

FERMI NATIONAL ACCELERATOR LABORATORY

US DEPARTMENT OF ENERGY

Muon Collider Ring Lattice Design

Y. Alexahin, E. Gianfelice-Wendt, A. Netepenko

Vadim Kashikhin, N.Mokhov, A.Zlobin

Vadim Alexakhin (JINR, Dubna)

The Road to High Luminosity

$$\left\langle \mathcal{L} \right\rangle = f_0 \frac{n_b N_\mu^2}{4\pi\varepsilon_\perp \beta^*} h \times \frac{1}{2} \mathcal{T}_{rep} \sim \frac{P_\mu \xi}{C\beta^*} h z$$

 $P\mu$ – average muon beam power (limited by the P-driver power)

$$\xi = \frac{r_{\mu}N_{\mu}}{4\pi\gamma\varepsilon_{\perp}}$$
 - beam-beam parameter (limited by particle stability, $\xi < 0.1$?)

- C collider circumference (limited from below by available B-field)
- $\tau-\text{muon lifetime}$

 β^* – beta-function at IP (limited from below by chromaticity of final focusing and aperture restrictions in IR magnets),

small β^* requires small $\sigma_z \Rightarrow \text{large } \sigma_p / p = \epsilon_{\parallel} / \sigma_z$

The recipe:

• Pack as many muons per bunch as the beam-beam effect allows (in practice this means 1 bunch/beam)

- Make beams round to maximize the beam-beam limit
- Develop new chromatic correction scheme to reduce β^*
- Do not leave free spaces to reduce C (also good for neutrino radiation)

What we would like to achieve compared to other machines:

	MC	Tevatron	LHC
Beam energy (TeV)	0.75	0.98	7
β* (cm)	1	28	55
Momentum spread (%)	>0.1	<0.01	0.0113
Bunch length (cm)	1	50	15
Momentum compaction factor (10^-3)	0.05	2.3	0.322
Geometric r.m.s. emittance (nm)	3.5	3	0.5
Particles / bunch (10^11)	20	2.7	1.15
Beam-beam parameter, ξ	0.1	0.025	0.01

Muon collider is by far more challenging:

- much larger momentum acceptance with much smaller β^{\star}
- ~ as large Dynamic Aperture (DA) with much stronger beam-beam effect
- New ideas for IR magnets chromaticity correction needed!

- 1996 by Carol J., A. Garren
- 1996 by K.Oide
- "Dipole first" (2007)
- Eliana's "synthetic" (2009)
- Asymmetric dispersion
- "Flat top"

~ satisfy the requirements

1996 designs (especially by K.Oide) had extremely high sensitivity to field errors

Montague chromatic functions :

$$A_{x} = \frac{\partial}{\partial \delta_{p}} \alpha_{x} - \frac{\alpha_{x}}{\beta_{x}} \frac{\partial}{\partial \delta_{p}} \beta_{x}, \quad B_{x} = \frac{1}{\beta_{x}} \frac{\partial}{\partial \delta_{p}} \beta_{x},$$
$$W_{x} = \sqrt{A_{x}^{2} + B_{x}^{2}},$$

 $\alpha_{x,y} = -\beta_{x,y}'/2$, $\beta_{x,y}$ are Twiss lattice functions, δ_p is relative momentum deviation.

Equations for chromatic functions

$$A'_{x} = 2\varphi'_{x}B_{x} - \beta_{x}(K_{1} - D_{x}K_{2}),$$

$$B'_{x} = -2\varphi'_{x}A_{x}$$

 $B_{x,y}$ are most important since they determine modulation of phase advance $\varphi_{x,y}$

$$\varphi_x(s,\delta_p) = \frac{1}{1+\delta_p} \int_0^s \frac{ds'}{\beta_x(s',\delta_p)}$$

 $A_{x,y}$ are created first, and then converted into $B_{x,y}$ as phase advances $\varphi_{x,y}$ grow

 K_1 , K_2 are normalized quadrupole and sextupole gradients, D_x is dispersion function: $D_x = dx_{c.o.}/d\delta_p$

The receipt:

Kill A's before they transform into B's !

