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 Extract relevant information from the
transfer map of a given system using
normal form methods.

* Include effects not normally included in a
transfer map.

* Provide new Insights into the effects of
space charge on particle beams.
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Overview of the Research

The University of Maryland Electron Ring
(UMER)

Mathematical Tools

UMER’s modeling, and early experiments
Adding space charge to the simulation
Parallelization of the space charge code
Alternatives for space charge calculation
Summary
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10 Kev electron ring

« 15 Beam position
monitors.

« 16 Intercepting
Phosphor screens

1 fast phosphor
screen

e 3 Current monitors

a
Y opn pgn ooooP®

4/21/2011 Jefferson Laboratory Presentation |



Geometry (Injection)

* The off-axis nature of the injection line made
modeling the Y-section also difficult.
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Geometry (dipoles)

« COSY dipoles
assume that the
steering Is perfect, so
a beam that enters
straight will exit
straight. If we want to
use them for steering
we need to adjust for
how a dipole will
change the path of
the beam.
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Differential Algebras and Numerical Derivatives

As an example.

First we introduce the  [)y Differential Algebra, which
15 a first order one variable vector. f(x)
f'(x)
(qo.q1) + (ro.71) = (qo+7r0,q1+71)
n(qo. q1) (ngo, nq1)
(qo.q1)(ro.71) (goro. gor1 + Toq1)

It follows that,

) ._.' (2,1)—(2,1) + (3,0)
(flx), f(x)) = . ' 4)—(2,1)+(3,0)

d —(2,1) + (3,0)
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Normal Form Methods
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External Fields

* These are modeled using Strang Splitting.

Diffeql(L) — Solution1(L)

Diffeq2(L) — Solution2(L)

Diffeql(L)+Diffeq2(L) - ?
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External Fields (cont'd)

Solution1(L) =—> (L)

Solution2(L) —0—nrqs Kick(L)

T(LAHILE) /2)  +O(L3)
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Earth’'s Magnetic Field

Vertical Magnetic Field Data

Value mG

/"“

Degrees Around Ring
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Steering (no fields)
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Steering (Earth’s Field)

4/21/2011 Jefferson Laboratory Presentation



Steering (Earth’s field with Dipole Corrections)
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Steering Comparison

COSY fitted steering v. field integration offsets.

Dipole Setting Comparison
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Steering Comparison

« COSY fitted steering v. field integration offsets.

UMER Beam Tracking
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Comparison of Predicted to Measured Trajectories

UMER Beam Tracking

Centerline offset (mm)

FC 3 RC 5 RC 6 RC 7
Monitor Position
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Extended Comparison
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Tunes/Matching Dynamic Aperture

Y Fractional Tune

0.7 0.78
X Fractional Tune
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Dispersion Evolution
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Dispersion Evolution (cont'd

Y Fractional Tune
¥ Fractional Tune
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Tunes at Higher Order

Pencil Beam 7 mA Beam
Order () Order 1(d)
747 0 63722
-7.1058 | -4.4947

111.479 2 -25.83
-4787.3359 3 -969.6789

23 mA Beam 80 mA Beam

Order () Order (8

6796 0 6900
-6.172 | -5.0174
-11.2667 2 -31.2928
2034.3401 -1221.4241
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Resistance to Errors (Magnet Placement)

Y Fractional Tune

0.74 0.76 0.78
X Fractional Tune
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Resistance to Errors (Magnet Current)

Y Fractional Tune

0.74 0.76 0.78
X Fractional Tune
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Space Charge

« Space charge has eluded normal form
analysis for some time

A Differential Algebraic approach could
allow us to determine how It affects other
guantities

* Allows us to understand UMER better

 Allows for investigations into the intensity
frontier
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The Distribution Function

p(X.Y) =D 0(x=x)3(y-y)) > p(x,¥) =D > Cyx'y"

If two distributions have the same moments then
they are mathematically indistinguishable.
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Distribution: (Cont’d)
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Potential Calculation

« Since we now have a Taylor series for the
distribution can’'t we just integrate and find the
potential.

* No, Since the expansion is occurring
Inside the distribution Singularities
become an issue.

