

M. Sullivan for the SuperB team

Thomas Jefferson National Accelerator Facility Newport News, Virgina January 26, 2010

Outline

- Some of the physics
- Accelerator Design
 - Basic concepts
 - Ring
 - Injector
 - Lattice IR optics
 - Collision and crab waist
 - DAΦNE results
- IR Design
 - Parameters
 - Layout
 - **QD0**
 - Backgrounds
- Summary

Physics

- The success of the recent B-factories (KEKB and PEP-II) has led to interest in a super Bfactory: one with 50 times more luminosity (1x10³⁶ cm⁻²s⁻¹)
- A super B-factory would be able to integrate
 15 ab⁻¹ per year and collect 75 ab⁻¹ in 5 years

Super CP violation in the Standard Model

New physics reach

Dark Sector

- New theory about dark forces at the 1 GeV scale
 - http://www-conf.slac.stanford.edu/darkforces2009/
- High luminosity e+e- colliders will have a chance to look in this region for new physics
- All low energy high luminosity machines??
- Triggers have to be redesigned
- Example:
 - Sit on the Upsilon 3S and look for events with only 2 pions in the final state that reconstruct to the mass difference between the 3S and the 1S. Then you have made a 1S that disappeared. You can now count the number of 1S events that decay invisibly. The SM has a prediction for this number. You look to see if the value you get is different. Some new physics models have a prediction for this number.

SuperB Accelerator

- Luminosity of 1x10³⁶ cm⁻²s⁻¹ on the Upsilon 4S
- How?
 - Same beam currents as now (~2 A)
 - About the same number of bunches (1000-1200)
 - PEP-II had 1750
 - Bunch length a little shorter but very similar (~5mm)

 - Low emittance beams (2-3 nm in X, ~4 pm in Y)
 - PEP-II emittances (20-50 nm in X, ~2000 pm in Y)
 - Modern light sources are in this range
 - Very low beta*s (2-3.5 cm in X, 0.2-0.35 mm in Y)
 - PEP-II beta*s (25-40 cm in X, ~10 mm in Y)
 - Give up luminosity because beta* Y is much shorter than the bunch length (lose factor of ~20)
 - Improve the collision with a Crab Waist (gain a factor of ~3)
- Polarized electrons (>80%)
- Able to go to the other Upsilon resonances
- Able to go down to the Tau-Charm region
- Use a large fraction of the PEP-II accelerator and detector hardware

Indico links to the last four workshop presentations

- February 2009 (Orsay, France)
 - <u>http://agenda.infn.it/conferenceDisplay.py?confld=959</u>
- June 2009 (Perugia, Italy)
 - http://agenda.infn.it/conferenceDisplay.py?confld=1161
- October 2009 (SLAC)
 - <u>http://agenda.infn.it/conferenceDisplay.py?confld=1742</u>
- December 2009 (Frascati, Italy)
 - <u>http://agenda.infn.it/conferenceDisplay.py?confld=1165</u>

Super-B Accelerator Interested Contributors (Fall 2009)

- D. Alesini, M. E. Biagini, R. Boni, M. Boscolo, T. Demma, A. Drago, M. Esposito, S. Guiducci, G. Mazzitelli, L. Pellegrino, M. Preger, P. Raimondi, R. Ricci, C. Sanelli, G. Sensolini, M. Serio, F. Sgamma, A. Stecchi, A. Stella, S. Tomassini, M. Zobov (INFN/LNF, Italy)
- K. Bertsche, A. Brachmann, Y. Cai, A. Chao, A. DeLira, M. Donald, A. Fisher, D. Kharakh, A. Krasnykh, N. Li, D. MacFarlane, Y. Nosochkov, A. Novokhatski, M. Pivi, J. Seeman, M. Sullivan, U. Wienands, J. Weisend, W. Wittmer, G. Yocky (SLAC, USA)
- A. Bogomiagkov, S.Karnaev, I. Koop, E. Levichev, S. Nikitin, I. Nikolaev, I. Okunev, P. Piminov, S. Siniatkin, D. Shatilov, V. Smaluk, P. Vobly (BINP, Russia)
- G. Bassi, A. Wolski (Cockroft Institute, UK)
- S. Bettoni (CERN, Switzerland)
- M. Baylac, J. Bonis, R. Chehab, J. DeConto, Gpmez, A. Jaremie, G. Lemeur, B. Mercier, F. Poirier, C. Prevost, C. Rimbault, Tourres, F. Touze, A. Variola (CNRS, France)
- A. Chance, O. Napoly (CEA Saclay, France)
- F. Meot, N. Monseu (Grenoble, France)
- F. Bosi, E. Paoloni (Pisa University, Italy)

