Pre-existing betatron motion and spin flipping with RF fields in storage rings

Desmond Barber

Deutsches Elektronen-Synchrotron, DESY, Hamburg, Germany
University of Liverpool, UK
Cockcroft Institute, Daresbury, UK

27 October 2011
Physics now stands on three legs – has three branches

- Experimental physics
- Theoretical physics
- Computational physics

– FZ Juelich: publicity material about the powerful computers.
Essential, pre-requisite tools and knowledge:

- The **T-BMT equation** for spin motion:
 \[d\vec{S}/ds = \vec{\Omega}(u, s) \times \vec{S}; \quad \vec{\Omega}(u, s) = \vec{\Omega}_0(s) + \vec{\omega}(u, s); \quad u = (x, p_x, y, p_y, z, p_z); \quad \theta = 2\pi s/C \]

- The 1-turn periodic coordinate system on the CO: \(\hat{l}(s), \hat{n}_0(s), \hat{m}(s) \)

- The **invariant spin field** (ISF):
 \[\hat{n}(u, s) \quad \text{or} \quad \hat{n}(u, \theta); \quad \hat{n}(u, s + C) = \hat{n}(u, s) \]

- The **spin tune** on the closed orbit \(\nu_0: = a\gamma_0 \) in a simple perfectly flat ring.

- The **uniform invariant frame field** (u-IFF): \(\hat{n}_1(u, s), \hat{n}(u, s), \hat{n}_2(u, s) \)

- The **equivalence class of amplitude dependent spin tunes** (ADST).

- The **naive single resonance model** (SRM) for the ISF and ADST: a single Fourier harmonic of \(\vec{\omega}(u, s) \cdot (\hat{l}(s) - i\hat{m}(s)) \) has dominant control of spin motion

\[\rightarrow \]

- The spin tune \(\nu_0 \) on the closed orbit matches an orbital tune:
 \(\nu_0 = \kappa = k_0 \pm Q_1, \quad k_0 \pm Q_{11}, \quad k_0 \pm Q_{111} \) or \(\nu_0 = \kappa = k_0 \pm Q_{rf} \) for an integer \(k_0 \).

- The well known notation for the SRM. For example:
 \(\delta = \nu_0 - \kappa \), the resonance strength \(\epsilon_\kappa \)

- The **naive Froissart–Stora formula** for survival of vertical polarisation \((1960!)\) when \(\delta \) crosses 0:
 \[\frac{S_y}{|S|} = 2\exp(-\Xi) - 1 = 2\exp\left(-\frac{\pi|\epsilon_\kappa|^2}{2\alpha_{FS}}\right) - 1, \quad \alpha_{FS} = \frac{d\delta}{d\theta} \]

Only OK if the SRM is OK!
Preamble
Spin motion in electric and magnetic fields:

The T-BMT spin precession equation:

\[\frac{d\hat{S}}{ds} = \vec{\Omega} \times \hat{S} \]

\(\hat{S} \): spin expectation value
\(\vec{\Omega} \): depends on \(\vec{B}, \vec{E}, \vec{\beta}, \gamma \)

In transverse magnetic fields:

\[\Omega \propto (a + 1/\gamma) \cdot B \]

\(a = (g - 2)/2 \) where \(g \) is the relevant \(g \) factor.
\(a = 1.793... \) for protons.
\(a = -0.143 \) for deuterons.
\(a = 0.00115... \) for electrons.
HERA

The first and only e^\pm ring to supply longitudinal polarisation at high energy — via the Sokolov-Ternov effect — also at 3 IP’s simultaneously!

$\sim 30 \text{ GeV}, \tau_{sl} \sim 30 \text{ mins. Depolarisation not too strong.}$

Perfectly balanced parameters

HERA electron/positron ring 2001

$\vec{p}_{\text{meas}} \parallel \hat{n}_0$

Polarisation vertical in the arcs — to drive the Sokolov-Ternov effect
Invariant fields: phase space

Protons

- Canonical particle coordinates: \(u \equiv (x, p_x, y, p_y, z, p_z) \)
 Indep. var. = azimuth, \(s \)

- For electrons at high energy: \(u \equiv (x, p_x, y, p_y, z, p_z = \delta E/E_0) \)

- Phase space density, \(\rho(u;s) \):
 Liouville: \(\rho \) constant along particle orbits
 \[
 \frac{\partial \rho}{\partial s} = \{H_{orb}, \rho\}
 \]

