

- Short overview of the CLIC project
- Timelines
- CLIC "feasibility demonstration"
- Stabilization of Main Beam Quadrupoles
- Experimental verification of Quadrupole stability
- Outlook for JLAB collaboration

CLIC Layout @ 3TeV

CLIC main parameters

<u>http://cd.web-cern.ch/zecord/113207021n=frhttp://clic-meeting.web.cern.ch/clic-meeting/clictable2007.Name</u>					
Center-of-mass energy	CLIC 500 GeV		CLIC 3 TeV		
Beam parameters	Relaxed Nominal		Relaxed	Nominal	
Accelerating structure	502		G		
Total (Peak 1%) luminosity	8.8(5.8)·10 ³³ 2.3(1.4)·10 ³⁴		7.3(3.5)·10 ³³	5.9(2.0)·10 ³⁴	
Repetition rate (Hz)			50		
Loaded accel. gradient MV/m	80		100		
Main linac RF frequency GHz	12				
Bunch charge10 ⁹	6.8		3.72		
Bunch separation (ns)	0.5				
Beam pulse duration (ns)	177		156		
Beam power/beam MWatts	4.9		14		
Hor./vert. norm. emitt(10 ⁻⁶ /10 ⁻⁹)	7.5/40	4.8/25	7.5/40	0.66/20	
Hor/Vert FF focusing (mm)	4/0.4	4 / 0.1	4/0.4	4 / 0.1	
Hor./vert. IP beam size (nm)	248 / 5.7	202 / 2.3	101/3.3	40 / 1	
Hadronic events/crossing at IP	0.07	0.19	0.28	2.7	
Coherent pairs at IP	10	100	2.5 107	3.8 10 ⁸	
BDS length (km)	1.87		2.75		
Total site length km	13.0		48.3		
Wall plug to beam transfert eff	7.5%		6.8%		
Total power consumption MW	129.4		415		

H.Schmickler

JLAB 16-09-2010

Module types and numbers

Total per module

8 accelerating structures 8 wakefield monitors

4 PETS 2 DB quadrupoles 2 DB BPM

<u>Total per linac</u> 8374 standard modules

Module types and numbers

Total per linac

Quadrupole type 1: 154 Quadrupole type 2: 634 Quadrupole type 3: 477 Quadrupole type 4: 731

Other modules

- modules in the damping region (no structures)

- modules with dedicated instrumentation

- modules with dedicated vacuum equipment

. . .

Module type 1

⁶ All 3D models made by A. Samoshkin

G. Riddone, ACE09, 27/05/2009

Linear Colliders tentative schedule

endorsed by ILC GDE/EC and CERN Directorate

Physics requests based on LHC results? Linear Collider assessment based on technology maturity, performance, cost and risks?

CLIC critical issues

CLIC **R&D** strategy and schedule

Overall list of critical issues (Risk Register) under: https://edms.cern.ch/nav/CERN-0000060014/AB-003093

Issues classified in three categories:

- CLIC design and technology feasibility Fully addressed by 2010 by specific R&D with results in Conceptual Design Report (CDR) with Preliminary Performance & Cost
- Performance and/or Cost

Both being addressed now by specific R&D to be completed before 2016 with results in Technical Design Report (TDR) with Consolidated Performance & Cost

For each feasibility issue, R&D program and objectives defined: Discussed @ Advisory CommitteE (ACE) on June 2009

http://indico.cern.ch/conferenceDisplay.py?confId=58072

H.Schmickler

Two Beam Acceleration:

- Drive beam generation
- Beam Driven RF power generation
- Two Beam Module

RF Structures:

- Accelerating Structures (CAS)
- Power Production Structures (PETS)
- Ultra low beam emittance and beam sizes
 - Emittance preservation during generation, acceleration and focusing

10 CLIC Feasibility Issues

Alignment and stabilisation

Detector

- Adaptation to short interval between bunches
- Adaptation to large background at high beam collision energy
- **Operation and Machine Protection System (MPS)**