Machine Parameters

SuperB Parameters July 22 2009

SuperB Parameters	July	22	2009
-------------------	------	----	------

Image: Second
Parameter Units Super-B Super-B Super-B Sig y LER microns 0.038 Constraints Image: Imag
Image: Second
Image: Second
Image: space
E HER (positrons) GeV 6.9 6.7 E LER (electrons) GeV 4.06 4.18 Energy ratio 1.70 1.60 r0 cm 2.83E-13 2.83E-13 X-Angle (full) mrad 60 60 Beta x HER cm 2 2
E LER (electrons) GeV 4.06 4.18 Energy ratio 1.70 1.60 r0 cm 2.83E-13 2.83E-13 X-Angle (full) mrad 60 60 Beta x HER cm 2 2
Energy ratio 1.70 1.60 X-angle factor LER 0.066 0 r0 cm 2.83E-13 2.83E-13 Cap Sig X microns 11.402 10 X-Angle (full) mrad 60 60 60 Cap Sig X microns 0.054 00 Beta x HER cm 2 2 Cap Sig X eff microns 24243
r0 cm 2.83E-13 2.83E-13 Cap Sig X microns 11.402 10 X-Angle (full) mrad 60 60 60 Cap Sig X microns 0.054 00 Beta x HER cm 2 2 2 Cap Sig X eff microns 0.900 00
X-Angle (full) mrad 60 60 Cap Sig Y microns 0.054 00 Beta x HER cm 2 2 Cap Sig X eff microns 0.900 00
Image: Sector of the sector
Beta x HER cm 2 2 Can Sig X eff microns 242 43 24
Beta y HER cm 0.037 0.032 Lumi calc /cm2/s 1.02E+36 1.02E
Coupling (high current) 0.0025 0.0025 Tune shift x HER 0.0018 0.
Emit x HER nm 1.6 1.6 Tune shift y HER 0.1271 0.
Emit y HER nm 0.004 0.004 Tune shift x LER 0.0052 0.
Bunch length HER cm 0.5 0.5 Tune shift y LER 0.1220 0.
Beta x LER cm 3.5 3.2 Damping_long HER msec 21
Beta y LER cm 0.021 0.02 Damping_long LER msec 20.0
Coupling (high current) % 0.0025 0.0025 Uo HER MeV 2.3
Emit x LER nm 2.8 2.56 Uo LER MeV 1.40
Emit y LER nm 0.007 0.0064 alfa_c HER 3.50E-04 4.04
Bunch length LER cm 0.5 0.5 alfa_c LER 3.20E-04 4.24
sigma-EHER 5.80E-04 6.15
I HER mA 2200 2120 sigma-E LER 8.20E-04 6.57
ILER mA 2200 2120 CM sigma_E 1.00E-03 9.00
Circumference m 2105 1315 SR power loss HER MW 5.06
N. Buckets distance 2 2 SR power loss LER MW 3.08
Gap 0.97 0.97 Touschek lifetime HER min 33
Frf Hz 4.76E+08 4.76E+08 Touschek lifetime LER min 17
Fturn Hz 1.43E+05 2.28E+05 Luminosity lifetime HER min 5.20
Fcoll Hz 2.31E+08 2.31E+08 Luminosity lifetime LER min 5.20
Num Bunch 1619 1011
N HER 5.96E+10 5.74E+10 DE plug power 40.00 00 00 00 00 00 00 00 00 00 00 00 00
N LER 5.96E+10 5.74E+10 16.28 16.28
Sig x HER microns 5.657 5.657
Sig y HER microns 0.038 0.036