- Stationarity: \(\rho(u;s) = \rho(u;s + C) \)
 i.e. 1–turn periodicity of the (statistical) \(\text{scalar FIELD} \ \rho(u;s) \)

 although individual particles MOVE AROUND IN PHASE SPACE.
Invariant fields: spin

How can a proton beam be fully polarised but the polarimeter gives ZERO?
Invariant fields: spin
Protons

• Local spin polarisation $\vec{P}(u; s)$: T-BMT. \Rightarrow PARTIAL differential equation:

$$\frac{\partial \vec{P}}{\partial s} = \{H_{\text{orb}}, \vec{P}\} + \vec{\Omega}(u; s) \times \vec{P}$$

with $\vec{\Omega}(u; s) = \vec{\Omega}(u; s + C)$

• Stationarity: $\vec{P}(u; s) = \vec{P}(u; s + C)$
i.e. 1-turn periodicity of the (statistical) vector FIELD $\vec{P}(u; s)$
although individual particles MOVE AROUND IN PHASE SPACE AND THEIR SPINS
MOVE TOO.

• $|\vec{P}|$ is constant along orbits: \Rightarrow $\hat{n}(u; s) = \vec{P}/|\vec{P}|$

$$\frac{\partial \hat{n}}{\partial s} = \{H_{\text{orb}}, \hat{n}\} + \vec{\Omega}(u; s) \times \hat{n}$$

• Stationarity: $\hat{n}(u; s) = \hat{n}(u; s + C)$ $\Rightarrow \hat{n}$ is called the INARIANT SPIN FIELD.

• Non–trivial T–BMT solution satisfying CONSTRAINTS.
 See Barber, Ellison and Heinemann, PRST-AB, 7, 124002 (2004).

• Solutions obeying these constraints are unstable (illdefined) at spin–orbit resonances.
And/Or

A vector field \hat{f} of unit length in real 3–D space covering the 6–D phase space at each s:

$$\hat{f}(u; s) \text{ with } u \equiv (x, p_x, y, p_y, z, p_z)$$

$$\vec{\Omega}(u; s + C) = \vec{\Omega}(u; s)$$

$$\frac{df}{ds} = \frac{\partial \hat{f}}{\partial s} + \sum_{k=1, II, III} \frac{dx_k}{ds} \frac{\partial \hat{f}}{\partial x_k} + \frac{dp_k}{ds} \frac{\partial \hat{f}}{\partial p_k} = \vec{G}_f(u; s) \quad \Rightarrow \quad \vec{F}(u; s) \times \hat{f}$$

fixed length\rightarrowprecession

$$\Rightarrow \frac{\partial \hat{f}}{\partial s} = \{H_{orb}, \hat{f}\} + \vec{F}(u; s) \times \hat{f}$$

Now insist that this is the T–BMT equation! $d\hat{f}/ds = \vec{\Omega}(u; s) \times \hat{f}$

and that $\hat{f}(u; s + C) = \hat{f}(u; s)$

Rename: $\hat{f} \rightarrow \hat{n}$
The invariant spin field (n-axis, Derbenev–Kondratenko vector)

A pre-established s-periodic unit vector field at each phase space point

\[\mathbf{\hat{f}}(\mathbf{\tilde{u}}; s), \quad \mathbf{\tilde{u}} = (x, p_x, y, p_y, z, p_z) \]
The invariant spin field (n–axis, Derbenev–Kondratenko vector)

A pre–established s–periodic unit vector field at each phase space point

\[\hat{f}(\vec{u}; s), \quad \vec{u} = (x, p_x, y, p_y, z, p_z) \]
Figure 1: The \(\mathbf{n} \)-vector for the \(4\pi \) mm mrad ellipse at 800 GeV (left) and 802 GeV (right).

Figure 2: The \(\mathbf{n} \)-vector for the \(64\pi \) mm mrad ellipse at 800 GeV (left) and 802 GeV (right).
The Invariant Spin Field, \(\hat{n} \)

- \(\hat{n}(M(u; s); s) = R_{3\times3}(u; s)\tilde{n}(u; s) \)

 This is NOT the eigenproblem \(\tilde{N}(u; s) = R_{3\times3}(u; s)\tilde{N}(u; s) \)

 \(\hat{n} \) is NOT a “closed spin solution”!!

 Instead, the field seen AS A WHOLE is invariant.

- On the closed orbit \(\hat{n}(u; s) \rightarrow \hat{n}(0; s) \equiv \hat{n}_0(s) \).

- \(\Rightarrow \hat{n} \) and \(\hat{n}_0(s) \) should not be confused!!

- The invariant spin field for 1 plane of orbit motion is a smooth closed vector curve.