H.Schmickler

JLAB 16-09-2010

CLIC+ILC Common Issues CLIC more challenging requirements

CLIC specific

ACE4 on Feasibility Issues

۴	SYSTEMS	Critical parameters
Structures	Main Beam Acceleration Structures: Demonstrate nominal CLIC structures with damping features at the design gradient, with design pulse length and breakdown rate .	100 MV/m 240 ns < 3·10-7 BR/(pulse*m) RF to Beam efficiency > 30%?
	<u>RF Power production structures:</u> Demonstrate nominal PETS with damping features at the design power, with design pulse length, breakdown rate and on/off capability	136 MW, 240 ns < 10-7 BR/(pulse*m)? Beam to RF efficiency >? On/Off < 20 ms
Two Beam	Two Beam Acceleration (TBA): Demonstrate RF power production and Beam acceleration with both beams in at least one Two Beam Module equipped with all equipments	Two Beam Acceleration with simultaneous & nominal parameters as quoted above for individual components
Drive Beam	Drive Beam Production - Beam generation and combination - phase and energy matching - Potential feedbacks	100 Amp peak current 12GHz bunch repetition frequency 0.2 degrees phase stability at 12 GHz 7.5 10 ⁻⁴ intensity stability
	<u>RF power generation by Drive Beam</u> - Rf power extration - Beam stability	90% extraction efficiency Large momentum spread
Beam Physics	Generation and Preservation of Low Emittances Damping Rings, RTML and Main Linacs	Emittances(nm): H= 600, V=5 Absolute blow-up(nm): H=160, V=15
Stabili zation	Main Linac and BDS Stabilization	Main Linac : 1 nm vert. above 1 Hz; BDS: 0.15 to 1 nm above 4 Hz depending on final doublet girder implementation
Operation and reliability	Operation and Machine Protection Staging of commissioning and construction MTBF, MTTR Machine protection with high beam power	drive beam power of 72 MW @ 2.4 GeV main beam power of 13 MW @ 1.5 TeV
Detector	Beam-Beam Background Detector design and shielding compatible with breakdown generated by beam beam effects during collisions at high energy	3.8 10 ⁸ coherent pairs