Jan. 26, 2010

Latest Ring Layout

SuperB Design and Update

TJNAF

SuperB at the Frascati Labs

SuperB

Collider Hall

Electrical Substation upgradable up to 2x63MVA transformers

area for cooling

Existing Building Guesthouse

Owkers

2 "SLAC type buildings" (20x35m) housing 6 klystrons each plus magnet power supplies

STATUS OF THE INJECTION SYSTEM (oct. 2009)

- # Injection process in 3 phases, to avoid simultaneous acceleration of high-charge e- bunches and damped e+ bunches in the linac B.
- # No fast kickers required
- # Rings filled every 60 msec (16.66 Hz)

14 DAΦNE: LINAC, Storage Rings and damping Ring¹⁴

Super-B damping ring

compact structure (51 m) for storing alternatively electrons and positrons

small equilibrium emittance: 23 nm @ 1 GeV

short betatron damping time: 7.3 ms

small momentum compaction: 5.7x10⁻³ => short bunch length

large dynamic aperture: \pm 20 mm horizontal, \pm 15 mm vertical for -2% < $\Delta p/p$ < +2%

Arc Lattice

- Arc cell: flexible solution is based on decreasing the natural emittance by increasing μ_x /cell, and simultaneously adding weak dipoles in the cell drift spaces to decrease synchrotron radiation
- All cells have: $\mu_x=0.75$, $\mu_y=0.25 \rightarrow$ about 30% fewer sextupoles
- Better DA since all sextupoles are at –I in both planes (although x and y sextupoles are nested)
- Distances between magnets compatible with PEP-II hardware
- All quads-bends-sextupoles in PEP-II range

 $\beta^{1/2}$ (m^{1/2})

IR Optics

E. Levichev, P. Piminov et al. Presentation from last June (below) and see presentation at SLAC workshop http://agenda.infn.it/materialDisplay.py?contribId=31&sessionId=10&materialId=slides&confId=1161

TJNAF 6, 2010

Crab Waist Advantages

1. Large Piwinski angle

$$\Phi = (tg)\theta * \sigma_z / \sigma_x \cong \theta * \sigma_z / \sigma_x$$

Half crossing angle

2. Vertical beta comparable with overlap area

3. Crabbed waist transformation

Paper by Raimondi, Shatilov, and Zorbov http://arxiv.org/abs/physics/0702033

- a) Luminosity gain with N
- b) Very low horizontal tune shift
- a) Geometric luminosity gain
- b) Lower vertical tune shift
- c) Vertical tune shift decreases with oscillation amplitude
- d) Suppression of vertical synchro-betatron resonances
- a) Suppression of X-Y betatron and synchro-betatron resonances
- b) Geometric luminosity gain

Crab Waist Scheme

Crab Waist Scheme

The crab waist in DA Φ NE

- In 2007-2008 DAΦNE was upgraded to include a crabbed waist
- There were some additional (conventional)
 improvements as well
 - Improved injection
 - Improved impedence reduction
 - Improved feedback systems
- The predicted luminosity increase was about a factor of 3 (from 1.6x10³² to 5x10³²)

DAΦNE Upgrade Team

D.Alesini, M.E.Biagini, C.Biscari, A.Bocci, R.Boni, M.Boscolo, F.Bossi, B.Buonomo, A.Clozza, G.Delle Monache, T.Demma, E.Di Pasquale, G.Di Pirro, A.Drago, A.Gallo, A.Ghigo, S.Guiducci, C.Ligi, F.Marcellini, G.Mazzitelli, C.Milardi, F.Murtas, L.Pellegrino, M.A.Preger, L.Quintieri, P.Raimondi, R.Ricci, U.Rotundo, C.Sanelli, M.Serio, F.Sgamma, B.Spataro, A.Stecchi, A.Stella, S.Tomassini, C.Vaccarezza, M.Zobov (INFN LNF, Frascati)

