Development of laser stripping at the SNS

Timofey Gorlov

On behalf of the SNS laser stripping team

October 28, 2010

Outline

- History of laser stripping
- Proof of principle experiment
- Physical model
- Proof of practicity experiment
- Experimental studies
- Future plans and ideas for SNS and other projects

SNS Accelerator Complex

 Replacement of stripping foil by laser assistant stripping

Foil (Beam on)

4 Managed by UT-Battelle for the Department of Energy

Three-step laser stripping scheme

Step 1: Lorentz Stripping $H^{-} \rightarrow H^{0} + e^{-}$

Step 2: Resonant laser Excitation H^0 (n=1) + $\gamma \rightarrow H^{0^*}$ (n=3) Step 3: Lorentz Stripping

 $H^{0^*} \rightarrow p + e^-$

Proof of principle experiment (2006)

mini-pulse

The maximal achieved efficiency: 0.85±0.1 (1st run) and 0.9±0.05 (2nd run) Stripping time: about 10 ns

Theory of the Laser Stripping

High-field Dipole Magnet

Step 1: Lorentz Stripping

$H^- \rightarrow H^0 + e^-$

7.1.7 Lorentz Stripping of H⁻ Ions [1] M.A. Furman, LBNL

When a H⁻ ion moves in a magnetic field B_{il} experiences a Lorentz force that bends its trajectory and also tends to break it up since the proton and electrons are bent in opposite directions, and the binding energy of the extra electron is only 0.755 eV. The breakup is a probabilistic process and quantum-mechanical in nature. In the ion rest frame, the stripping force is effected by the electric field E that is the Lorentz-transform of the magnetic field B in the lab, $E = \kappa' \beta \gamma B$, where $\kappa' \simeq 0.3 \text{ GV/T-m}$. For the H⁻ ion, E[MV/cm] =3.197 p[GeV/c] B[T].

The lifetime of the ion in an electric field can be calculated by applying the WKB approximation to the tunneling probability [2]-[4]. It has also been measured in several experiments [5]-[8] whose results, for the jon's lifetime τ in its own rest frame is your parametrized as

 $\tau = \frac{A}{E} \exp\left(\frac{C}{E}\right) \tag{6}$

In the region of values of E where they overlap, the measurements in [5, 7, 8] are fairly consistent with each other, but are not consistent with [6] Ref.[7], which covers the range E = 1.87 - 2.14MV/cm, has $A = 7.96 \times 10^{-14}$ s MV/cm and C = 42.56 MV/cm, while Ref.[8], which covers E = 1.87 - 7.02 MV/cm, has $A = (2.47 \pm 0.09) \times$ 10^{-14} s MV/cm and $C = 44.94 \pm 0.10$ MV/cm. The mean decay length in the lab is given by

 $\lambda = c\beta\gamma\tau$

(2)

Two level atom (Schrodinger equation)

The model is valid only for E=B=0 and linear polarized laser field

First way to compensate energy spread

Second way to compensate energy spread

Proof of plasticity experiment

11 Managed by UT-Battelle for the Department of Energy

SNS Accelerator Complex

Presentation_name

Advanced physical model

- Stark effect at the interaction point
- Spontaneous decay losses
- Lorentz stripping of H⁰ excited beam

Lorentz stripping of H⁰ excited beam in the fringe magnetic field

Emittance growth at the fringe field

T=4 GeV

15 Managed by UT-Battelle for the Department of Energy

Schrödinger equation approach

Spontaneous decay can not be taken into account

$$i\hbar \frac{\partial \Psi}{\partial t} = \hat{H}(\vec{E}, \vec{E}_L)\Psi \rightarrow \dot{c}_m(t) = \sum_{n=1}^{N} c_n(t) S_{mn}(t) \qquad N = 1^2 + 3^2 = 10$$
10 equations
Continuum
$$\int \frac{\vec{E}(\mathbf{r}, t)}{\vec{E}(\mathbf{r}, t)} \frac{\vec{P}(\mathbf{r}, t)}{\vec{P}_0} \qquad h_{13} \qquad n = 3$$

$$n = 1$$
For Marked by UT-Batelet
for the Department of Elbergy
Endown

Density matrix approach

Everything can be taken into account

Computer application for laser stripping

Location for the new experiment

Ring

Laser Stripping

location

LINAC DUMP

Experimental studies

20 Managed by UT-Battelle for the Department of Energy

 β_x

 β_{v}

 α_x

 α_{v}

ε_x

ε

Preliminary tune of dispersion function

21 Managed by UT-Battelle for the Department of Energy

Laser stripping via a broad shape resonance

22 Managed by UT-Battelle for the Department of Energy

Hydrogen atom in a strong electric field

23 Managed by UT-Battelle for the Department of Energy

n=1

Third way to compensate energy spread

Advantages of the scheme

- Possibility to recycle laser beam
- No spontaneous transition losses
- Small emittance growth
- Using just one stripping dipole magnet (the scheme is more compact)
- Can be applied for energy 4 GeV and more (considered as disadvantage)

Selected references for more details

- I. Yamane, Phys. Rev. ST Accel. Beams 1, 053501 (1998).
- V. Danilov, A. Aleksandrov, S. Assadi, S. Henderson, N. Holtkamp, T. Shea, A. Shishlo, Y. Braiman, Y. Liu, J. Barhen, and T. Zacharia, Phys. Rev. ST Accel. Beams 6, 053501 (2003).
- V. Danilov, A. Aleksandrov, S. Assadi, J. Barhen, W. Blokland, Y. Braiman, D. Brown, C. Deibele, W. Griece, S. Henderson, J. Holmes, Y. Liu, A. Shishlo, A. Webster, and I. N. Nesterenko, Phys. Rev. ST Accel. Beams 10, 053501 (2007).
- T. Gorlov, V. Danilov, and A. Shishlo, Phys. Rev. ST Accel. Beams 13, 050101 (2010).
- T. Bergeman, C. Harvey, K. B. Butterfield, H. C. Bryant, D. A. Clark, P. A. M. Gram, D. MacArthur, M. Davis, J. B. Donahue, J. Dayton, and W.W. Smith, Phys. Rev. Lett. 53, 775 (1984).
- T. Gorlov and V. Danilov, Phys. Rev. ST Accel. Beams 13, 074002 (2010).