- For 3 planes of orbit motion \(\hat{n} \) is on a smooth surface but is not closed.
The invariant spin field (ISF):

defines one axis of a local orthonormal coordinate system
at each point in phase space and azimuth for describing spin motion

- Pre-established at each s, u, γ_0 independently of the presence of particles or spins.
For protons: the invariant spin field defines the maximum attainable equilibrium polarisation.

\[\vec{P}_{eq}(\vec{J}, \phi; s) = P(\vec{J}) \hat{n}(\vec{J}, \phi; s) \]

\[|\vec{P}_{meas}(s)| = |< P(\vec{J}) \hat{n}(\vec{J}, \phi; s) >_s| \leq |< \hat{n}(\vec{J}, \phi; s) >_s| \]

Over one turn, the particles of an equilibrium phase space distribution replace each other, and spins set parallel to the local \(\hat{n} \)'s replace each other too.

Even if the spin field is very complicated: once in equilibrium, stay in equilibrium — but small \(\vec{P}_{meas} \).
Figure 3: HERA protons at about 800 GeV: propagation of a beam that is initially completely polarised parallel to \vec{n}_0 leads to a fluctuating polarisation. For another beam in which the spins are initially parallel to their local \vec{n} the polarisation stays constant, in this case equal to 0.765.
The stable spin direction?

- The ISF gives the stable POLARISATION directionSSSSSSSSSSSS.

- \(\hat{n}_0 \) gives the stable spin direction on the closed orbit.

 BUT THERE IS ONLY A TINY FRACTION OF PARTICLES ON OR NEAR THE CLOSED ORBIT!

- At very high energy

 \(< \hat{n}(\vec{J}, \vec{\phi}; s) >_s \) and \(< P(\vec{J}) \hat{n}(\vec{J}, \vec{\phi}; s) >_s \) need not be parallel to \(\hat{n}_0(s) \)
The real spin tune: measures rate of precession around \hat{n}

Attaching coordinate axes to each phase space point

Spin precession rate w.r.t. n_1, n_2 is the same at all phase space points with same I_x, I_y, I_z.

Amplitude dependent spin tune! $\nu_{\text{spin}}(J)$
The real spin tune:

Not a single number, but an equivalence class

with elements related by “gauge transformations” of the local coordinate systems.

Without snakes, the real spin tune $\nu(\vec{J})$ does NOT oscillate with synchrotron motion: although $a\gamma$ does.
Spin–orbit resonance.

- Interleaved vertical and horizontal (quad and imperfection) fields.
- Rotations around different axes don’t commute.
- If the spin and (linear) orbit motion are in resonance:

\[\nu_{\text{spin}}(\vec{J}) = m + m_x \cdot Q_x + m_z \cdot Q_z + m_s \cdot Q_s \]

\[\implies \text{CRAZY spin field:} \]

- High order resonances even for perfectly linear spin motion.
 (non–commutation).
- Two main groups of resonances:
 - Integer resonances due to motion along the \textbf{distorted} periodic orbit \[\implies \]
 strong tilt of \(\hat{n}_0 \) from ideal.
 - Synchro-beta (‘intrinsic’) resonances due to \textbf{synchro-beta oscillations}
 AROUND the distorted periodic orbit.
 \[\implies \left| \hat{n}(u; s) - \hat{n}_0(s) \right| \quad \text{LARGE.} \]
 \[\implies \left| < \hat{n}(\vec{J}, \phi; s) >_s \right| \quad \text{SMALL — geometry.} \]
 e.g. \(\approx 60^\circ \implies P_{\text{meas}} \approx 0.5 \) ?!!!
End of Preamble
COSY:
the proton/deuteron ring at Jülich
Resonance strengths – using the SLIM formalism
For students of the recent history of these matters:

Every cloud has a silver lining.

— English proverb
The SLIM/SLICK formalism

Linearised orbital and spin motion for first order analytical estimates of radiative depolarisation in electron storage rings, e.g., HERA, eRHIC, ELIC, ENC@FAIR, SuperB, LHeC.....

Attach an orthonormal 1-turn periodic coordinate system $\hat{I}(s), \hat{n}_0(s), \hat{m}(s)$ to the closed orbit. $\hat{n}_0(s)$ obeys the BMT equation on the closed orbit — “the stable spin direction”.

$$\vec{S} \approx \hat{n}_0(s) + \alpha \hat{m}(s) + \beta \hat{I}(s)$$

α, β: 2 small spin tilt angles — have subtracted out the big rotations!

$$\hat{M}_{8 \times 8} = \begin{pmatrix} \hat{M}_{6 \times 6} & 0_{6 \times 2} \\ \hat{G}_{2 \times 6} & \hat{D}_{2 \times 2} \end{pmatrix}$$

acting on $u = (x, p_x, y, p_y, z, p_z)$ and α, β

$\hat{G}_{2 \times 6}$ represents the linearised solution of the T-BMT equation for α, β.

