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e [Introduction

— What are rare isotopes?
— Why and how are they produced?
— Overview of FRIB

e Codes for design and simulations
— General overview

— COSY Infinity: transfer maps and Differential
Algebra (DA)

— New Integrated framework
e Results
— Design optimization: symmetries and achromatic
optics
— System performance
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WHAT ARE RARE ISOTOPES?
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e
WHAT ARE RADIOACTIVE BEAMS GOOD FOR?

¢ Physics of Nuclei
« How do protons and neutrons make stable nuclei and rare isotopes?
« What is the origin of simple patterns in complex nuclei?
« What is the equation of state of matter made of nucleons?
« What are the heaviest nuclei that can exist?

¢ Nuclear Astrophysics
+ How are the elements from iron to uranium created?
« How do stars explode?
+ What is the nature of neutron star matter?

¢ Fundamental Interactions
« Why did the Big Bang produce more matter than antimatter?
« What are the weak interactions among hadrons, and how are they affected by the
nucleus?
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SCHEMATIC OF THE FRAGMENTATION PROCESS
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Jan 21, 2010 High-Order Achromatic Optics




CHEMATICS OF FRIBS
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SCHEMATIC LAYOUT OF FRAGMENT SEPARATOR
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GENERAL PURPOSE CODES

e Beam Optics
— COSY Infinity
— GICOSY, GIOS
— Transport
— Marylie
— Many others

e Radiation transport
— MCNPX
— MARS
— PHITS
— GEANT
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SPECIALIZED FOR FRAGMENT SEPARATORS

e | ISE++
— MSU code

e MOCADI
— GSI code

e Extensions of COSY Infinity
— Developed by us
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MATHEMATICAL MODEL OF PERIODIC

ACCELERATORS
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COMPUTATION OF DERIVATIVES

Differential Algebraic Methods

Solve analytic problems by algebraic means

Most important for beam physics is the computation of
Taylor expansions of the flow of ODEs <= accurate
computation of very high order derivatives of

multivariable functions

Push perturbation theory to high orders and maintain

accuracy

The structure 1 D; (for first derivative of a function of

one variable) is defined as

(90791) + (Toﬂ“l) - (QO + 70, q1 +?”1)
t{g0,51) = (tq0,tq1)
(g0,91) - (r0,71) = {(q070, Q071 + @170)

It follows that

(f@), f{=)=f(z+d)
:(0’1)
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Differential Algebraic Methods: Example

’ (23 1) - (23 1) + (3:0)
—{2,1) +(3,0)

\
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DIFFERENTIAL ALGEBRA

eAn algebra with a derivation

—An algebra is a vector space with a
multiplication

A vector space over a field is a set that is closed
under addition and scalar multiplication

—A derivation ¢ i1s an operation that satisfies:

o(a®b) =(0a)®b®a®(db)

In our case:
e Field = Real numbers, r

« Set = Ordered doublets of real numbers (r,r,)

D, with 9: \D, -> D, by 9(r,,r,)=(0,r,) is a Differential Algebra
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How DOES IT WORK? (1)

e Given the values and derivatives of two functions at
the origin form ( f(0) , f(0) ) and (g(0), g(0))

e Assume we are interested in the value and
derivative of their product at the origin:

(1(0)g(0) , 1(0)g(0) + 1(0)g (0) )
e This is how the product was defined in ,D,!

e This works also for the sum of two functions
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How DOES IT WORK? (2)

e Define the operation [ ] by
[ f(X0) 1= (f(X0) , T(Xo) )

e Thus, according to the previous slide
[f+gl=[f]1+[9]
[f-9]l=[f]-[9g]

e For any function that can be represented by finitely many
additions and multiplications (this includes most common
Intrinsic functions available on a computer) the following

holds:
[ f(x) 1 = T([xD)
e Forareal xwe have [x] = (X,1) =x+d,d=(0,1), so we can

conclude that
(fx) , f (X)) = f(x+d)
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ADVANCED APPLICATIONS

(,D,,0) can be generalized into (,D,, 9,, ..., d,) for
computation of derivatives up to order n of
functions in v variables

It can be generalized to vector functions (transfer
maps)

Composition of maps: given two vector functions
with known derivatives up to order n, what are
the derivatives of their composition? If M(0) = O,
then

[NeM],=[N],-[M],

Can be used to compute inverses [M-1],

High-Order Achromatic Optics 15



APPLICATIONS IN BEAM PHYSICS

Transfer Map Method and Differential Algebras

e The transfer map M is the flow of the system ODE.
7 = M(%;,0),

where z; and 7z are the initial and the final condition, 5 is system para-
meters.

e Lor a repetitive system, only one cell transfer map has to be computed.
Thus, it is much faster than ray tracing codes (i.e. tracing each individual
particle through the system).

e The Differential Algebraic method allows a very efficient computation of
high order Taylor transfer maps.

e The Normal Form method can be used for analysis of nonlinear behavior.