H.SchmickTer

- mmm

mm

JLAB 16-09-2010

CLIC Feasibility Issues

- CLIC			
ltem	Feasibility	Unit	Nominal
item	Issue		
	Fully loaded accel effic	%	96
	Freq&Current multipl	-	2*3*4
Drive beam generation	12 GHz beam current	Α	4.5*24=100
	12 GHz pulse length	nsec	170
	Intensity stability	1.E-03	0.75
	Timing stability	psec	0.1
	PETS RF Power	MW	130
Beam Driven RF power generation	PETS Pulse length	ns	170
	PETS Breakdown rate	/ m	< 1.10-7
	PETS ON/OFF	-	@ 50Hz
	Drive beam to RF efficiency	%	90%
	RF pulse shape control	%	< 0.1%
Accelerating Structures (CAS)	Structure Acc field	MV/m	100
	Structure Pulse length	ns	240
	Structure Breakdown rate	/m MV/m.ns	< 3.10-7
Two Beam	Power producton and probe beam	MV/m _ ns	100 - 240
Acc module	acceleration in Two beam module		100 - 240
Ultra low	Emitttance generation H/V	nm	550/5
Emittances	Emittance preservation: Blow-up H/V	nm	160/15
Alianment	Main Linac components	microns	15
Anginnent	Final-Doublet	microns	2 to 8
Vertical	Quad Main Linac	nm>1 Hz	1.5
stabilisation	Final Doublet (assuming feedbacks)	nm>4 Hz	0.2
nd Machine	drive beam power of 72MW@2.4GeV		
ystem (MPS)	main beam power of 13MW@1.5TeV		
	CLIC Item Drive beam generation Beam Driven RF power generation Accelerating Structures (CAS) Two Beam Acc module Ultra low Emittances Alignment Vertical stabilisation nd Machine ystem (MPS)	CLICItemFeasibility IssueDrive beam generationFully loaded accel effic Freq&Current multiplDrive beam generation12 GHz beam current 12 GHz pulse length Intensity stability Timing stabilityBeam Driven RF power generationPETS RF Power PETS Pulse length PETS Breakdown rate PETS ON/OFF Drive beam to RF efficiency RF pulse shape controlAccelerating Structures (CAS)Structure Acc field Structure Breakdown rateTwo Beam Acc modulePower producton and probe beam acceleration in Two beam moduleUltra low Emittances Final-DoubletEmittance generation H/V Emittances Final-DoubletVertical stabilisationQuad Main Linac Final Doublet (assuming feedbacks) main beam power of 72MW@2.4GeV main beam power of 13MW@1.5TeV	CLIC Item Feasibility Unit Item Fully loaded accel effic % Freq&Current multipl - % Drive beam 12 GHz beam current A 12 GHz pulse length nsec Intensity stability 1.E.03 Timing stability psec PETS RF Power MW PETS Pulse length ns PETS Pulse length ns PETS ON/OFF - Drive beam to RF efficiency % RF pulse shape control % Structures Structure Acc field MV/m Structure Breakdown rate /m MV/m.ns Two Beam Power producton and probe beam MV/m - ns Ultra low Emittance generation H/V nm Emittance greservation: Blow-up H/V nm Alignment Main Linac microns Vertical Quad Main Linac nm>1 Hz stabilisation Final Doublet (assuming feedbacks) nm>4 Hz nd Machine drive beam power of 72MW@2.4GeV

mm

- Short overview of the CLIC project
- Timelines
- CLIC "feasibility demonstration"
- Stabilization of Main Beam Quadrupoles
- Experimental verification of Quadrupole stability
- Outlook for JLAB collaboration

- Important is the multi-pulse emittance
- Counteract dynamic effects by
- fast component stabilization (between pulses)

Dynamic imperfections

- beam based trajectory feedback
- longitudinal feedbacks

CLIC

- slow component stabilization (...drifts)
- beam tuning
- beam based alignment
- occasional repetition of (motorized) mechanical prealignment
- Presently we do not have a full model of the imperfections (some models of ground motion, technical noise estimate not yet available...)
- Derive some specifications for subsystems:

Limit luminosity fluctuations to less than10% Many small contributions add up; define individual budgets

CLIC

Source	budget	tolerance
Damping ring extraction jitter	0.5%	kick reproducibility $0.1\sigma_x$
Transfer line stray fields	?%	data needed
Bunch compressor jitter	1%	
Quadrupole jitter in main linac	1%	$\sigma_{jitter} \approx 1.8 \mathrm{nm}$
RF amplitude jitter in main linac	1%	0.075% coherent, 0.22% incoherent
RF phase jitter in main linac	1%	0.2° coherent, 0.8° incoherent
RF break down in main linac	1%	$rate < 3 \cdot 10^{-7} \mathrm{m}^{-1} \mathrm{pulse}^{-1}$
Structure pos. jitter in main linac	0.1%	$\sigma_{jitter} \approx 880 \mathrm{nm}$
Structure angle jitter in main linac	0.1%	$\sigma_{jitter} \approx 440 \mathrm{nradian}$
Crab cavity phase jitter	2%	$\sigma_{\phi} \approx 0.017^{\circ}$
Final doublet quadrupole jitter	2%	$\sigma_{jitter} \approx 0.17(0.34) \mathrm{nm} - 0.85(1.7) \mathrm{nm}$
Other quadrupole jitter in BDS	1%	
	?%	

Stabilization of the quadrupoles of the main linac One of the CLIC feasibility issues

C. Hauviller/ EN

CLIC Meeting April 9, 2010

CLIC stabilization requirements

 Mechanical stabilization requirements: Quadrupole magnetic axis vibration tolerances:

	Final Focus quadrupoles	Main beam quadrupoles
Vertical	0.1 nm > 4 Hz	1 nm > 1 Hz
Horizontal	5 nm > 4 Hz	5 nm > 1 Hz

- Main beam quadrupoles to be mechanically stabilized:
 - A total of about 4000 main beam quadrupoles
 - 4 types: Type 1 (~ 100 kg), 2, 3 and 4 (~400 kg)
 - Magnetic length from 350 mm to 1850 mm
- Mechanical stabilization might be On at some quads and Off of some others

C. Hauviller

How to measure the performances?