This is the **SLIM formalism**: originally A.W. Chao 1981 – working at DESY. Theory and codes developed further by H. Mais and G. Ripken, D. Barber.

D. Barber: also a thick-lens version, SLICK and with Monte-Carlo extensions, SLICKTRACK.
The structure of SLICKTRACK

Read optic/layout and control files
Choose misalignments

Correct the C.O. “in line”
6x6 formalism
Final C.O.

6x6 symplectic linearised optic wrt C.O.
Dispensons eigenvectors
tunes

6x6 damped linearised optic wrt C.O.
eigenvectors
damping constants
Robinson theorem
damping times

Orbit excitation
from symp. E.V.s
damping constants
3 emittances
6x6 covariance matrix

6x6 damped non-linear M–C orbit tracking
‘big photon noise’
3–D spin
also beam–beam
\[\tau_{\text{dep}} \rightarrow p_{\text{eq}} \]

6x6 damped linearised M–C orbit tracking
‘big photon noise’
3–D spin
also beam–beam
\[\tau_{\text{dep}} \rightarrow p_{\text{eq}} \]

8x8 damped linearised M–C spin–orbit tracking
‘big photon noise’
8x8 covariance mat.
\[\tau_{\text{dep}} \rightarrow p_{\text{eq}} \]
as in analytical (O–K)

6x6 damped linearised M–C orbit tracking
‘big photon noise’
\[\text{equil. 6x6 cov. mat. as in analytical} \]

Polarisation with linearised spin motion using 8x8 matrices + D–K
\[\text{analytical} \]
\[\tau_{\text{dep}} \rightarrow p_{\text{eq}} \]

= old (SLICK)
= New (done)
= Old + New (done)
= New (in progress)
= Planned

Also: acceleration and spin flip
Using \(G_{2\times 6} \) to get \(\epsilon^{\text{tot}}, \epsilon^{\text{RFD}} \) etc

See for example:

Just need the 1-turn \(G_{2\times 6} \) for free synchro-betatron motion and with the RFD, a trivial extension for the forced motion + a term for the RFD itself.

For example, for free synchro-betatron motion:

\[
\epsilon^s = \frac{1}{2\pi} (1 - i) \tilde{G}(C,0) \sqrt{2J_k} e^{-i \phi k} \tilde{v}_k(0)
\]

Or do long term tracking and averaging to get the Fourier integral.

Any ring geometry, any misalignment, any linear coupling.

Full 6-D orbital motion!

No need for obscene contortions!
Getting ϵ by tracking or eigenanalysis:
including the (inhomogeneous) rf dipole with the matrix $G_{2 \times 6}$

The structure of EpsSLICK

Spin flip simulations

Inv. spin field
Inv. tensor field by stroboscopic averaging
(Full sync–beta motion)
(Full 3–D spin motion)

8x8 linearised spin–orbit tracking
with 2x6 ‘G’ matrix + RFD
$\rightarrow \epsilon_{\text{eff}} \cdot \epsilon_{\text{sur}} \cdot \epsilon_{\text{various parts}}$

Any coupling
Any misalignment

8x8 linearised eigen–analysis
with 2x6 ‘G’ matrix + RFD
$\rightarrow \epsilon_{\text{eff}} \cdot \epsilon_{\text{sur}} \cdot \epsilon_{\text{various parts}}$

Any coupling
Any misalignment
Diagnostics!

Switch spin-orbit coupling off/on to see what does what.

For example:
Check that ϵ^{rfd} comes out correctly.
Study contributions from y'', y', y.
Getting the relative signs right.
Protons

The scaling factors $E = \varepsilon/\varepsilon_{\text{rd}}$ of the resonance strength in COSY for protons at 2.1 GeV/c

The values for $E_{y''} (\text{rfd + ring})$ confirm earlier preliminary results (2006!) from A. Lehrach.

The values for $E_{y'',y'} (\text{rfd + ring})$ are confirmed by M. Vogt with the code SPRINT.