Differential Algebras (DA)

e 1t works to arbitrary order, and can keep system parameters in maps.

e very transparent algorithms; effort independent of computation order.

The code COSY Infinity has many tools and algorithms necessary.
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COSY INFINITY

e Arbitrary order

e Maps depending on parameters (mass dependence!)
e No approximations in motion or field description
e Large library of elements

e Arbitrary Elements (you specify fields)

e Very flexible input language

e Powerful interactive graphics

e Lirrors: position, tilt, rotation

e Tracking through maps

e Normal Form Methods

e Spin dynamics

e Iast fringe field models using SYSCA approach

e Reference manual (80 pages) and Programming manual (90 pages)
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APPLICATIONS OF COSY

e Interactive design of spectrometers

e Interactive design of accelerator lattices
e High-order analysis

e Iringe field analysis

e Measured fields

e Iirror analysis, parameter dependences

e Closed orbit, lattice parameters, parameter
dependence of these

e Normal Form, resonant and non-resonant,
resonance driving terms
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ELEMENTS IN COSY

e Magnetic and electric multipoles

e Superimposed multipoles

e Combined function bending magnets with curved edges
e Electrostatic deflectors

e Wien filters

e Wigglers

e Solenoids, various field configurations

e 3 tube electrostatic round lens, various configurations

e Exact fringe fields to all of the above

e Fast fringe ficlds (SYSCA)

e General clectromagnetic element (measured data)

e (Glass lenses, mirrors, prisms with arbitrary surfaces
e Misalignments: position, angle, rotation

All can be computed to arbitrary order, and the dependence on any of
their parameters can be computed.
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THE COSY LANGUAGE

e Structured Language with nesting of procedures
e Object oriented; allows direct DA and picture variables

e I'low control statements including optimization

BEGIN ;
VARIABLE ;
PROCEDURE ; ENDPROCEDURE
FUNCTION ; ENDFUNCTION ,

<assignments>

<procedure calls>

IF ENDIF
WHILE ; ENDWHILE ;
LOOP ; ENDLOOP ;
FIT , ENDFIT ;
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SYMMETRY-BASED THEORY

Generic transfer matrix of a cell, in the usual canonical
coordinates, and mass and charge as parameters.

Only midplane and time-independence symmetry is
assumed.

7 = (x,a,y,b,0d,0m,0q)

([ (zlz) (xla) O 0 (x|0) (x|om) (x|0g)
(alz) (ala) 0O 0 (ald) (aldm) (aldy)
0 0 (yly) (o) 0 0 0
M=| o0 0 (bly) () 0 0 \
0 0 0 0 1 0 0
0 0 0 0 0 1 0
\ 0 0 0 0 0 0 1)
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MATRIX OF REVERSED AND TOTAL SYSTEMS

0 0 (blb)  (y|b) 0 0 0
M, = 0 0 (bly) (¥ly) 0 0 0
0 0 0 0 | 0 0
0 0 0 0 0 1 0
\ 0 0o 0o 0 0 0 1 )
( 1 0 0 0O 0 0 O \
0O -1 0 O 0 0 O
O 0 1 0 0 0 O .
R=| 0o 0 0 -1 0 0 o M, ., = MM. = MRM 'R
tot r
O 0 O O 1 0 O
O 0 O O 0 1 0
\o0 0 0 0 0 0 1
(z|z) (ala) + (z]a) (alz) 2 (za) (ala) 0 0 2(ald) (zla) 2(aldm) (z|a) 2(aldy) (z|a)
2 (z|z) (alz) (z|z) (ala) + (z|a) (alz) 0 0 2(ald) (zlz) 2(aldm) (z|z) 2(aldy) (z|z)
0 0 (yly) (b]b) + (y[b) (Bly) 2 (y[b) (b]b) 0 0 0
Moy = MM, = 0 0 2 (yly) (bly) (yly) (b[b) + (y[b) (Bly) 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
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PossIBLE FORWARD CELL SOLUTIONS (1)

