LHeC Recirculator with Energy Recovery – Beam Optics Choices

Alex Bogacz

in collaboration with

Frank Zimmermann and Daniel Schulte

Thomas Jefferson National Accelerator Facility

Accelerator Seminar, CERN/JLAB, Oct. 7/14, 2010

LHeC Challenge

Add an electron beam to the LHC

- Next generation e[±]p collider
- e[±] polarized beam
- eA collider

Rich physics program: eq physics at TeV energies

- precision QCD & electroweak physics
- boosting precision and range of LHC physics results
- beyond the Standard Model
- high density matter: low x and eA

Tevatron/LEP/HERA (Fermiscale) \rightarrow LHC/LC/LHeC (Terascale) 100 fold increase in luminosity, in Q^2 and 1/x w.r.t. HERA

Kinematics & Motivation (60 GeV x 7 TeV ep)

√s>> 1 TeV

- High mass (M_{eq}, Q²) frontier
- EW & Higgs
- Q² lever-arm at smallest up to x near to 1 → PDFs
- Low x frontier [x below 10⁻⁶ at Q² ~ 1 GeV²]

ightarrow novel QCD ...

A. Polini

4

Linac-Ring Configurations

Design Parameters

RR	LR ERL	LR
60	60	140
17	10	0.44
5 - 40	90	90
26	2.0	1.6
10	0.3	0.3
25	50	50
0.58, 0.29	0.05	0.1
30, 16	7	7
0.18, 0.10	0.12	0.14
0.93	0	0
0.77	0.91	0.94
N/A	N/A	10
N/A	N/A	5
N/A	94%	N/A
131	6.6	5.4
100	100	100
	RR 60 17 5 - 40 26 10 25 0.58, 0.29 30, 16 0.18, 0.10 0.93 0.77 N/A N/A 131 100	RRLR FRL606017105 - 4090262.0100.325500.58, 0.290.0530, 1670.18, 0.100.120.9300.770.91N/AN/AN/AN/AN/A94%1316.6100100

proton beam	RR	LR
bunch pop. [10 ¹¹]	1.7	1.7
tr.emit.γε _{x,y} [μm]	3.75	3.75
spot size σ _{x,y} [μm]	30, 16	7
β* _{x,y} [m]	1.8,0.5	0.1 ^{\$}
bunch spacing	25	25
[ns]		

smaller LR *p*-β* value than for nominal LHC (0.55 m): - reduced *I** (23 → 10 m) - only one *p* beam squeezed - IR quads as for HL-LHC

In progress last update 8.7.2010

RR = Ring – Ring LR = Linac –Ring ERL= Energy Recovery Linac

Linac-Ring Configuration

Energy Recovery Recirculating Linacs - Motivation

In Future high energy (multi-tens of GeV), high current (tens of milli-Amperes) beams would require gigaWatt-class RF systems in conventional linacs – a prohibitively expensive proposition. However, invoking energy recovery alleviates extreme RF power demands; required RF power becomes nearly independent of beam current, which improves linac efficiency and increases cost effectiveness.

Energy recovering linacs promise efficiencies of storage rings, while maintaining beam quality of linacs: superior emittance and energy spread and short bunches (sub-pico sec.).

RLAs that use superconducting RF structures can provide exceptionally fast and economical acceleration to the extent that the focusing range of the RLA quadrupoles allows each particle to pass several times through each highgradient cavity.

 GeV scale energy recovery demonstration with high ratio of accelerated-to-recovered energies (50:1) was carried out on the CEBAF RLA (2003)

Thomas Jefferson National Accelerator Facility

Overview - Design Choices

- Examples of ER RLA's
 - CEBAF ER Exp & Jlab's FEL
- Multi-pass linac Optics in ER mode
 - Choice of linac Optics 130^o FODO vs 'No quad' focusing
 - Choice of quad gradient profile in the linacs
 - Single pass wake-field effects
 - Linear lattice: 3-pass 'up' + 3-pass 'down'
- Arc-to-Linac Synchronization Momentum compaction
 - Quasi-isochronous lattices
 - Choice of Arc Optics -135⁰ FODO vs FMC (Flexible Momentum Compaction)
- Arc Optics Choice Emittance preserving lattices
 - Various flavors of FMC lattices in the second stability region (Im. γ_t , DBA, TEM)
- Emittance dilution & momentum spread due to quantum excitations
 - Magnet apertures

Jefferson Lab

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

LHeC Recirculator with ER

Operated by JSA for the U.S. Department of Energy

CEBAF - ER Experiment (2003)