Nothing unexpected – just well known effects. Subject closed.
Spin flip simulations:

Extend the 8x8 formalism of basic SLICK to handle full 3-D spin motion. A perfect formalism for such problems.

\[
\frac{S_{y}^{\text{final}}}{|S|} = 2 \exp(-\Xi) - 1 = 2 \exp\left(-\frac{\pi |\epsilon_{\kappa}^{v}|^2}{2 \alpha_{FS}}\right) - 1, \quad \alpha_{FS} = \frac{d\delta}{d\theta}
\]

±4 kHz ≡ ±57[ε^rf]. Spins initially parallel to ISF…i.e vertical.
Run down the RF amplitude at the end. Ξ = 1 \implies S_{n_0}^{\text{final}} = -0.264.
Now look properly

beyond the naive SRM:

\[
\hat{n}_{\text{rf}}(\phi_{\text{rf}}) = (\text{sgn} \delta_{\text{rf}}) \frac{\left(\delta_{\text{rf}} \hat{n}_0(s) + |\epsilon_{\kappa}\| (\hat{l}(s) \cos \phi_{\text{rf}} + \hat{m}(s) \sin \phi_{\text{rf}})\right)}{\Lambda_{\text{rf}}},
\]

where \(\delta_{\text{rf}} = \nu_0 - \kappa_{\text{rf}}\), \(\Lambda_{\text{rf}} = \sqrt{(\delta_{\text{rf}})^2 + |\epsilon_{\kappa}\|^2}\) and \(\phi_{\text{rf}} = \kappa_{\text{rf}} \theta - \phi_\epsilon - \pi\) where \(\phi_\epsilon\) is the phase of \(\epsilon_{\kappa}\).

\(|\epsilon_{\kappa}\| = 47.2 \times 10^{-6}\), \(\kappa_{\text{rf}} = 5 - Q_{\text{rf}}\), \(Q_{\text{rf}} \approx 0.605\)

The \(\hat{l}(s)\) and \(\hat{m}(s)\) are chosen so that spins on the CO precess at the uniform rate \(\nu_0\) in the \((\hat{l}(s), \hat{n}_0(s), \hat{m}(s))\) frame — NOT using \((\hat{x}, \hat{y}, \hat{z})\) \(\implies\) any ring geometry.

Protons, just before the RFD. RFD + forced solution. \(\delta_{\text{rf}} = \pm |\epsilon_{\kappa}|\)

– using Stroboscopic Averaging.
Include large-amplitude pre-existing vertical betatron motion. — off spin-orbit resonance.

- No misalignments
- $2.1 \text{ GeV/c} \implies \nu_0 = a \gamma_0 = 4.395$
- $Q_y = 3.580, \quad Q_x = 3.543$
- $\kappa' = 8 - Q_y \implies \delta' = \nu_0 + Q_y - 8 = -0.02490...$
- Before cooling, the 3$-\sigma$ vertical emittance for protons at 2.1 GeV/c is $2\pi - 4\pi \text{ mm.mrad}$.

 For $4\pi \text{ mm.mrad}$: $\beta_y^{\max} \approx 32 \text{ metre} \implies y_{\max} \approx 11 \text{ mm}$.
- For this simulation, sit ON the $18\pi \text{ mm.mrad}$ ellipse and imagine that the motion is still linear.

 Then $y_{\max} \approx 24 \text{ mm}$:

 Relax! it’s only a simulation!
Then:

- using Stroboscopic Averaging.
What’s happening?
The "ground state" has shifted!!! and so has the spin tune – and this is not just naive interference.
The uniform Invariant Frame Field

- $\hat{n}_1(u,s)$, $\hat{n}(u,s)$, $\hat{n}_2(u,s)$ with $\hat{n}_1(u,s + C) = \hat{n}_1(u,s)$ and $\hat{n}_2(u,s + C) = \hat{n}_2(u,s)$

- a local coordinate system attached to each (u,s) to appraise spin motion as particles flow through phase space. No History. Generalises $\hat{l}(s), \hat{n}_0(s), \hat{m}(s)$

- $\hat{n}_1(u,s)$ and $\hat{n}_2(u,s)$ are chosen so that spins precess at a uniform rate.
The proper definition of spin tune and spin-orbit resonance

See “Quasiperiodic spin–orbit motion and spin tunes in storage rings”
Barber, Ellison and Heinemann, PRST-AB, 7, 124002 (2004).