Simplest (only 4 quads) non-symmetric solution

«Advantages: simple, good linear resolution, small intrinsic aberrations, small
vertical envelope

-Disadvantages: large horizontal envelope, difficult to correct the aberrations
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PossIBLE FORWARD CELL SOLUTIONS (2)

Simple symmetric solution with intermediate vertical image

«Advantages: small vertical envelope

-Disadvantages: reduced resolution, large horizontal envelope, large aberrations
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PossIBLE FORWARD CELL SOLUTIONS (3)

Simple symmetric solution without intermediate images

«Advantages: best linear resolution, intrinsic aberrations not too large,
acceptable horizontal envelope

-Disadvantages: large vertical envelope
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PossIBLE FORWARD CELL SOLUTIONS (4)

Symmetric solution, not parallel-to-parallel vertically

«Advantages: good linear resolution, small horizontal and vertical envelopes

-Disadvantages: larger intrinsic aberrations
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FIRST ORDER SOLUTION
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NONLINEAR CASE

MR =MoR—-—RoM
If [M,R] =0 = Myt =1

Map elements appearing in the commutator are:
* in X and y: all map elements that are odd ina and b

 in @ and b: all map elements that are eveninaand b
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MAP ELEMENTS OF THE COMMUTATOR

e (X|...)
— First order: (x|a)
— Second order: (x|xa), (x|ao), (x|yb)
— Third order: (x|xxa), (x|xad), (x|xyb), (x|aaa), (x|ayy), (x|abb), (x|a60), (x|ybd)
e (a|...)
— First order: (a|x), (ald)
— Second order: (a|xx), (a|xd), (alaa), (a]yy), (a|bb), (a|0d)
— Third order: (a|xxx), (a|]xx0), (a|xaa), (a|xyy), (a|xbb), (a|x60), (a|aad), (ajayb),
(alyyo), (a|bbo), (alooo)
* Wl-)
— First order: (y|b)
— Second order: (y|xb), (y|ay), (y|bo)

— Third order: (y|xxb), (y|xay), (y|xbd), (y|aab), (y|ayd), (y|yyb), (y|bbb), (y|bdd)
I (o] )

— First order: (bly)

— Second order: (b|xy), (bjab), (b]yo)

— Third order: (b|xxy), (b|xab), (b|xyo), (b|aay), (b|abd), (b|yyy), (b|ybb), (b|y60)
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INTERRELATIONSHIPS DUE TO SYMPLECTICITY (1)

e This allows for 9 commutator elements to be minimized by only minimizing
4,

— (ajaa)~(x|xa)
— (x|[yb)~(blab)~(y|ay)
— (albb)~(y[xb)
— (alyy)~(b|xy)

e These elements do not appear in the commutator:
—  (a|xa)~(x|xx)
— (alad)~(x|xo)
— (x[bb)~(y|ab)
— (xlyy)~(bjay)
— (b|bo)~(y|yo)
— (alyb)~(b[xb)~(y|xy)

~ means proportional
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INTERRELATIONSHIPS DUE TO SYMPLECTICITY (2)

* (x|xxa)~(a|xaa)

* (ajaad)~(x|xad)

*  (xxyb)~(aayb)~(b[xab)~(y|xay)
* (x|ayy)~(b|aay)

* (x[ybo)~(bjabo)~(y|ayo)
* (ajxyy)~(b|xxy)

* (alyyo)~(b[xyo)

* (al|xbb)~(y|xxb)

* (a/bbd)~(y|xbo)

* (x|abb)~(y|aab)

*  (ylyyb)~(b[ybb)
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ACCEPTANCE PLOTS — NO WEDGE

4t order

Acceptance

MAX VALUES
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OPTICS OF (ONE-STAGE) FRAGMENT

SEPARATORS

Whole system mirror symmetric w.r.t the middle of the wedge

Target First half Wedge Second half Slit

The idea is to take a high order achromat an insert the wedge such that
as many symmetry properties as possible are maintained.

