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Outline

• Concept of Parametric-resonance Ionization Cooling (PIC)

• PIC linear optics requirements

• Epicyclic channel for PIC

• Twin-helix channel for PIC

– Magnetic optics design

– G4beamline simulations 

– Possible practical implementation

• Approach to compensating aberrations

Muons, Inc.

JLab Accelerator Seminar, June 3, 2010 2



LEMC Scenario

R.P. Johnson - Dec. 9, 2008 MC Design Workshop JLab 3
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Bogacz Dogbones

Scheme



New Fernow-Neuffer plot

ν = 0.325 GHz
λ = 1.0 – 0.8 m

ν = 0.65 GHz
λ = 0.5 – 0.3 m

ν = 1.3 GHz
λ = 0.3 m

100 % @ z = 0 m

97 % @ z = 40 m
91 % @ z = 49 m

89 % @ z = 129 m

84 % @ z = 129 m

84 % @ z = 303 m

• GH2 pressure = 160 atm

• 60 μm Be RF window

• E ~ 27 MV/m

• Detailed parameter will be given in later slide (slide 15)

PIC

REMEX

K. Yonehara 12/02/09 4

Goal phase space

Study2a

PIC + REMEX = factor of ~100 in luminosity  critical for LEMC feasibility



PIC Concept

• Parametric resonance induced in muon cooling channel

• Muon beam naturally focused with period of free oscillations

• Wedge-shaped absorber plates combined with energy-restoring RF cavities 

placed at focal points (assuming aberrations corrected)

– Ionization cooling maintains constant angular spread

– Parametric resonance causes strong beam size reduction

– Emittance exchange at wedge absorbers produces longitudinal cooling

• Resulting equilibrium transverse emittances are an order of magnitude 

smaller than in conventional ionization cooling

Muons, Inc.
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Absorber Stabilizing Role
Muons, Inc.
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No absorbers

Absorbers
Optics to restore parallel 
beam envelope



PIC Schematic

• Equilibrium angular spread and beam size at absorber

• Equilibrium emittance

(a factor of                              improvement)  

w

Absorber plates Parametric resonance lenses
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• Horizontal free oscillations’ period  x equal to or low-integer multiple of 

vertical free oscillations’ period  y

• Oscillating dispersion
– small at absorbers to minimize energy straggling

– non-zero at absorbers for emittance exchange

– large between focal points for compensating chromatic and spherical aberrations



• Correlated optics: correlated values of  x,  y and dispersion period  D 

–  x = n y = mD , e.g.  x = 2 y = 4D or  x = 2 y = 2D

• Fringe-field-free design

PIC Optics Requirements
Muons, Inc.
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Helical Harmonics

• Practical fringe-field-free approach

• Periodic solutions of source-free Maxwell equations in vacuum

• Harmonic of order n given by

• Total field

Muons, Inc.
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Epicyclic Channel

• Two uniform (non-Maxwellian) transverse helical fields with wave numbers 

k1 and k2

• Equation of motion:

• Analytic solution under approximation kc = const (pz = const)

• Dispersion function containing two oscillating terms

• Condition for dispersion to periodically return to zero

•
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Oscillating Dispersion
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HCC-Based Approach 

to Designing Correlated Optics

• Since there is no exact analytic solution for two Maxwellian helices, 

start with single helix considering second helix perturbation

• Using available analytic solution for dynamics in single Maxwellian helix, 

adjust desired free-oscillation period ratio - /+ = 1 or 2 for primary helix

• By choosing wave number k2 of second helix, set dispersion oscillation period 

D = |2/(k2-k1)| such that + /D = 2

• Adjust strength of second helix to create oscillating dispersion

• Iteratively adjust - /+ and + /D by changing helices’ parameters until 

correlated optics is achieved 

Muons, Inc.
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Single Helix

• Equilibrium condition

• Orbit stability condition

• Betatron tunes

• For given r = Q+/Q- , one can solve for ∂b/∂a if
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• No solution for Q+ = Q-

• Two solution regions for Q+ = 2Q-

– | | << 1,   -2 < q < -1,   B2/B1 ~ 1

– | | >> 1

Choose:

 = -5.4

q = -1.54

Bsol = 2 T

bd = -0.154 T

bq = 0.065 T/m

kc = 32.9 m-1

k = -61.0 m-1

Q- = 0.464,   Q+ = 0.929

B2/B1 ~ 0.04

Adjusting Betatron Tunes
Muons, Inc.
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• From one-period linear transfer matrix in terms of canonical coordinates