Compute the integrated r.m.s. displacement at n Herz from the measured PSD (Power Spectral Density)

 $\sigma_x(1) = \sqrt{\int_{1}^{\infty} \Phi_x(f) df}$

Previous performance on stabilization

Mock-up built in 2004 (S. Redaelli)

Performance at CERN

Stabilisation single d.o.f. with small weight ("membrane")

LIC

Contents

- <u>R & D Actions</u>
 - Sensors
 - Characterize vibrations/environmental noise
 - Actuators
 - Feedback
 - Test mock-ups
- Integrate and apply to CLIC
 CDR and TDR
- The team

State of the art of ground motion sensors

Table of Contents

- 1. Characteristics
 - Sensor noise Noise sources Noise detection
 - 2. Sensitivity
 - 3. Resolution
- 2. Sensor types
 - 1. Geophone
 - 2. Accelerometer
 - 3. Feedback seismometer
 - 4. Capacitive distancemeter
 - 5. Stretched wire system
 - 6. Other sensor
- 3. Comparison

Sensors

How to measure nanometers and picometers ? *Catalogue products*

Absolute velocity/acceleration measurements

- Seismometers (geophones)
- Accelerometers (seismic piezo)

13.5 kg

7.5 kg

Guralp	Eentec	PCB	
CMG 6T	SP500	393B31	
x,y,z	electrochemical	Z	
2*1000Vs/m	2000Vs/m	1.02Vs ² /m	
30s-80Hz	60 s -70 Hz	10 s -300 Hz	
	0.750 kg	0.635 kg	

Improved performances Lab environment

Characterize vibrations/environmental noise What level of vibrations can be expected on the ground?

Measurements in the LHC tunnel

Characterize vibrations/environmental noise ac 10⁻¹⁰ Vertical ground motion

30 nm

0.7 nm

10

29

10

Reference

10⁰

[Hz]

10⁻¹

10⁻¹²

10⁻²

Ref.:
$$A = 10^{-4} \ (\mu m^2 s^{-1} m^{-1}); B = 10^{-4} \ (\mu m^2 s^{-3});$$

 $\omega_1 = 2\pi * 0.14 \ (rad/s); d_1 = 5; a_1 = 0.1 \ (\mu m^2/Hz); v_1 = 1000 \ (m/s)$

Characterize vibrations/environmental noise

Correlation over long distances in LHC tunnel

Coherence using a theoretical model (ATL law)

Calculated from measurements (2008)

ANO STABILISATION

Actuators

Program of work

- State of art of actuators development and performances (updated on a yearly basis)
- Develop and test various damping techniques (passive and active)

State of art of actuators

Table of Contents

- Introduction and requirements
- Comparison of actuator principles
 - Different actuators
 - Piezo electric actuators
 - Electro-magnetic actuators
 - Magneto striction
 - Electro-static plates
 - Shape memory alloys
 - Scaling laws
- Design of actuators for sub nanometer positioning
 - Hysteresis free guidance
 - Non contact direct metrology
 - X-Y kinematics
 - Trajectory control and dynamic accuracy + resolution considerations
 - Limitations
- Different configurations of piezo based actuators
- Providers of nano actuators and vibration isolation
- Nano positioning applications
- Bench mark projects
- References

Actuators

First selection parameter: Sub nanometre resolution and precision

Actuator mechanisms with moving parts and friction excluded (not better than 0.1 $\mu m,$ hysteresis)

