19 \ \mu m$ • $\sigma_y = 12 \ \mu m$

Courtesy of W.Guo

Physical Aperture from Insertion Devices

Name	U20	U22(IXS)	EU49	U21(SRX)	DW-1.8T	3PW
Туре	IVU	IVU	EPU	IVU	PMW	PMW
Photon energy range	Hard x-ray (1.9-20keV)	Hard x-ray (9.1keV)	Soft x-ray (250eV-7keV)	Hard x-ray (1.9-20keV)	Broad band (<10eV-100keV)	Broad band (<10eV-100keV)
Type of straight section	Short	Long	Short (canted)	Short (canted)	Long (in-line)	near 2 nd Dipole
Period length (mm)	20	22	49	21	100	-
Length (m) & Number of Devices	3.0 x 2	3.0	2.0 x 2	1.5	3.5 x 6	0.25
Number of periods	148	135	36 x 2	69	34 x 2	0.5
Magnetic gap (mm)	5	7.0	11.5	5.5	15.0	28
Peak magnetic field strength B (T)	1 03	0 78	0.57(Heli) 0.94 (Lin) 0.72(vlin) 0 41 (45°)	0.9	1 80	1 14
Keff	1.81	1.52	2.6(Heli) 4.3 (Lin) 3.2(vlin) 1.8 (45°)	1.79	18.0	-
hv fundamental, eV	1620	1802	230 (Heli) 180 (Lin) 285(vlin) 400 (45°)	1570		
hv critical, keV					10.7	6.8
Total power (kW)	8.0	4.7	8.8	3.6	64.5	0.32

Courtesy of T. Tanabe

Local Lattice Functions Studies

Purpose : explore the possible beta functions in the long straights

Method : locally change the 3 QHNEW families to scan the horizontal beta function at the center of long straight with 1m unit step

Constrains :

- both horizontal and vertical beta function in the beginning of long straight are fixed to be matched to the ring
- lattice is symmetric at the center of the long straight with $(\alpha_x = \alpha_y = 0)$
- horizontal beta function at the center of long straight is scanned from 1m to 20m

Results:

- the ensemble of horizontal beta functions
- the ensemble of vertical beta functions
- dependence of the vertical beta function on the value of the horizontal beta function at the center of the long straight
- natural horizontal chromaticity per 2 DBA cells vs. the horizontal beta function at the center of the long straight

Basic Features

Energy [GeV]	3
Circumference [m]	792
Number of DBA cells	30
Number of 9.3 m straights	15
Beta-functions in the center of the 9.3 m straights: $\beta_{x_3} \; \beta_y [m]$	21, 3.0
Number of 6.6 m straights	15
Beta-functions in the center of the 6.6 m straights: $\beta_{x_{3}}\beta_{y}[m]$	2.0, 1.0
Number of dipoles	60
Number of quadrupoles	300
Number of sextupoles	300
Circulating current at 3 GeV, multi-bunch [mA]	500
Radio frequency [MHz]	499.68
Harmonic number	1320
Number of bunches at 80% fill	1040
Nominal bending field at 3 GeV [T]	0.4
Dipole critical energy at 3 GeV [keV]	2.4
Total Bending magnet radiation energy loss [keV]	286.4
Radiation energy loss per damping wiggler [keV]	129.3
Vertical emittance [nm-rad]	0.008
Horizontal emittance of bare lattice [nm-rad]	2.0
Horizontal emittance with three 7 m 1.8 T damping wigglers [nm-rad]	1.0
Horizontal emittance with eight 7 m 1.8 T damping wigglers [nm-rad]	0.6
Momentum compaction factor	3.7 x 10 ⁻⁴
Bunch length, RMS, natural [mm, ps]	2.9, 10
Energy spread, RMS	0.05 -0.1%