- difficult to achieve in both planes
- horizontal correction requires 2 sextupoles 180° apart to cancel spherical aberrations

5

Anti-Symmetric Dispersion Function

CASA Seminars, JLab,

Tunes and Compaction Factor

7

CASA Seminars, JLab,

Reverse-Sign Quadrupoles IR

 $\beta_{*}(m), \beta_{*}(m) = [*10**(3)]$

8

CASA Seminars, <u>JLab</u>,

New paradigm

- Chromaticity of the larger β -function should be corrected first (before ϕ is allowed to change) - and in one kick to reduce sensitivity to errors!
- To avoid spherical aberrations it must be $\beta_{v} \Rightarrow$ then small β_{x} will kill all detuning coefficients and RDTs (this will not happen if $\beta_v \leftrightarrow \beta_x$)

• Placing sextupoles in the focal points of the other β -function separated from IP by $\varphi =$ $\pi \times$ integer reduces sensitivity to the beam-beam interaction.

These considerations uniquely determine the IR layout.

Eliana came very close to it, just minor corrections were needed.

Requirements adopted for the latest version:

- full aperture A = 10sigma_max + 2cm (A.Zlobin adds 1cm on top of that)
- maximum guad gradient 12% below guench limit at 4.5°K as calculated by A.Zlobin
- bending field 8T in large-aperture open-midplane magnets, 10T in the arcs
- IR quad length < 2m (split in parts if necessary!) no shielding from inside
- Sufficient space for magnet interconnects (typically 30-40cm)

3 Sextupoles Chromatic Correction Scheme

CASA Seminars, JLab,

One More Innovation: the Arc Cell

- Central quad and sextupole SA control the momentum compaction factor and its derivative (via Dx and DDx) w/o significant effect on chromaticity
- Large β -functions ratios at SX and SY sextupole locations simplify chromaticity correction
- Phase advance 300° / cell \Rightarrow spherical aberrations cancelled in groups of 6 cells
- Large dipole packing factor \Rightarrow small circumference (C=2.6 km with 9.2T dipole field)

Momentum Acceptance

• Static momentum acceptance is $\pm 1\%$, but the baseline scheme calls for only $\pm 0.3\%$

The momentum compaction factor can be lowered to ~ 5.10⁻⁵, or made even smaller negative

Q_x Q_y 0.8 0.8 0.8 0.6 0.6 0.005 0.005 0.010 0.005

Fractional parts of the tunes

With 2 IPs the central tunes are 18.56, 16.56

- neutral for beam-beam effect
- good for the orbit stability and DA

•

12

Dynamic Aperture

1024 turns DA (Lie3 tracking method): blue – Courant-Snyder Invariants of stable muons, red – lost muons

DA= (
$$\gamma$$
 CSI / $\epsilon_{\perp N}$)^{1/2}= 4.5 σ for $\epsilon_{\perp N}$ =25 μ m

- Dynamic Aperture is marginally sufficient for $\epsilon_{\perp \text{N}} \text{=-} 50 \; \mu\text{m}$
- DA can be further increased with vertical nonlinear correctors
- With chosen tunes, 18.56, 16.57, beam-beam increases β^* from 1cm to 1.27cm with thin beam-beam element, For a long bunch $\beta^* \rightarrow 0.8$ cm w/o increase in the FF quads

Final Focus Quads

Requirements adopted for this design:

- full aperture 2A = 10sigma_max + 2cm (Sasha Zlobin wants + 1cm more)
- maximum tip field in quads = 10T (G=200T/m for 2A=10cm)
- bending field 8T in large-aperture open-midplane magnets, 10T in the arcs
- IR quad length < 2m (split in parts if necessary!)

- Is the margin sufficient? If not lower beam energy or increase β^* to allow for smaller aperture
- We don't need 5sigma+ half-aperture, 3sigma+ is enough: can accommodate $\varepsilon_{\perp N}$ =50 µm!
- No dipole field from 6 to 16.5m, is it worthwhile to create ~2T by displacing the quads?

Fears:

• Dipole field component in the FF quads will deflect the decay electrons more than muons so that they may hit the detector instead of passing through.

• There will be more X-radiation from the decay electrons.