Solid state mechanics

Electro active

polymers

Piezo electric materials	High	 + Well established - Fragile (no tensile or shear forces), depolarisation
Magneto Strictive materials	rigidity	 -Rare product, magnetic field, stiffness < piezo, force density < piezo+ No depolarisation, symmetric push-pull
Electrostatic plates	No rigidity, ideal for	Risk of break through, best results with µm gaps, small force density, complicated for multi d.o.f. not commercial
Electro magnetic (voice coils)	soft supports	Heat generation, influence from stray magnetic fields for nm resolution
Shape Memory alloys	Slow, very non	Inear and high hysteresis, low rigidity, only traction

Slow, not commercial

Actuators

An example of the integration of piezo actuators PZT in an actual support

- Use of flexural guides against shear forces
- Use of a feedback capacitive sensor

Techniques to be applied for heavier (up to 400Kg) and larger structures (up to 2 meter long)

Feedback

Program of work

- Develop methodology to tackle with multi degrees of freedom (large frequency range, multi-elements)
 LAViSTa demonstrated feasibility on models
 Similar problems elsewhere like the adaptative optics of the European ELT
- Apply software to various combinations of sensors/actuators and improve resolution (noise level)
 High quality acquisition systems at LAViSTa and CERN

Stabilization strategies

How to support the quadrupoles?

10

Comparison control laws and former stabilisation experiments

		DESY, 1996	CERN, 2004	LAPP, 2007	SLAC, 2002
	Experiment description	1 d.o.f	1 d.o.f	1 d.o.f	6 d.o.f, 42 kg
	Actuator	Piezo	Piezo	Piezo	Electrostatic
	Control strategy	FB	TMC	TMC	FB
	Positioning	NO	NO	NO	NO
	Rigidity	Stiff	Soft	Soft	Soft
	(RMSw/RMSx)@1Hz	~3	~3	~2	~50
CLICIV	Stages	1	2	2	1

How to support the quadrupoles? Soft versus rigid

Soft: + Isolation in large bandwidth

- But more sensitive to external forces
- Elastomers and radiation

- **<u>Rigid:</u>** High resolution required actuators But available in piezo catalogues
 - + Robust against external forces
 - + Nano positioning

External forces: vacuum, power leads, cabling, water cooling, interconnects, acoustic pressure,....

How to support the quadrupoles?

NO STABILISATION

Option LAPP:

Soft support and active vibration control

CLICMeeting100409

Option LAPP:

Status: Construction + tests on elastomer

Test Mock-ups (CERN) Rigid support and active vibration control (up to 6 dof)

 Stabilisation single d.o.f. with small weight (membrane)

Program going on with further improvements

- 2. Tripod with weight type 1 MBQ with 1 active leg Presently under tests
- 3. Tripod type 1 MBQ with 3 active legs

Inclined leg with flexural joints Two inclined legs with flexural joints Add spring guidance Test equivalent load per leg

4. MOCK-UP Type 4 MBQ on hexapod

Test Mock-ups (CERN)

1. Stabilisation single d.o.f. with small weight

("membrane")

Theory vs measurement: Transfer function Measurement better< 2 Hz

Phase Diff. > 40 Hz

Model is good representation 2-40 Hz Differences between theory and Measurements are under investigation

CLICMeeting100409

Main Beam Mock-up

Functionalities

- Demonstrate stabilization in operation:
 - Magnet powered, Cooling operating
 - Configurations
 - 1- Stand-alone
 - 2- Integrated in Module
 - 3- Interconnected
 - Accelerator environment

• Parts / Measuring devices

- Floor (damping material)
- Support
- Pre-alignment
- Stabilization
- Magnet
- Vacuum chamber and BPM
- Independent measurement

Dynamic analysis

Vibrations on

Broadband excitation with decreasing amplitude with increasing frequency.

