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Outline of the Talk

* Coherent Synchrotron Radiation (CSR):

* Physical problem
« Mathematical problem

« Computational problem
« Two approaches: point-to-point (P2P) and mean field (MF)

* We present reasons why we choose do develop a MF code from an
existing P2P code designed by Rui Li
« Demand for increased sensitivity necessitates numerical noise removal

« Wavelet Methodology

* Brief outline of wavelets
« Wavelet denoising: examples and applications

« Harnessing the power of wavelets: past, present and the future

* Summary



Coherent Synchrotron Radiation:
A Physical Problem

 When a charged particle beam travels along a curved trajectory
(bending magnet), beam emits synchrotron radiation

» If the wavelength A of synchrotron radiation is longer than the bunch
length o, the resulting radiation is coherent synchrotron radiation (CSR)
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 Incoherent synchrotron radiation: largely cancels out

« Coherent synchrotron radiation: has systematic effects



Coherent Synchrotron Radiation:
A Physical Problem

* CSR is the low frequency (long wavelength) part of the power spectrum
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Power Spectrum

short bunch

w (log)
Frequency

> oJ (Os > og)
N particles in the bunch act in phase and enhance intensity by a factor N
(typically N=10-10")

« Therefore for shorter bunch (O‘S small), CSR is more pronounced



Coherent Synchrotron Radiation:
A Physical Problem

Short bunch lengths are desirable in many different contexts:

* FEL require high peak current for a given bunch charge

- ERL often require a short duration of radiation

» B-factories and linear colliders require short bunch to achieve higher
luminosities

The demand for short bunches is expected to increase in the future
This presents a problem:

short beam bunch = CSR is dominant =
— beam is a subject to adverse CSR effects

Adverse CSR effects, which can seriously impair beam quality:
Energy change = energy spread = longitudinal instability (microbunching)
— emittance degradation

Having a trustworthy code to simulate CSR is of great importance



Coherent Synchrotron Radiation:
A Mathematical Problem

« Dynamics of an electron bunch is governed by
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Coherent Synchrotron Radiation:
A Computational Problem

 Storing and computing with a 4D (3 positions, 1 time) charge and
current densities is prohibitively expensive
= Need simplifications/approximations

* Possible simplifications to full dimensional CSR modeling:

* 1D line approximation (IMPACT, ELEGANT): probably too simplistic
« 2D approximation (vertically flat beam):
* codes by Li 1998, Bassi et al. 2006

- Based on how the DF (and, consequently, charge and current densities)
are represented, two approaches emerge:

* Point-to-point (tracking) methods: solving microscopic Maxwell's equation
using retarded potentials

* Mean field (PIC, grid, mesh) methods: solving Maxwell equation using
finite difference, finite element, Green's function, retarded potentials...



Coherent Synchrotron Radiation:
A Computational Problem

* Point-to-point approach (2D): Li 1998

N .
f(F,V,t :qu (P =7 (1)) 6 (V=—=—=) DF
(7, ¢) qu N (F =74 (1)) charge density
J(F,t =qu21Bo (6)n,(F=T (1)) current density
_(X_Xo(t))2+(y_YO(t))2
n(F-Fl()=—tge . .
m 0 o’ Gaussian macroparticle

« Charge density is sampled with N Gaussian-shaped 2D macroparticles
(2D distribution without vertical spread)

« Each macroparticle interact with each other one throughout history

 Expensive: computation of retarded potentials and self fields ~ O(N?)
= small number N = poor spatial resolution
= difficult to see small-scale structure

« While useful in obtaining low-order moments of the beam,
point-to-point approach is not optimal for studying CSR



Coherent Synchrotron Radiation:
A Computational Problem

* Mean field approach with retarded potentials (2D): Terzi€ & Li, in preparation

- ) DF (Klimontovich)
L N oh Y ) oo .
p(X,t)=q 2., |, 8(x—%(t)+X)p(X)d X charge density
N = (i h - N - .
J(%,00=q2. B ()], 6(%—%'()+X)p(X)dX current density

« Charge and current densities are sampled with N point-charges
(6-functions) & deposited on a finite grid X using a deposition scheme p(X)

« Two main deposition schemes: ool ' ' ]
- Nearest Grid Point (NGP) Nep
(constant: deposits to 1° points) B
- Cloud-In-Cell (CIC) p(x) <!
(linear: deposits to 2" points) o _ A . CIC
There exist higher-order schemes Thy  Eoh,2 oz xHh/2 o xth,

X — macroparticle location

® _ gridpoint location

» Particles do not directly interact with each other, but only through a
mean-field of the gridded representation



Coherent Synchrotron Radiation:
A Computational Problem

* Mean field approach with retarded potentials (2D): Terzi€ & Li, in preparation

(continued)