- An ADST \(\nu(J)\) describes the rate of uniform spin precession around \(\hat{n}\) in a u-IFF.
 \((\hat{n}_1(u,s), \hat{n}(u,s), \hat{n}_2(u,s))\). where \(J\) is the list of 3 amplitudes or, if an external RF field is applied, 4 amplitudes.
- The transform \(\hat{n}_1 \pm i\hat{n}_2 \implies (\hat{n}_1 \pm i\hat{n}_2)\exp\{(j_0 + j \cdot Q)\theta\} \) with \((j_0, j) \in \mathbb{Z} \times \mathbb{Z}^3\)
 causes the change \(\nu(J) \implies \pm \nu(J) + j_0 + j \cdot Q\).
- This motivates the definition of an equivalence relation where \(\nu_1\) and \(\nu_2\) in \([0,1)\) are said to be equivalent - and we write \(\nu_1 \sim \nu_2\) - iff there exist \((\varepsilon, j_0, j) \in \{-1, 1\} \times \mathbb{Z} \times \mathbb{Z}^3\) such that \(\nu_2 = \varepsilon \nu_1 + j_0 + j \cdot Q\).
- \(\implies\) The ADST is an equivalence class! – countably infinite in size.
- The system is on spin-orbit resonance if the equivalence class contains 0, i.e. if some \(\nu(J) = j_0 + j \cdot Q\).
- The condition \(\nu_0 = j_0 + j \cdot Q\) is NOT a spin-orbit resonance condition but the system will be near resonance if some \(\nu(J) \approx \nu_0\).
- Systems tend to avoid exact resonance! – see the SRM
- The ADST does not exist on orbital resonance.
The preferred member of the equivalence class

- The equivalence class is countably infinite.
- The member $\nu(J)$ which $\to \pm \nu_0$ as its u-IFF reduces smoothly to $(\hat{I}(s), \hat{n}_0(s), \hat{m}(s))$ if such a member exists.
- \Rightarrow these $(\hat{n}_1(u,s), \hat{n}_2(u,s))$ are the generalisation of $(\hat{I}(s), \hat{m}(s))$

- The new reference spin tune is the preferred member of the ADST of the new ground state!!
The spin motion for the pre-existing vertical betatron motion?

Just before the RFD

- using Stroboscopic Averaging.

This looks like an SRM – expected from experience.
The SRM for vertical betatron motion

\[\hat{n}^\nu(s, \phi_\kappa) = (\text{sgn} \delta^\nu) \left(\delta^\nu \hat{n}_0(s) + |\epsilon_\kappa^\nu| (\hat{l}(s) \cos \tilde{\phi}_\kappa + \hat{m}(s) \sin \tilde{\phi}_\kappa) \right) / \Lambda^\nu \]

where \(\Lambda^\nu = \sqrt{(\delta^\nu)^2 + |\epsilon_\kappa^\nu|^2} \) with \(\delta^\nu = \nu_0 - \kappa^\nu \) and \(\tilde{\phi}_\kappa = \theta \kappa^\nu - \phi_\epsilon + \pi \) where \(\phi_\epsilon \) is the phase of \(\epsilon_\kappa^\nu \).

- With \(\delta^\nu = -0.02490 \) and \(\hat{n}^\nu_{n_0} = 0.934 \), \(|\epsilon_\kappa^\nu| \) should be \(0.009582 \).
- This agrees exactly with the value from the Fourier integral.
- \(\hat{n}^\nu_{n_0} = 1/\sqrt{2} \) when \(\delta^\nu = \pm |\epsilon_\kappa^\nu| \) etc etc.

\[\Rightarrow \] spin motion for the pre-existing vertical betatron motion is well described by an SRM — expected!
The preferred member of the ADST for the SRM

The preferred member of the ADST for the SRM is

\[\nu(J_y) = -\Lambda^y + \kappa^y \implies \nu(J_y) - \nu_0 = -\Lambda^y - \delta^y = -0.001779... \]

The shift is negative!

- The full \(\nu_0 = 4.39498 \) at 2.1 GeV/c
- The shift represents about 2.6 kHz in the original scan range of \(\pm 4 \) kHz!
 \[\implies \text{Chao’s “matrix formalism” would not be too relevant.} \]
- **Spectral analysis** of spin motion with Theorem 9.1.c in BEH (2004):
 Lines at \(j^\nu \nu(J_y) + j_0 + j_y Q_y : j^\nu \in \{0,1,-1\} \) The line with \([\nu(J_y)] = 0.393201... \) is prominent
- The \(Q_{\text{rf}} \) at which spins flip in a Froissart-Stora scan is shifted **upwards** by 0.001779

\[\Xi = 1 \text{ with } \vec{S} \text{ initially parallel to } \hat{n}^y: \text{ final average } -0.11 \text{ instead of } -0.264. \]
Everything is consistent, and with the RFD running such that $\tilde{\phi} := \nu(J_y) - \kappa^{rf} = 0$ we get