I.Koop, E.Levichev, S.Nikitin, P.Piminov, D.Shatilov, V.Smaluk (BINP, Novosibirsk) N.Arnaud, D.Breton, L.Burmistrov, A.Stocchi, A.Variola, B.Viaud (LAL, Orsay)

S.Bettoni (CERN, Geneva)

K. Ohmi (KEK, Ibaraki)

D. Teytelman (SLAC)

P. Valente (INFN-Rome, Rome)

P.Branchini (University Rome3, Rome)

E.Paoloni (University of Pisa and INFN, Pisa)

M.Esposito (Rome University "La Sapienza", Rome)

DAΦNE Peak Luminosity

Jan. 26, 2010

Luminosity vs Current Product

SuperB **Transverse Beam Profile Measurements**

103 colliding bunches

SuperB IR Design

- This is one of the more difficult parts of the SuperB design
- The very low β_y^* means we must get as close as we can to the IP with our final focus magnets
- The very low emittance beams means that we cannot bend the beams very much
- Initially we tried a shared magnet ala PEP-II and KEKB but the crossing angle forces too much of a bend in either one or both of the beams and we were forced to abandon the idea (even if we lowered the crossing angle)
- We have since been concentrating on a dual quad design using SC magnets that are wound so that the fringe field of the nearby quad is cancelled
- In order to get these magnets in as close as possible we have opened the crossing angle to 60 mrad
- In order for this design to work the quad strengths are locked together (the ratio must be constant)

SuperB

General IR Design Features

- Crossing angle is +/- 30 mrads
- Cryostat has a complete warm bore
 - For synchrotron radiation reasons
 - Both QD0 and QF1 are super-conducting
- PM in front of QD0
- Soft upstream bend magnets

 Further reduces SR power in IP area
- BSC to 30 sigmas in X and 140 sigmas in Y (10 sigma fully coupled)
- Detector beam pipe radius 1 cm

Parameters used in the IR

Parameter	HER	LER
Energy (GeV)	7	4
Current (A)	2.12	2.12
Beta X (mm)	20	32
Beta Y (mm)	0.32	0.20
Emittance X (nm-rad)	1.60	2.56
Emittance Y (pm-rad)	4.0	6.4
Sigma X (µm)	5.66	5.66
Sigma Y (nm)	36	36
Crossing angle (mrad)	+/- 30	

The Present Design

Larger view

Improvement details

•		Old	New
•	QD0	HER/LER	HER/LER
	 R inside (mm) 	24.0/ 31.5	22.5/32.5
	 R outside (mm) 	28.0/35.5	28.5/38.5
	 Length (m) 	0.40	0.40
	 Dist to IP (m) 	0.58	0.60
	 Gradient (T/cm) 	-1.192/-0.522	-1.025/-0.611
	 Field at inside radius (T) 	2.80/1.61	2.31/1.99
	 Maximum β_v (m) (sqrt) 	1970(44)/2193(47)	1550(39)/2566(51)
•	QF1		
	 R inside (mm) 	50.0	50.0
	 R outside (mm) 	56.0	60.0
	 Length (m) 	0.30	0.30
	 Dist to IP (m) 	1.60	1.80
	 Gradient (T/cm) 	0.726/0.399	0.640/0.358
	 Field at inside radius (T) 	3.48/1.92	3.20/1.79
	 Maximum β_x (m) (sqrt) 	580(24)/200(14)	799(28)/486(22)

Vertical View – same as before

QD0 design

Self-compensating windings Magnetic field ratios are fixed

Beam sizes in QD0

TJNAF Jan. 26, 2010

37

QF1 cross-sections

SuperE

SuperB Design and Update

Initial Cryostat Design

SR backgrounds

- No photons strike the physics window
 - We trace the beam out to 20 σ X and 45 σ Y
 - The physics window is defined as +/-4 cm for a 1 cm radius beam pipe
- Photons from particles at high beam sigmas presently strike within 5-6 cm downstream of the IP
- However, the highest rate on the detector beam pipe comes from a little farther away where the photon rate significantly increases on the local beam pipe
- Unlike PEP-II, the SuperB design is sensitive to the transverse beam tail distribution