» Grid resolution is specified a priori (fixed grid) or changes as necessary

(adaptive grid)
« N : # of gridpoints in X

. NY . # of gridpoints in Y
« N =NX NY total gridpts

grid
® Grid: #E:[Xij’?ij]
i=1,.,N. j=1,.,N
X Y

- Inclination angle a

* Grid is determined so as to tightly envelope all particles
Minimizing number of empty cells = optimizing spatial resolution



Coherent Synchrotron Radiation:
A Computational Problem

* Mean field approach with retarded potentials (2D): Terzi€ & Li, in preparation
(continued)

« Computational cost:
* Particle deposition (yields charge and current densities on the grid):
- O(N) operations
 Integration over history (yields retarded potentials):
- O(Ngn, dz) operations

« Finite difference (yields self-forces on the grid):
- O(Ngn, d) operations

* Interpolation (yields self-forces acting on N individual particles)
- O(N) operations

« Total cost ~ O(Ngn_ dz) +O(N) operations (in realistic sim.: Ngn,d2> > N)

. Ngn, .and N should be chosen judiciously

 Favorable scaling allows for larger N, and reasonable grid resolution
= improved spatial resolution



Coherent Synchrotron Radiation:
A Computational Problem

* Point-to-point (P2P) Vs. Mean field (MF):
. Computational cost: O(N®) Vs. O(Ngn_ dz) +0O(N)

Fair comparison: P2P with N macroparticles and MF with N =N
EXACT Dist. 1 P2P N=32> SNR=2.53 MF N=50x32> SNR=13.89

« 2D grid: :
N =N =32

Signal-to-Noise Ratio

— \/ Z q;

q.=exact
q,=approx.

EXACT Dist. 2 P2P N=32> SNR=3.20 MF N=50x32> SNR=18.85

« MF approach provides superior spatial resolution to P2P approach
— Modify Rui Li's P2P CSR code into a MF




Coherent Synchrotron Radiation:
Numerical Noise in the Mean Field Simulations

« There are the two major sources of numerical noise in MF simulations:

. graininess of the distribution function: N _ << N

simulation physical

* discreteness of the computational domain: quantities defined on a finite grid

- One must first understand the profile of the numerical noise associated
with the discreteness of the computational in order to be able to remove it
 Systematic removal of numerical noise from the MF simulations leads to

physically more reliable results, equivalent to simulations with many more
particles



Coherent Synchrotron Radiation:
Numerical Noise in the Mean Field Simulations

- If many random realizations of a given particle distribution have are
deposited onto a grid, the number of particles in each gridpoint is
Poisson-distributed (variance = mean) = noise is signal-dependent

« Wavelet denoising is at its most powerful (and mathematically strongest
ground) when the noise is Gaussian-distributed (signal-independent, white)

+ Signal contaminated with Poissonian noise can be transformed to signal
with Gaussian noise by a variance-stabilizing Anscombe transform (1948):

3 Y, = signal with Poissonian noise
Y .=24Y ,+= . . . .
Q Y_ = signal with Gaussian noise
 After the transformation the noise in each gridpoint is (nearly) Gaussian-
distributed with variance o=1

 Essentially, we have pre-processed the signal before denoising it

- This error/noise estimate O is crucial for optimal wavelet noise removal
[For more details see Terzi¢, Pogorelov & Bohn 2007, PR STAB, 10, 034201]



Coherent Synchrotron Radiation:
Removing Numerical Noise from Mean Field Simulations
« It is desirable to remove noise from the MF simulations

less numerical noise < running simulations with more particles
— increased sensitivity to physical small-scale structure

* Noise removal from the MF simulations can be done in several ways:

» Particle deposition schemes:
* Higher order deposition schemes serve as smoothing filters
» Filtering:
* Savitzky-Golay smoothing filter (local polynomial regression)
* In Fourier space:
* Truncating the highest Fourier frequencies
* In wavelet space:
* Wavelet coefficient thresholding

« Wavelets provide a natural setting for judicious noise removal
(other methods indiscriminantly smooth over/truncate small scale structures)



Brief Overview of Wavelets

Wavelets: orthogonal basis composed of scaled and translated versions of

the same localized wavelet Y(x): e
k K2 koo . —» —
pE(x)=2"y (2 x—i) Kiez - e T
Transform _J*_
k , k Signal Constituent wavelets of different scales and positions
f<X>NZkZidi g (x)

Each new resolution level k is orthogonal to the previous levels
Daubachies 4™ order wavelet

Wavelets are derived from the "l

scaling function ¢ (x) which satisfies
¢ (X ) = \/E Z]h] ¢ (2 X— j) _Uj \ I-'Illll
w(x)=V2X,g9,¢(2x—j) L =