Characteristics	Value
Energy [GeV]	3
Circumference [m]	792
Number of DBA cells	30
Number of 9.3m long straights and $\beta x,\beta y$ [m] in the center	15 ; 21,3.0
Number of 6.6m short straights and $\beta x,\beta y$ [m] in the center	15 ; 2.0,1.0
Number of dipoles, quadrupoles and sextupoles	60,300,270
Circulating current at 3 GeV, multi-bunch [mA]	500
Radio frequency [MHz]	499.68
Harmonic number	1320
Number of bunches at 80% fill	1040
Nominal bending field at 3 GeV [T]	0.4
Total Bending magnet radiation energy loss [keV]	286.4
Radiation energy loss per damping wiggler [keV]	129.3
Vertical emittance [nm-rad]	0.008
Horizontal emittance of bare lattice [nm-rad]	2.0
Horizontal emittance with three 7m 1.8T DW [nm-rad]	1.0
Horizontal emittance with eight 7m 1.8T DW [nm-rad]	0.6
Bunch length, RMS, natural [mm,ps]	2.9, 10
Energy spread, RMS	0.05-0.1%

Knobs for Dynamic Aperture Optimization

- Knobs for lattice sections without DW :
 - 11 quadrupoles for choosing working point (tunes) and linear lattice properties
 - 15 sextupoles for optimizing nonlinear driving terms
 - □ 6 sextupoles in the high dispersion range, four of them for chromatic correction, and two is for momentum dependence of linear optics correction
 - 9 sextupoles in the dispersion free long and short straights for tune shift with amplitude and resonances correction
- Knobs for lattice sections with DW section :
 - 3 quadrupoles for local matching of beta function and phase advance
 - 6 sextupoles in the DW straight for tune shift with amplitude and resonances correction

Total

14 quadrupoles for choosing and optimizing linear lattice, including working point, linear lattice properties

21 sextupoles for optimizing nonlinearity, including chromaticity, amplitude dependent tune shift and nonlinear resonance terms

Dynamic Aperture Considerations

Inclusion of misalignment errors

Physical apertures from insertion devices (1/3 of the ring)

Brightness of Undulator Radiation

H.Wiedemann: " Particle Accelerator Physics II ", second Edition

Brightness

Transverse beam size at a s distance from the waist

Average beam size along the undulator length L

Beam size from the oblique observation angle

Beam size from the ransverse motion in the undulater field

Diffraction limited beam size

$$\mathbf{B} = \frac{\dot{N}_{ph}}{4\pi\sigma_{t,x}\sigma_{t,x}\sigma_{t,y}\sigma_{t,y}(d\omega/\omega)}$$

$$\sigma_{x,y}^2 = \sigma_{x,y}^{*2} + \sigma_{x',y'}^{*2} \cdot s^2$$

$$\left\langle \sigma_{x,y}^{2} \right\rangle = \sigma_{x,y}^{*2} + \sigma_{x',y'}^{*2} \cdot L^{2}/12$$

$$\sigma^*_{x,y}$$
 $\sigma^*_{x',y'}$
beam size and
divergence at the
waist

$$\sigma_{oa}^2 = \theta^2 L^2 / 36$$

$$\sigma_{uf}^2 = a^2 = (\lambda_p K / (2\pi\gamma))^2$$

$$\sigma_r^2 = \lambda L / (2 \cdot 4 \pi^2) \quad \sigma_{r'}^2 = \lambda / 2L$$

Brightness of Undulator Radiation (cont.)

Total effective beam size

$$\sigma_{t,x}^{2} = \sigma_{r}^{2} + \sigma_{x}^{*2} + \sigma_{x'}^{*2}L^{2}/12 + \theta^{2}L^{2}/36 + (\lambda_{p}K/(2\pi\gamma))^{2}$$

$$\sigma_{t,y}^{2} = \sigma_{r}^{2} + \sigma_{y'}^{*2} + \sigma_{y'}^{*2}L^{2}/12 + \psi^{2}L^{2}/36$$

$$\sigma_{t,x',y'}^{2} = \sigma_{r}^{2} + \sigma_{x',y'}^{*2}$$

Maximum brightness is achieved by minimizing ($\sigma_{t,x}\sigma_{t,y}\sigma_{t,y}$)