Three cases presented here:

• Initial cone configuration (6°, 5σ inner radius up to 2m from IP), no masks between FF quads - reported at the November workshop at FNAL,

• Cone angle increased to 10 °, 5σ inner radius up to 1m from IP, 5σ masks inserted between FF quads

• The same as above + FF quads displacement by 1/10 of the aperture

To speed up calculations processes involving neutrons were excluded

IR Layout (a view from MARS)

Electron Fluxes

Gamma Fluxes

(Calculated using MAD-8 with lie4 method, BeamBeam included, 1024 turns)

 $E_{\perp N} = 10\pi \cdot mm \cdot mrad \qquad \xi_{BB} = 0.095 \qquad \sigma_z = 0.01m \qquad \sigma_{x,z} = 5.7\,\mu m$

CASA Seminars, JLab,

Dynamic Aperture Radius vs Momentum Deviation

DA diagonal, MAD-8 calculation (4D tracking) for different constant dp/p, BeamBeam included, 1024 turns

MAD-X calculation 6D tracking with synchrotron oscillations, no BeamBeam, 1024 turns

 $f_{RF} = 800 MHz \qquad V_{RF} = 4.16 MV$ $Q_s \approx 10^{-3}$

10

In quasi Strong-Strong approach we iteratively calculate new self consistent beta-functions.

Iteratively Calculated new Beta-Functions at IP

← First slice of the bunch (black dots) (red dots represent initial betafunction)

← Middle slice of the bunch (black dots)

For each slice we introduce a thin lenses at points where it meats the slices of opposite bunch, find new beta-functions, assign them for both bunches and repeat till converged.

Calculated Tuneshifts for Different Slices in the Bunch

$$\Delta \mu_{x,centrtal} = 0.1$$

(as far as we have round beams and almost the same fractional parts of tunes, vertical tune sifts are the same)

Dynamics of Beam-Beam interaction in Mathematica file

CASA Seminars, JLab,

Dipole Magnet Field Imperfections

Magnetic field multipole expansion:

$$B_{\theta}(r,\theta) = B_{ref} \times 10^{-4} \sum_{n=1}^{\infty} \left(\frac{r}{r_{ref}}\right)^{n-1} \left[b_n \cos(n\theta) - a_n \sin(n\theta)\right]$$
$$B_r(r,\theta) = B_{ref} \times 10^{-4} \sum_{n=1}^{\infty} \left(\frac{r}{r_{ref}}\right)^{n-1} \left[b_n \sin(n\theta) + a_n \cos(n\theta)\right]$$

IR dipole:	Ring dipole:
Rref=40mm	Rref=20mm
o1=10000	b1=10000
03=-5.875	b3=0.003
5=-18.320	b5=-0.012
57=-17.105	b7=0.154
09=-4.609	b9=-1.185
011=0.390	b11=-0.118
013=0.103	b13=0.053

(V.V.Kashikhin)

Magnets sliced in 5 pieces and thin multipoles introduced between them.

CASA Seminars, JLab,

Lattice update including:

- FF quads displacement to produce dipole field ~2T
- Momentum compaction factor correction (making it slightly negative)
- Arc magnet length reduction to get 10T bending field \rightarrow even smaller circumference!

Next steps:

- Study the effect of magnet imperfections with Vadim Kashikhin's magnet design
- Possibility to change β^* in a wide range w/o changing the layout
- Collimation system design (are special sections necessary?)
- Study effects of fringe fields, add nonlinear correctors if necessary
- Design orbit correction and tuning circuits
- Study the effect of random misalignments and magnet imperfections

Muon Collider Parameters

1.5	3
1.2*	5
9.2**	14
7.7	12
2.6	4
2	2
15	12
0.087	0.087
1	0.5
1	0.5
1	1
2	2
25	25
0.1	0.1
0.07	0.07
60	700
0.008	0.007
4.8	4.3
	1.5 1.2* 9.2** 7.7 2.6 2 15 0.087 1 1 1 1 2 25 0.1 0.07 60 0.008 4.8

*) With **increase** by the beam-beam effect **) Not 10T just by mistake

$$\left\langle \mathcal{L} \right\rangle = f_0 \frac{n_b N_{\mu}^2}{4\pi\varepsilon_{\perp}\beta^*} h \times \frac{1}{2} \mathcal{T}_{rep} \sim \frac{P_{\mu}\xi}{C\beta^*} h\tau$$

 $P\mu$ – average muon beam power (~ γ)

$$\xi = \frac{r_{\mu}N_{\mu}}{4\pi\gamma\varepsilon_{\perp}}$$
 – beam-beam parameter

C – collider circumference (~ γ if B=const)

 τ – muon lifetime (~ γ)

 β^* – beta-function at IP