- using Stroboscopic Averaging.
The \hat{n}_0 component of the full ISF

A surface so that the ISF is a single valued function of the phases ϕ_{rf} and ϕ_y as required. A very simple form, being very well parametrised by the function

$$\hat{n}_{n_0}(\phi_{rf}, \phi_y) = (|\epsilon_\nu^y|/\Lambda^y) \cos\{(\phi_{rf} - \phi_y)/2\pi\}$$
Now view within the u-IFF of the pre-existing vertical betatron motion

An SRM within an SRM!

\[
\hat{n}_{\text{full}}(\phi_r, \phi_{rf}) = (\text{sgn} \delta_{rf}) \left(\frac{\hat{n}^\gamma + |\varepsilon^\gamma_{\text{rf}}| (\hat{u}^1 \cos \phi_{rf} + \hat{u}^2 \sin \phi_{rf})}{\tilde{\Lambda}^\text{rf}} \right),
\]

\(\varepsilon^\text{rf}_\kappa \) is the resonance strength in the u-IFF, and \(\tilde{\Lambda}^\text{rf} = \sqrt{(\delta^\text{rf})^2 + |\varepsilon^\text{rf}_\kappa|^2} \) and \(\delta^\text{rf} = \nu(J) - \kappa^\text{rf} \)

What is \(|\varepsilon^\text{rf}_\kappa| \)?

We naively expect:

\(|\varepsilon^\text{rf}_\kappa| \leq |\varepsilon^\text{rf}_\kappa| \) since \(\hat{n}^\gamma \) is tilted from the vertical while the perturbing fields are horizontal.
Three tests

- With $|\hat{\delta}^{\text{rf}}| = |\hat{\epsilon}^{\text{rf}}| = f|\hat{\epsilon}_\kappa^{\text{rf}}| = 0.901|\hat{\epsilon}_\kappa^{\text{rf}}| \rightarrow \hat{n}^{\text{full}} \cdot \hat{n}^\nu = 1/\sqrt{2}$ etc etc
- The Froissart-Stora formula describes the level of adiabatic invariance of $\hat{S} \cdot \hat{n}$
 A scan with \hat{S} initially parallel to \hat{n}^ν and observing the final $\hat{n}^{\text{full}} \cdot \hat{n}^\nu$ i.e. a F-S scan within the u-IFF. For $f = 0.901$

![Graph showing F-S prediction](image)

A scan with $f = 1.0$ gives a bad fit.

- With the RFD included at various Q_{rf} the “preferred member of the ADST” in the u-IFF (instead of in $(\hat{l}, \hat{n}_0, \hat{m})$ frame) should be:

$$
\nu^{\text{full}} = (\text{sgn} \ \hat{\delta}^{\text{rf}}) \hat{\Lambda}^{\text{rf}} + \kappa^{\text{rf}} = (\text{sgn} \ \hat{\delta}^{\text{rf}}) \hat{\Lambda}^{\text{rf}} + \nu(J_y) - \hat{\delta}^{\text{rf}}.
$$

Spectral analysis of spin motion including the RFD:

With **Theorem 9.1.c in BEH (2004)**, the observed spectra require that $|\hat{\epsilon}^{\text{rf}}| = 0.901|\hat{\epsilon}_\kappa^{\text{rf}}|$.
Now some fun with spinors

The Pauli matrices and spinors (NOT wavefunctions!):

\[
\sigma_i = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_{n_0} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \sigma_m = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \tilde{S} = \Psi^\dagger \sigma \Psi
\]

With two dominant harmonics in \(\tilde{\omega}(u,s) \cdot (\tilde{l}(s) - i\tilde{n}(s)) \):

\[
\frac{d\Psi}{d\theta} = -\frac{i}{2} \begin{pmatrix} -\nu_0 & -i(\epsilon^\nu_\kappa)^* \exp(iK^\nu_\kappa \theta) - i(\epsilon^r_\kappa)^* \exp(iK^r_\kappa \theta) \\ i\epsilon_\kappa^\nu \exp(-iK^\nu_\kappa \theta) + i\epsilon_\kappa^r \exp(-iK^r_\kappa \theta) & \nu_0 \end{pmatrix} \Psi
\]