• Track particle over many periods
and take Fourier transform of 
coordinate vector component
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Determining Betatron Tunes
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Finding Periodic Orbit

• No exact analytic solution in case of two helices

• Stable periodic orbit does not always exit

• Begin with single helix where stable periodic orbit is known to exist

• Use one or combination of the following to find periodic orbit when second 

helix is present

– Adiabatically increase strength of second helix while tracking orbit

– Use “friction” force making particle trajectory converge to periodic orbit

– Increase second helix’s strength from zero in small steps while iteratively 

determining periodic orbit on each step by locating fixed point in phase space

Muons, Inc.
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Adiabatic Turn On 

of Secondary Helix

Muons, Inc.
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Friction Force Approach
• Introduce effective “friction” force

– total energy conserved while phase volume is not

– analogous to cooling

– all trajectories converge towards periodic orbit

– aids in finding periodic orbit when analytic solution is not available
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Dispersion in Epicyclic Channel

Muons, Inc.

Second helix strength

|D| = const |D| oscillates not reaching 0 |D| oscillates reaching 0
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Periodic Orbit 

in Epicyclic Channel

Muons, Inc.
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• Problem with dynamic aperture



• Consider two dipole (n = 1) harmonics with b1= b2 and k1 = -k2 = 2/

• Vertical field only in horizontal plane  Periodic orbit in horizontal plane

• Horizontal and vertical motion uncoupled

• Region of stable transverse motion in both planes
• D =   x = 2y = 4  x = 0.25, y = 0.5

Twin HelixMuons, Inc.

JLab Accelerator Seminar, June 3, 2010 21



Periodic Orbit and Tunes
Muons, Inc.

• Two dipole helical harmonics only

• Periodic orbit determined by locating fixed point in phase space

• Betatron tunes from linear transfer matrix for canonical coordinates

• y = 1  parametric resonance  use x = 0.25, y = 0.5

JLab Accelerator Seminar, June 3, 2010 22



Adjusting Correlated Optics
Muons, Inc.

• Introduce straight quad to redistribute horizontal and vertical focusing

• Down side: cannot satisfy correlated optics conditions for both charges

• Iteratively adjust Bd and By/x until correlated optics is reached

• No success applying same procedure with double helical quad 
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Periodic Orbit
Muons, Inc.
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Dispersion and Chromaticity
Muons, Inc.

• Dispersion: 

• Chromaticity: 

• Scaling pattern: 

max / 0.098 mx aD p x p   

/ 0.646, 0.798x x yp p        

2/ , / / , , , , constd y a x x yB p B x p x D         
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G4BL Implementation
Muons, Inc.
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G4BL Simulation

Muons, Inc.
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G4BL Optics TestMuons, Inc.

Going In Coming Out
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• No absorber and no RF

• 105 100 MeV/c - through 100 periods of “twin helix” with correlated optics

• Initially parallel beam uniformly distributed with 10  10 cm square



Final Phase Space
Muons, Inc.

JLab Accelerator Seminar, June 3, 2010 29



Transverse Motion
(relative to reference particle)

Muons, Inc.
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• 100 MeV/c - beam from single point with uniform 0.1  0.1 rad angular spread

3 cm

3 cm



Possible Practical Implementation
Muons, Inc.
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Layer of positive-helicity 

helical conductors with cos
azimuthal current dependence 

Layer of negative-helicity 

helical conductors

Normal quad



Possible Practical Implementation
Muons, Inc.
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Layer of positive-tilted loops 

with cos z longitudinal current 

dependence 

Layer of negatively-tilted 

loops

Normal quad

• Adopt existing technology?



Reverse EMittance Exchange

• Another potential application of twin helix channel

• Longitudinal emittance after PIC smaller than needed for collider

• Reverse EMittance EXchange (REMEX)

– Continue resonant regime

– Reverse wedge gradient to maximize transverse cooling decrements at the 
cost of antidamping in longitudinal direction

– Increase dispersion at absorber plates

– Maintain reasonable relative momentum spread by bunch stretching in the 
first stage and by beam acceleration in the second stage

• Another order of magnitude reduction in transverse emittance

Muons, Inc.
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Aberration Compensation

• Aberration compensation at beam focal points critical and most 

challenging for PIC

• Take full advantage of system’s symmetry

• Compensation of 2nd-order terms with two sextupole harmonics

• Compensation of 3rd-order terms with three octupole harmonics

• Conceptually very similar to problem of aberration compensation at 

collider interaction point

Muons, Inc.
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Symmetry formulation of Achromatic IP
(Standard Model)
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• “Canonical” conditions  (compensation for original chromatic terms )

• Conditions connected to the betatron and 2nd order dispersion beam sizes:

These  3 conditions  on sextupoles can be satisfied “automatically”, if to 
implement symmetry  to the compensating block: symmetric         and       , 
while symmetry of       and         is opposite to symmetry of        .