Operated by JSA for the U.S. Department of Energy

Transverse beam profiles

Beam viewer near the exit of the South Linac

Operated by JSA for the U.S. Department of Energy

RF Response to Energy Recovery

Gradient modulator drive signals with and without energy recovery in response to 250 μsec beam pulse entering an RF cavity

Operated by JSA for the U.S. Department of Energy

JLAMP – RLA FEL with ER

Jefferson Lab -

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Linacs – LHeC Recirculator with ER

Operated by JSA for the U.S. Department of Energy

Linac Optics – 130^o FODO Cell

E = 0.5 GeV

Operated by JSA for the U.S. Department of Energy

Linac 1 – Focusing profile

E = 0.5 – 10.5 GeV

18 FODO cells (18 2 16 = 576 RF cavities)

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Linac 3 (Linac 1, pass 2) – Optics

Operated by JSA for the U.S. Department of Energy

Linac 1 – multi-pass + ER Optics

Operated by JSA for the U.S. Department of Energy

Linac 2 – Focusing profile

E = 10.5 - 0.5 GeV (ER)

18 FODO cells (18 2 16 = 576 RF cavities)

Linac 2 multi-pass optics with ER - mirror symmetric to Linac 1

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Linac 1 and 2 – Multi-pass ER Optics

Operated by JSA for the U.S. Department of Energy

Linac 1 – 'NO quad' focusing profile

E = 0.5 – 10.5 GeV

18 FODO cells (18 2 16 = 576 RF cavities)

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Linac 1 'NO quad' – Multi-pass ER Optics

'NO quad' vs 130⁰ FODO E = 0.5 - 10.5 GeV

Operated by JSA for the U.S. Department of Energy

Alex Bogacz Accelerator Seminar, CERN/JLAB, Oct. 7/14, 2010 24

Arcs – LHeC Recirculator with ER

Operated by JSA for the U.S. Department of Energy

Arc Optics - 135⁰ FODO Cell

50.5 GeV

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

135⁰ FODO Cell

$$H = \gamma D^2 + 2\alpha D D' + \beta D'^2$$

$$M_{56} = -\int \frac{D}{\rho} \, ds = -\theta_{bend} \left\langle D \right\rangle$$

$$M_{56} = 3.19 \times 10^{-2} \text{ m}$$

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

ogacz Accelerator Seminar, CERN/JLAB, Oct. 7/14, 2010

Quasi-isochronous condition – Arc into Linac

Momentum compaction

$$M_{56} = -\int \frac{D}{\rho} ds = -\theta_{bend} \langle D \rangle$$

$$\Delta C = -M_{56} \frac{\Delta p}{p}$$

$$\Delta \phi_{RF} = \frac{360 \times \Delta C}{\lambda_{RF}} = -\frac{360}{\lambda_{RF}} N_{cell} M_{56}^{cell} \frac{\Delta p}{p}$$

$$\frac{\Delta p}{p} = 3 \times 10^{-4}$$

$$\lambda_{RF} = 0.428 \text{ m}$$

$$N_{cell} = 60$$

$$M_{56}^{FODO} = 3.19 \times 10^{-2} m$$

$$\Delta \phi_{RF} = 0.5 \text{ deg}$$

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Emittance growth due to quantum excitations

$$\Delta \varepsilon^{N} = \frac{2}{3} C_{q} r_{0} \gamma^{6} I_{5}$$

$$C_{q} = \frac{55}{32\sqrt{3}} \frac{\hbar c}{mc^{2}} = 3.8319 \times 10^{-13} \text{ m},$$

$$r_{0} = 2.818 \times 10^{-15} \text{ m},$$

$$I_{5} = \int_{0}^{L} \frac{H}{|\rho|^{3}} ds = \frac{\theta \langle H \rangle}{\rho^{2}},$$

$$H = \gamma D^{2} + 2\alpha DD' + \beta D'^{2}$$

total bend of the arc : $\theta \in [0, 2\pi]$

$$\Delta \varepsilon^{N} = \frac{2}{3} C_{q} r_{0} \gamma^{6} \langle H \rangle \frac{\theta}{\rho^{2}}$$

$$\Delta \varepsilon^{N} = \frac{55 r_{0}}{48\sqrt{3}} \frac{\hbar c}{mc^{2}} \gamma^{6} \langle H \rangle \frac{\theta}{\rho^{2}}$$

for $180^{\circ} arc: \theta = \pi$ at 50.5 GeV $\square \checkmark$ $\langle H \rangle = 2.2 \times 10^{-2}m$ $\Delta \varepsilon^{N} = 82 \ micron \ rad$