Ideally assume no transverse coupling and dispersion free for an undulator, the minimization is reduced to minimize each individual beam size term

For example

$$\sigma_{t,x}^2 \propto \sigma_x^{*2} + \sigma_x^{*2} L^2 / 12$$

$$\sigma_x^{*2} = \varepsilon_x \cdot \beta_x^* \qquad \sigma_x^{*2} = \varepsilon_x / \beta_x^{*2}$$

Therefore

$$\beta_x^* = \frac{L}{2\sqrt{3}}$$

Control of the Nonlinear Dynamics

"Sextupole-dominated lattices of modern low-emittance synchrotron light sources are intrinsically non-linear and do not allow the traditional approach of designing a linear lattice and later retrofitting it with the appropriate number of sextupole families. Instead, nonlinear aspects of the lattice must be addressed from the very beginning of the lattice design through continuous iterations of both linear and nonlinear elements."

- Linear Control for modest strong chromatic and geometric sextupoles
 - natural horizontal chromaticity per cell $\xi_x \sim 3.5$
 - \Box peak dispersion $\eta_x > 0.3$ m

$$\xi_{x,y}^{\triangleleft} = \mp \frac{1}{4\pi} \sum_{k=1}^{N} \left[k_2 L_{\downarrow k} - 2 \left(\frac{1}{4\pi} \eta_{x,k} \right) \right]_{q_{x,k}} \left[\frac{1}{4\pi} \eta_{x,k} \right]_{q_{x,k}}$$

 $\xi_{x,y}^{\triangleleft} = \mp \frac{1}{4\pi} \sum_{k=1}^{N} [k_2 L_{k} - 2 \langle q_3 L_{k} \rangle \eta_{x,k}] \frac{\beta}{\beta} \langle q_{x,y} \rangle k,$

- Nonlinear Control for nonlinear driving terms (J.Bengtsson, NSLS-II Tech Note)
 - Depend on the first order sextupole strength

□ 2 terms drive the linear chromaticities

- 3 terms drive the momentum dependence of the linear optics: 2nd order dispersion and beta beat
- □ 5 terms drive the first order geometric resonance: υ_x , $3\upsilon_x$, υ_x $2\upsilon_y$, υ_x + $2\upsilon_y$
- Depend on the second order sextupole strength
 - □ 3 terms drive amplitude dependent tune shift

$$\frac{d\upsilon_x}{dJ_x}, \frac{d\upsilon_x}{dJ_y}, \frac{d\upsilon_y}{dJ_x}$$

Six Beamlines in Construction Project

- Inelastic X-ray Scattering (IXS)
- Hard X-ray Nanoprobe (HXN)
- Coherent Hard X-ray Scattering (CHX)
- Coherent Soft X-ray Scattering & Polarization (CSX)
- Sub-micron Resolution X-ray Spectroscopy (SRX)
- X-ray Powder Diffraction (XPD)
 - <u>Note</u>: Beamline locations have been finalized for the six project beamlines

Misalignment Tolerance

Misalignment tolerance specifications:

- 100 μm girder to girder
- 0.5 mm in the beam direction
- 0.2 mr for the magnet roll

- 30 μm magnet to girder
- 0.5 mr for the girder roll

Effects of misalignment errors

Misalignment Error	Beta Beat (%)		Dispersion in LS (mm)		
	$\Delta\beta x/\beta x$,	$\Delta\beta$ y/ β y	x,	у	
Longitudinal shift 0.5	1.5,	0.5	1.8,	~0	
mm					
Girder to girder $\Delta r=0.1$	0.5,	0.2	1.1,	0.7	
mm					
Magnet to girder $\Delta r=30$	1.5,	0.5	2.7,	1.3	
μm					
Girder roll $\Delta \theta$ =500 µr	0.006,	0.003	~0,	2.2	
Magnet roll Δθ=200 μr	0.03,	0.01	~0,	1.3	

Beam-based alignment can correct the closed orbit

Six Project Beamlines

Magnets Layout

Ensemble of Lattice Properties