Moreover, some of the remaining aberrations may be eliminated by
properly shaping the wedge.
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MAPS INVOLVED

« Map of the wedge is a drift with a complicated energy component

 Map of the separator up to the wedge (from achromat theory)

» Map of the whole system
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LINEAR THEORY

 Transfer matrix of the whole system

Gl leld) G150 + (010),. — TP

1= (216) (5l),, DRI GIP 0 o
0 1 0O O 0
0 0 1 O 0
0 0 0 1 0
- @la),, L @la), — @l 0 0 (o) @l),, + (o),

Conditions imposed

- i

Maih\li\de effect of the ( (010),, o000 \
wedge is to insrease the 8 (1) (1) 8 8
ification (beside 0 0 0 1 0
cing'mass and \ —@lz), 0 0 0 1 )
charge“dispersions)

Jan 21, 2010 High-Order Achromatic Optics 35




SECOND ORDER ANALYTIC THEORY (1)

The second order part of M;,; is complicated. However, under the linear
constraints and x;,y; — O the results simplify to

Lf =2 (5’3|aa)tot a? + (37|a5)tot a;0; + (x|bb>tot b? + (:U‘(S(S)tot 57;27

ar —2 0,
Yr —2 07
by =5 0,

5 =2 (8laa),,, a; + (8]ad),,, a;8; + (5]|bb), , b; + (5|59),,, 67,
where the x ¢ elements in the total map are
I%
4
(z|ad)pr = luw (8lz2),, (216)° — (8|za),, (2|8)° + %w (0]z0),, (x]d) — (4]ad),, (x]d),
(2[0b),o, = (x|bb) [1 — (4]0)] + (3]6D),, (x]0)
(€186) 0, = (]00) [1 — (3|8)] + (8|w),,, (2]6)” + (8|w0),, (x]6)" + (5]60),, (x9),

(zlaa),,, = (z]|aa) [1 = (4]0),,] (Olzz),, (z|) + %w (0]za),, (x]|9) + (6laa),, (x|9),

and similarly complicated functions for (4]...),,.
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SECOND ORDER ANALYTIC THEORY (2)

Using the four free knobs, the following solution eliminates all second order
aberrations, including the energy aberrations of the form (J]...):

(alaa) = o= | % Olea), + gy Olad), — 15y (Glad),, — (Glaa), |

(z|bb) = @),

(z|60) = (5|i;-) {(x)j) (S|za),, — <x2|5) (6|zd),, — (ﬂf) (6|ad),, — (5|55)w:| :
_ (4|za),,  (0|z6),  (6|ad),,

Olez) = =% = 5@ T 1, @|6)°

/Best practical alternative: since (x|ad) is always small anyway,\

just fit (x|aa), (x|bb) and wedge curvature to cancel (x|aa)
(X|bb),,; and (x|0d),.,. This requires 2 additional sextupoles per cell
\or neglecting a couple of angular aberrations! )
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ARBITRARY ORDER NUMERICAL

PROCEDURE

Algorithm for the map of the absorber:
Entrance and exit shapes regarded as curved surfaces
Project particle trajectories onto these sections
Compute the distance between them in DA

Solve the following equation in DA for the final energy
dispersion (use DA inversion)

Range(E;) — [T hickness(z;) + Range(E )] =0

Using the distance result and the solution of the above
equation compute Transport map

Apply coordinate transformation to canonical COSY
coordinates
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THICKNESS AS A DA VARIABLE

S, (X,y) — exit
face equation

S.,(X,y) — entrance
face equation

v
(7]

. y
%

Thickness seen by reference particle

Thickness seen by any other particle is the length of the red line: computed in DA by
knowing the equation of the line, the thickness seen by the reference particle, and the
equations of the entrance and exit faces of the absorber
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PRELIMINARY DESIGN

M First

Oider

Seco1a
Ovaer

Third
Oider
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5™ ORDER ACCEPTANCE PLOTS — WITH WEDGE

Wedge thickness = 30% of range

Acceptance

MAX VALUES
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COSY INFINITY AND EXTENSIONS
£ Beam Opticsj

Energy loss
and various

stragglings

ATIMA

/Fragmentation

CcCOSY
Master

cross-sections
and

kinematics

o ]

>~
EPAX
Fireball

Extended
COSY

A

GLOBAL

'

Charge State
Distributions

3

Wedge maps,

Monte Carlo
absorbers
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Cross-
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~