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

gacz Accelerator Seminar, CERN/JLAB, Oct. 7/14, 2010

Momentum spread due to quantum excitations

$$\frac{\Delta\sigma_E^2}{E^2} = \frac{55\alpha}{48\sqrt{3}} \left(\frac{\hbar c}{mc^2}\right)^2 \gamma^5 \int_0^L \frac{1}{\rho^3} ds$$

$$\int_0^L \frac{1}{\left|\rho\right|^3} ds = \frac{\theta}{\rho^2},$$

total bend of the arc : $\theta \in 0, 2\pi$

$$\frac{\Delta \sigma_E^2}{E^2} = \frac{55\alpha}{48\sqrt{3}} \left(\frac{\hbar c}{mc^2}\right)^2 \gamma^5 \frac{\theta}{\rho^2}$$

for
$$180^\circ$$
 arc : $\theta = \pi$

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

Quasi-isochronous FMC Cell

Operated by JSA for the U.S. Department of Energy

Thomas Jefferson National Accelerator Facility

31 Accelerator Seminar, CERN/JLAB, Oct. 7/14, 2010

Alex Bogacz

Arc Optics – 135^o FODO vs FMC Cell

Jefferson Lab

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

Quasi-isochronous condition – Arc into Linac

Operated by JSA for the U.S. Department of Energy

FMC 'Imaginary y_t' Cell

50.5 GeV

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Jefferson Lab

FMC 'Double Bend Achromat' Cell

50.5 GeV

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Jefferson Lab

FMC 'Theoretical Emittance Minimum' Cell

50.5 GeV

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Jefferson Lab

Arc Optics – Cumulative emittance growth

$$\Delta \varepsilon^{N} = \frac{2}{3} C_{q} r_{0} \gamma^{6} \langle H \rangle \frac{\pi}{\rho^{2}}, \qquad H = \gamma D^{2} + 2\alpha D D' + \beta D'^{2}$$

Arc 1, Arc2

total emittance increase (all 5 arcs):

 $\Delta \varepsilon_x^{N} = 1.25 \times 4.5 \ \mu m rad = 5.6 \ \mu m rad$

Jefferson Lab

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Highest Arc Optics – Emittance growth

 $\Delta \varepsilon^{N} = \frac{2}{3} C_{q} r_{0} \gamma^{6} \langle H \rangle \frac{\pi}{\rho^{2}}$ $\frac{\Delta \sigma_E^2}{E^2} = \frac{55\alpha}{48\sqrt{3}} \left(\frac{\hbar c}{mc^2}\right)^2 \gamma^5 \frac{\theta}{\rho^2}$ 50.5 GeV, $\gamma = 10^5$ 20 **TEM-like Optics** BETA_X&Y[m] DISP_X&Y[m] DISP Y BETA X BETA Y DISP_X 209

emittance increase (last arc):

 $\Delta \epsilon_x^{N}$ = 4.5 μ m rad

RMS fluctuations of $\Delta E/E0 = 2.7 \times 10^{-4}$

total emittance increase (all 6 arcs):

 $\Delta \varepsilon_x^{N}$ = 1.25 × 4.5 µm rad =5.6 µm rad

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Arc 5 – Beam envelopes, Magnet apertures

Last pass before IR, 50.5 GeV

 ϵ_x^{N} = 50 µm rad

∆p/p= 2.7 × 10⁻⁴

Jefferson Lab

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Arc 1 – Beam envelopes, Magnet apertures

ER lowest pass, 10.5 GeV

 ε_x^{N} = 200 µm rad $\Delta p/p= 5 \times 10^{-4}$

Operated by JSA for the U.S. Department of Energy

Conclusions

- Proof-of-existence ER RLAs: Jlab FEL, CEBAF-ER
- Solution for Multi-pass linac Optics in ER mode
 - Choice of linac Optics 130⁰ FODO
 - Linear lattice: 3-pass 'up' + 3-pass 'down'
 - Optimized quad gradient profile in the linacs (single-pass wake-field effects)
- Arc-to-Linac Synchronization Momentum compaction
 - Quasi-isochronous lattices
 - Choice of Arc Optics Flexible Momentum Compaction
- Arc Optics Choice Emittance preserving lattices
 - Arcs based on variations of FMC optics (Im. γ_t , DBA, TEM)
- Acceptable level of emittance dilution & momentum spread
 - Magnet apertures

Thomas Jefferson National Accelerator Facility