Then with a sequence of unitary transformations into the u-IFF (Maple):

\[
\frac{d\Psi_{uiff}}{d\theta} = -\frac{i}{2} (\mathcal{M}_{res} + \mathcal{D} + \mathcal{N}) \Psi_{uiff},
\]

\[
\mathcal{M}_{res} = \begin{pmatrix} -\nu(J_y) & -i(\mathcal{E}^r_\kappa)^* \exp(iK^r_\kappa \theta) \\ i\mathcal{E}^r_\kappa \exp(-iK^r_\kappa \theta) & \nu(J_y) \end{pmatrix},
\]

with \((\mathcal{D}, \mathcal{N}) \) oscillating but far off resonance and with \((\mathcal{D}, \mathcal{N}) \rightarrow 0 \) as the component \(\hat{n}^\nu_{n_0} \rightarrow 1 \)

\[
|\mathcal{E}^r_\kappa| = \frac{1 + \hat{n}^\nu_{n_0}}{2} |\epsilon^r_\kappa| |(\tilde{\delta} = 0) = 0.967 \times |\epsilon^r_\kappa| |(\tilde{\delta} = 0) \quad \text{for} \quad \hat{n}^\nu_{n_0} = 0.934
\]

BUT, \(|\epsilon^r_\kappa| |(\tilde{\delta} = 0) = 0.930 \times |\epsilon^r_\kappa| |(\tilde{\delta} = 0) \quad \Longrightarrow \quad |\tilde{\epsilon}_\kappa| = |\mathcal{E}^r_\kappa| = 0.899 \times |\epsilon^r_\kappa| |(\tilde{\delta} = 0) \quad \Longrightarrow \quad f = 0.899 !!!
...and some serious stuff with COSY

- If spin motion for pre-existing vertical betatron motion is described by an SRM and $|\epsilon_\kappa^\gamma|$ is known, we know the preferred member of the ADST.
 - At fixed $|\epsilon_\kappa^\gamma|$: $|\nu(J_y) - \nu_0| = -\Lambda^\gamma - \delta^\gamma$ increases as $|\delta^\gamma|$ decreases.
- Measurements of resonance strengths for protons were made at $Q_y = 3.6 \implies \delta^\gamma = -0.0050$.
- Then if $|\epsilon_\kappa^\gamma|$ is insensitive to Q_y, $\nu(J_y) - \nu_0 = -0.00158$ ON the ellipse with 3.6 mm.mrad. $\implies y^\text{max} \approx 10.7$ mm.
- Two parameters: the preferred member of the ADST for the pre-existing vertical betatron motion $\nu(J)$ and the attenuation f.

Suggestion

- Run at $Q_y = 3.6$ and 2.1 GeV/c with polarised protons.
- Cool the beam to get a $3-\sigma$ vertical emittance of ≈ 0.3 mm.mrad.
- Use a vertical kicker to put the beam onto ellipses in the range $0-3.6$ mm.mrad.
- Use the field of the RF solenoid as a **probe** to measure $\nu(J_y) - \nu_0$ by measuring the RF tune needed to get zero time averaged vertical polarisation in each case and check the dependence of $\nu(J_y) - \nu_0$ on J_y against the expectation.
- Or run at $Q_y = 3.58$ and $\alpha \gamma_0 = 4.4148$....
Why?

(1) Because it’s never been done.
(2) Because the literature on spin tune shifts contains too much mumbo-jumbo.
(3) Because COSY is perfectly placed and has a very experienced crew.
(4) Because people wanting to measure beam energies very precisely might want to have a better understanding of the systematics. See (2).
(5) Etc.....

Questions:

• Is it feasible to put the beam on the ellipse? See DESY 09-15 – in preparation.
• Can the energy spread be kept low enough? Orbit length?
• How long does the beam stay on the ellipse (non-linear motion, scattering in the polarimeter, IBS, space charge, image forces....)?
• How can the phase space distribution be measured for checking that the particles are on/off the ellipse?
• If it’s only a short time, is it feasible to set up an injection/measurement routine that can deliver enough precision?
• Etc.

implies Homework for the COSY crew.

In simple rings the shifts might be bigger at higher energies – we need large $|\epsilon_k^y|$
Summary

- Going beyond the common perception that non-spin-resonant background vertical betatron motion is not too interesting.
- With appropriate computational tools:
 - Stroboscopic Averaging to get the ISF in general situations without models,
 - Efficient spin-orbit tracking
 - Spectral analysis
- and clearly defined mathematical concepts with theorems (rigour). E.g. the proper definition of the ADST based on conventional mathematics!

\[\Rightarrow \text{Efficient analysis.} \]

- The resonance strength for the RFD does depend on the coordinate system

AND

\[\Rightarrow \text{A suggestion for a test using COSY, a perfect facility with its experts.} \]
\[\Rightarrow \text{A chance to clean up this business of spin tune shifts.} \]
 Confusions, ignorance and laziness about such shifts in the literature.

When you get too old to hunt, you teach a course on how to read buffalo shit.

(Eldon Dedini: The Tracker Magazine 1985.)