Lessons learnt from light sources:

Increase natural frequencies **ALL** components

- Maximise rigidity
- Minimise weight (opposed to thermal stability)
- Minimise beam height (frequency and Abbé error)
- Optimise support positions
- CLI®Nncrease@damping

Transmissibility

Result on magnet

Amplification at resonances

- Alignment system as rigid as possible
- + optionally locking of alignment

MB quad alignment with excentric cams

Outline

- Short overview of the CLIC project
- Timelines
- CLIC "feasibility demonstration"
- Stabilization of Main Beam Quadrupoles
- Experimental verification of Quadrupole stability
- Outlook for JLAB collaboration

Necessary complementary verification ?

- The demonstration of the stabilization of the magnet (=Magnetic field?) is based on "zero" signals of electromechanical sensors on the outer shell of the magnet.
- The physical size of the sensors do not allow to mount them close to the pole tips or inside the magnet.
- Pole tip vibrations, coil vibrations might exist without the outer monitors measuring them.
- The limited number of monitors might not catch all vibrations.

Question:

can another physical process be used to verify the stability of the magnetic field? \rightarrow try a high energetic particle beam

Validation of Quad stabilization principle (1/2)

CESR-TA beam stability

- Excitation of beam with a vertical orbit corrector dipole, direct connection to dipole coil (Q10W)
- Observation of beam oscillations on vertical pickups with modified BBQ electronics (Q8W) heavy downsampling in special acquisition cards, up to 17 minutes measurement time.
- Calibration of the system using a 300 um peak-peak oscillation measured in parallel with BBQ system and local orbit system.
- Various beam conditions, partial shutdown of injector complex etc...
- 4 measurement shifts
- Very friendly and effective support by CESR team

Getting BPM resolutions below the nm

- Aperture of BPM approx. 50 mm or more
- Wide band electronics thermal noise limit: 10^-5 of aperture
- Narrow band front-end gains factor 10...100
- State of the art commercial BPM system ("Libera Brilliance") reaches 5nm/sqrt(Hz),
 i.e. with 1000 s measurement time 150 pm rms noise.
- Different approach: BBQ electronics: "Zoom in" getting high sensitivity for beam oscillations, but loosing absolute information of DC = closed orbit information.

Amplitude Calibration

- •The CESR-TA experiment has been repeated at SLS (PSI-Villingen)
- Result: SLS factor 10...50 more stable than CESR-TA,

but still completely excluded to use for direct validation.

- Assume: any circular machine has similar rest eigenmotion of beam, use extracted beam in spectrometer like configuration.
- No light source has extraction channel for particle beams
- Only a few machines have "constant spill" slow extraction
- JLAB has CW extracted beam

3 + 3 BPMs; define and verify straight line before and after quad under test (QUT)

) ()

<u>http://clic-meeting web cern ch/clic-meeting/CTF3_Coordination_Mtg/Table_MoU.htm</u>

CERN

+

Aarhus University (Denmark) Ankara University (Turkey) Argonne National Laboratory (USA) Athens University (Greece) BINP (Russia) CERN CIEMAT (Spain) Cockcroft Institute (UK) Gazi Universities (Turkey)

CLIC

 $\overline{\mathbb{Q}}$

<u>34++ Institutes from 19+ countries</u>

Helsinki Institute of Physics (Finland) IAP (Russia) IAP NASU (Ukraine) INFN / LNF (Italy) Instituto de Fisica Corpuscular (Spain) IRFU / Saclay (France) Jefferson Lab (USA) John Adams Institute (UK) JINR (Russia) Karlsruhe University (Germany) KEK (Japan) LAL / Orsay (France) LAPP / ESIA (France) NCP (Pakistan) North-West. Univ. Illinois (USA) Patras University (Greece) Polytech. University of Catalonia (Spain)

PSI (Switzerland) RAL (UK) RRCAT / Indore (India) SLAC (USA) Thrace University (Greece) Tsinghua University (China) University of Oslo (Norway) Uppsala University (Sweden)