G(r, ) =In(| r—r']; lim (G(r, ")) =
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Duffy Transformation
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Duffy Transformation

| [Ny x=x) + (y = yo)° )dlxdly
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Duffy Transformation

db

[ I —%)7 + (y = y) ey + | [inyx—x)7 + (v = yo) dexdy+ [ [in(0x— 1)+ (y = y) daxy+ | [in(/(x—x,)? +(y - yo)? el

0 X
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Duffy Transformation

| [In(y/(x=x0)% + (y = ) ydxdly

Yo Xo
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Duffy Transformation

. y_yo. . )
U, = ‘U, = A =Mb-=x)A4 =(d-V,):
1 b—XO 2 d—yo ﬂi ( 0) 2 ( yO)

Ay [ [N (A)* +(2,,)° )dlxcly
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Duffy Transformation
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Duffy Transformation

* This Is done using the following set of
coordinate transformations:

_ Uy
ul

11
Ao [ [ I 25w + Zowiws ) dwidw,
00
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Duffy Transformation
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Duffy Transformation

* This Is done using the similar set of
coordinate transformations:

U

—1
U,

11
YR j IWZ IN(\/ A5W2 + 22wew? ) dw,dw,
00
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Duffy Transformation

LA, 1J'lj'w In(w,) + In(y/ A7 + 25w )dw, dw,

+ A, Tjw In(w,) + In({/ 2w, + 25 )dw, dw,

I;np(x In(x)) =0
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Accuracy

Lecuracy for Vanons Orders and Mornents

MIommerit Cmder
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Bt egration Crder
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Method
Edge Pointx | 35.27 %
Edge Pomty | 35.30 %

Map Elementx | 31.21 %

Map Element vy | 31.34 %
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Tune Measurement
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Space Charge Serial

Determine Statistical
Moments of Test Particles

Multiply Moments With Inverted
Matrix to Find Taylor Series

Multiply Taylor Coefficients with
Stored Integrals to find Potential

Use Potential to Find Map
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Space Charge Parallel

Determine Statistical
Moments of Test Particles

Determine Statistical
MMoments of Test Partficles

Determine Statistical
Moments of Test Particles

Determine Statistical
Moments of Test Particles

Multiply Moments With Inverted
Matrix to Find Taylor Series

Multiply Moments With Inverted
Matrix to Find Taylor Series

Multipty Moments With Inverted
Matrix to Find Taylor Series

Multiply Moments With Inverted
Matrix to Find Taylor Series

Multipty Taylor Coefficients with
Stored Integrals to find Potential

Multipty Taylor Coefficients with
Stored Integrals to find Potential

Multiply Taylor Coefficients with
Stored Integrals to find Potential

Multiply Taylor Coefficients with
Stored Integrals to find Potential

Use Potential to Find MMap
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Uge Potential to Find Map

Use Potential to Find Map
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Parallel Scaling (cont’'d)

Time (seconds)

4/21/2011

8

Particles (in millions)
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Limitations
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Fast Multipole Method

Uses multipole expansions for distant
particles

 Uses direct coulomb interactions for close
particles

» Currently used in solid state physics,
fluids, and chemistry
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FMM: Examples

¢(z)=Z[Qlog(zi)+Zj—_tJ+Zq,- log(z;)

4/21/2011 Jefferson Laboratory Presentation |



Timing Comparison
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Distribution Tracking Experiments
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Experimental Comparison
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Differential Algebraic methods can be used to model the
single and multiple particle effects of a system.

* The University of Maryland Electron Ring is a useful tool
for verifying machine codes.

« Adding the effects of space charge to the transfer map of
a system is both possible and feasible

* New insights can be found using this method in
conjunction with normal form analysis

« Can even analyze complex distributions using the fast
multipole method
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Questions?
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Map Overview

« A map is a method of
advancing particles
which takes the form

Xe = (X5 [ %)% +(X; | Py) Py + (X |Xi2)xi2 + (X5 | X Pyi )X Py + (X | pii)pii
pr :(pr |Xi)Xi +(pr | pxi)pxi +(pr |Xi2)xi2 +(pr |Xi pxi)Xi pxi +(pr | pfl) p)i
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Legendre Polynomials

* Legendre Polynomials have the following
orthogonality property.

* If we assume that the distribution can be
modeled as a sum of legendre
polynomials, we can easily find the
coefficients.

p(X) =Y C,P,(x)
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Method Comparison

13th Order Legendre 13th Order Moment Method
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Three Dimensions
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