New
code
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EXTENSION VARIANTS

[ Extended COSY }
I |
: Run in hybrid
[ Run in Map Mode J [ Map-Monte Carlo Mode }
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MONTE CARLO CODE DEVELOPMENT
CODE FLoOwW CHART

Average thickness of material
seen by each isotope calculated

Calculation of charge states via
GLOBAL

Transport all particles to end of slice Calculation of energy loss and energy
and angular straggling via ATIMA

Fragmentation: cross sections
Determine how many of each given by EPAX
fragment is produced

Fission: cross sections given by
polynomial interpolations (MCNPX)

Fragmentation:
Fireball method

Determine coordinates of ne

Create and delete particles particles from parent

Fission: Polynmomial
Interpolations (MCNPX)
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TRANSMISSION OF OTHER ISOTOPES AS A
FUNCTION OF PRODUCTION MECHANISM

Production Mechanism Isotope Transmission (%)
Light Fragmentation “Be 90.6
Heavy Fragmentation 91.0
Light Fission BN;i 21.5
Heavy Fission 428y 42.9
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Number of Protons
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Number of Protons
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SEPARATION PURITY 1°0SN

First Stage —

Stable nuclei

Nuclei known I-pl'Of::‘Ss
.
to exist ke

neutron star
processes

D ———
Number of Neutrons

Second Stage

1OOSn

: Separation Purity=7.7x10°%

N

15 20 25 30 35 40 45 50

55

|Separation Purity=7.5%

High-Order Achromatic Optics




SEPARATION PURITY OF VARIOUS ISOTOPES

Production Isotope | First Stage | Second

Mechanism Separation | Stage
Purity (20) | Separation

Purity (20)

Light 14Be 100

Fragmentation

Heavy 1005 7.73x10° 7.5

Fragmentation

Light Fission 78N 2.79x10104 | 3.64x1073

Heavy Fission | 1323n 1.15 4.04

Heavy Fission [ 199Ta 8.35x103 10.8
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COMPUTATIONAL CHALLENGES

e Running time 2.5 days
— On a typical PC

— Pushed particles by 3 order maps in vacuum
and Monte-Carlo in materials

— 104 initial macro-particles representing 108
total primary beam particles

— n-step reactions followed up to n=10 In the
target and n=5 in the wedges

— Artificially enhanced cross-sections in a box In
the N-Z plane around 132Sn
e Total dataset size at the end of the run
was 20 GB
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12AXE(245MEV/U)+7L1I(A50MG/ CM2)— 100GN

e First Stage
— Separation Purity= 7.73 x 107
— Transmission= 40.5%

e Second Stage
— Separation Purity= 7.47 %
— Transmission= 11.6%

e Cross section 190Spn=7.12 x 10° mb

e To produce one 9Sn particle in the target, 3.79 x 1012 primary beam
particles must be used.

 Taking into account transmission losses, to have 1000 '°Sn particles at the
end of the second stage 3.27 x 1016 primary beam particles must be used.

e DOE Grand Challenge problem, extreme scale computing
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COSY IN LARGE SCALE MODELING

e Parallelization of COSY
— Stage 1 finished: MPI-based
e PLOOP concept (see below)
e Allows parallel single particle tracking and map-based
optimization
— Stage 2 in progress at MSU: OPEN-MP-based
e Parallelization of COSY’s low level DA tools
e Potentially more powerful, but less simple and robust
e The PLOOP Concept

— A new loop that, instead of being executed sequentially, is
executed in parallel if the environment happens to be
parallel

— Syntax:
» PLOOP <Processor number> <Lower> <Upper=>
» ENDPLOOP <Array>
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Extended

COSY
3_D Magnetic SUPER- Map extr:—_lctlon
Field Compu- from arbitrary
. COSY :
tation fields
New optimization
methods
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Rare isotopes are of great current interest in nuclear physics
for pure and applied science applications

There are facilities currently operating, under construction
and planned that are interested in experiments with rare isotope
beams

Designing, modeling, and improving rare isotope separators
require high fidelity simulations

We developed an integrated beam optics-nuclear processes
framework in COSY Infinity to address this need

Designed preliminary versions of high quality separators based
on transfer maps, DA methods and several symmeitries

Applied it to a preliminary version of FRIB with very good results

Work continuing towards:
— Enhancing modeling, optimization and large scale computing capabilities
— Applications to the MSU FRIB and other facilities
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