; ;

;

What is achieved with  this  compensation:
Suppression of tune chromatic spread (usual)
Suppression of intrinsic chromatic and sextupole 3d smear of beam core at 
star point (new)
What may not have been achieved: maintaining the dynamical aperture

35Y.S. Derbenev, Rick’s Café Talk



IR Design

• Modular approach

• Utilize COSY Infinity

– calculates coefficients M(x|) of expansion of type

to arbitrary order (+++++) for each of coordinate components

• Design system such that 

Muons, Inc.
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Interaction RegionMuons, Inc.

1st-order matrix:
x               x’              y               y’             t

M(x|x)

M(y|y)

M(x|q)
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Interaction RegionMuons, Inc.

23.2 mm

4.8 mm
x

y
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IR Phase AdvanceMuons, Inc.
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1st and 2nd-Order Aberrations
Muons, Inc.

Assume:
4

10 GeV/c e ,   85 , 17 ,   2 km,

3.5 km,  / 3 10

N N i

x y x

i

y

m m

E E

    







  

   

2nd-order aberrations:

M(x|xq)

M(y|yq)

1st-order aberrations:

M(x|x’)

M(y|y’)

Geometric beam size at IP due to emittance
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3rd-order aberrations: small



Sextupole Compensation
Muons, Inc.

Make M(x|xq) = 0 and M(y|yq) = 0 by adjusting

s1  0.40 T @ 5 cm and s2  -1.15 T @ 5 cm

1s 2s 1s
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1st and 2nd-Order Aberrations
after Sextupole Compensation

Muons, Inc.

Assume:
4

10 GeV/c e ,   85 , 17 ,   2 km,

3.5 km,  / 3 10

N N i

x y x

i

y

m m

E E

    







  

   

2nd-order aberrations:

M(x|xq)

M(y|yq)

1st-order aberrations:

M(x|x’)

M(y|y’)

Geometric beam size at IP due to emittance

M(x|xx’)

M(y|x’y)

M(y|xy’)
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3rd-Order Aberrations
after Sextupole Compensation

Muons, Inc.

Assume:
4

10 GeV/c e ,   85 , 17 ,   2 km,

3.5 km,  / 3 10
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3rd-order aberrations: M(x|x3)

M(x|x2y)

M(x|y3)
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Octupole Compensation
Muons, Inc.

Make M(x|x3) = 0, M(y|x2y) = 0 and M(y|y3) = 0 by introducing 3 pairs of octupoles with

o1  -0.80 T @ 5 cm, o2  0.90 T @ 5 cm, and o3  -0.34 T @ 5 cm

1o
1o2o 2o

3o
3o
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1st and 2nd-Order Aberrations
after Octupole Compensation

Muons, Inc.

Assume:
4

10 GeV/c e ,   85 , 17 ,   2 km,

3.5 km,  / 3 10

N N i

x y x

i

y

m m

E E

    







  

   

2nd-order aberrations:

M(x|xq)

M(y|yq)

1st-order aberrations:

M(x|x’)

M(y|y’)

Geometric beam size at IP due to emittance

M(x|xx’)

M(y|x’y)

M(y|xy’)
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3rd-Order Aberrations
after Octupole Compensation

Muons, Inc.

Assume:
4

10 GeV/c e ,   85 , 17 ,   2 km,

3.5 km,  / 3 10

N N i

x y x

i

y

m m

E E

    







  

   

3rd-order aberrations: M(x|x3)

M(x|x2y)

M(x|y3)

4th-order aberrations: small
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Twin Helix Symmetry
Muons, Inc.

Symmetry plane

x
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y

Dx

Opposite symmetries



Conclusions and Future Plans

• Designed twin-helix magnetic structure satisfying PIC requirements of 

correlated linear optics

• Confirmed optics properties with GEANT4-based G4beamline simulations

• Large dynamic aperture suggested by simulations but more systematic 

study is needed

• Suggested straightforward possible practical implementations

• Next study aberration compensation following a well-defined approach 

(try adopting COSY Infinity?)

• Need to introduce transverse coupling for cooling decrement equalization 

i.e. by slightly offsetting spatial period of one helical harmonic

Muons, Inc.
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