SR from the upstream bends

SR power from soft bends

TJNAF Jan. 26, 2010

SuperB

SR photon hits/crossing

TJNAF Jan. 26, 2010

SuperB

SuperB SR photon hits/crossing on the detector beam pipe from various surfaces

Jan. 26, 2010

TJNAF

SuperB New Idea

New Idea – Super-ferric QD0

- Pavel Vobly from BINP has come up with a new idea for QD0 (mentioned at the end of the workshop at SLAC in October)
 - Use Panofsky style quadrupoles with Vanadium Permendur iron yokes
- This new idea has some added constraints but it is still attractive because it is easier to manufacture and the precision of the iron determines the quality of the magnet

Two Panofsky style quads

The quads can be on axis with the beams

Super-ferric QD0

- Extra constraints
 - Maximum field of no more than 2T at the pole tips
 - Equal magnetic fields in each quad
 - Square apertures
- Advantages
 - Easier to build
 - Self-shielding
 - If we can get enough space we can separate the magnets in z
- Both QD0 designs need a well cancelled detector field
 - We will use solenoid windings around the cold mass

Design constraints

- The requirement of the maximum field strength to be less than 2 T has forced us to move the magnets back from the IR, but this also makes the beam size increase which is one of the reasons the QF1 aperture is so large.
- The requirement of a square aperture does not seem to cause any problems so far. We seem to be dominated in aperture in the X plane instead of in the Y plane.

SR backgrounds for the Super-ferric QD0

- We tested the case of putting all of the magnet centers on beam axis which we can do in the super-ferric design
- Unfortunately the straight on-axis solution generates SR photons from the high-sigma region of the beam profile that directly strike the detector beam pipe
- These photons come from the beam rays with the steepest slope out of QF1
- Both the current baseline design and the super-ferric design must have offset QD0 axes

QD0 Summary

- The baseline "Italian style" design is still being pursued
 - The manufacture of this design is one of the most difficult parts – wire placement and stability are crucial
- The new Panofsky style QD0 shows promise and is being investigated
 - A very recent discovery (for me) is the existence of the rare earth Holmium
 - It has the highest magnetic moment of any element
 - The metal becomes ferric at 20° K and has a saturation field of ~3.8T
 - Vanadium Permendur saturation field is ~2.4T
 - Holmium is not as mechanically strong as iron so we will have to see if we can use it
- We have recently started work on re-optimizing the permanent magnet part of the design for both the panofsky style QD0 and the "Italian style" QD0

Project Status

- The SuperB proposal is in the Agenda of CIPE (Inter-ministry Committee for Economic Planning)
- The proposal is supported by the Ministry of Education Science and Technology with a very high priority
- The President of INFN is closely in touch with the Ministry high level officers and with the Minister

From the presentation of Marcello Giorgi at the SuperB workshop Dec 1-5, 2009

Project Status (2)

- The status of SuperB was reported last November at the ECFA plenary meeting at CERN
- There were no objections or criticism of any kind from the audience
- The CERN planning committee has stated that this is a good regional project
- We are hoping to hear about funding next month

From the presentation of Marcello Giorgi at the SuperB workshop Dec 1-5, 2009

Summary

- In order to achieve a factor of 50 over present day B-factories we must:
 - Collide state-of-the-art low emittance beams and
 - Use very low β^* values
 - This combination has never been done
- However, the design uses proven technology wherever possible
 - Bunch current, number of bunches, total current, bunch length
- The SuperB design is converging
- Polarization of the electron beam looks feasible
- The accelerator design has flexibility

Summary (2)

- The Italian government favors the proposal
- We hope to hear from the government this coming month
- We are in the midst of writing a white paper describing the physics, the detector and the accelerator
- This is a preliminary step toward a TDR which we hope to have finished by the end of this year (2010)

Conclusion

- The physics argument for a Super B-factory is compelling
 - Complimentary to the LHC
 - A higher new physics mass reach than the LHC
- The accelerator design is converging

 All aspects are starting to look feasible
- As always, more work needs to be done
- We hope to hear soon about project funding