(only finite number of filter coefficients hj and g are non-zero: compact support)

In order to attain orthogonality of different scales, their shapes are strange
- Makes them suitable to represent irregularly shaped functions

For discrete signals (gridded quantities), fast Discrete Wavelet Transform
(DFT) is an O(MN) operation, M size of the wavelet filter, N signal size



Brief Overview of Wavelets

» Wavelet transform separates scales
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Brief Overview of Wavelets

* Advantages of wavelet formulation:

Wavelet basis functions have compact support = signal localized in space
Wavelet basis functions have increasing resolution levels

— signal localized in frequency
= simultaneous localization in space and frequency (FFT only frequency)

Wavelet basis functions correlate well with various signal types
(including signals with singularities, cusps and other irregularities)

= compact and accurate representation of data (compression)
Wavelet transform preserves hierarchy of scales

In wavelet space, discretized operators (Laplacian) are also sparse and have
an efficient preconditioner = solving some PDEs is faster and more accurate

Wavelets provide a natural setting for noise removal = wavelet denoising



Wavelet Denoising

* In wavelet space:

signal —> few large wavelet coefficients C,

noise —» many small wavelet coefficients C,

* Denoising by wavelet thresholding:
if |cij| <T,settoc, =0

* A great deal of study has been devoted to estimating optimal T

T= \/ 2log N\o' 4 4
grid 6f NG GF
2 4 2 4
(0=1 after Anscombe transtorm) & si 5 s
Denoising factor (DF): ;E [1}5
—2I—1I Y 2 3 —El—ll e 2 3
. ErrOroriginal 1072107 1 Tm 102 10 1072107 1 Tm 10% 10

E rror,, .. [Terzi¢, Pogorelov & Bohn 2007, PR STAB, 10, 034201]



Wavelet Denoising and Compression

 When the signal is known, one can SR K q,=exact
compute Signal-to-Noise Ratio (SNR): 2 (q-a) q;=dapprox.

e SNR ~ \/Nppc N_:avg. # of particles per cell N = N/N

PP PP cells



Wavelet Denoising and Compression

When the signal is known, one can SR K q,= exact
compute Signal-to-Noise Ratio (SNR): Bl > (q—q) 4= approx.
SNR ~ \/Nppc N_:avg. # of particles per cell N = N/N

PP pp cells
2D superimposed Gaussians on 256 X256 grid

ANALYTICAL



Wavelet Denoising and Compression

When the signal is known, one can - K .= exact
compute Signal-to-Noise Ratio (SNR): SNR= > (q—q) 4= approx.
SNR ~ VN __ N . avg. # of particles per cell N _.=N/N_.

2D superimposed Gaussians on 256 X256 grid

ANALYTICAL Nppc =3 SNR=2.02




Wavelet Denoising and Compression

When the signal is known, one can - 2.4 .= exact
compute Signal-to-Noise Ratio (SNR): SNR= > (q—q.) 4= approx.
SNR ~ VN __ N . avg. # of particles per cell N _.=N/N_.

2D superimposed Gaussians on 256 X256 grid

ANALYTICAL Nppc=3 SNR=2.02 Nppc=205 SNR=16.89




Wavelet Denoising and Compression

 When the signal is known, one can SR 2. q,= exact
compute Signal-to-Noise Ratio (SNR): > (g-q.7 q;=approx.

« SNR ~ VN N  :avg. # of particles percell N = N/N

ppc¢ pp PP cells
2D superimposed Gaussians on 256 X256 grid

ANALYTICAL Nppc=3 SNR=2.02 Nppc=205 SNR=16.89

« denoising by wavelet thresholding: if |cl_j| <T,settoO



Wavelet Denoising and Compression

* When the signal is known, one can VR 2. a; q,=exact
compute Signal-to-Noise Ratio (SNR): > (q-a.) ;= approx.
« SNR ~ VN N :avg. # of particles percell N = N/N
ppc ppc ppc cells
2D superimposed Gaussians on 256 X256 grid COMPACT: only 0.12% of coeffs
WAVELET THRESHOLDING»» DENOISED
ANALYTICAL N =3 SNR=2.02 N =205 SNR=16.89 | N =3 SNR=16383

 Wavelet denoising yields a representation which is:

- Appreciably more accurate than non-denoised representation

- Sparse (if clever, we can translate this sparsity in computational efficiency)



Harnessing the Power of Wavelets:
The Past

 We have already used wavelets in mean field solvers and will greatly
benefit from it in the current project:

— Terzi¢, Pogorelov & Bohn 2007:

* Designed a new 3D wavelet-based Poisson equation solver and optimized
it for use in PIC beam simulations

 Integrated the Poisson solver in beam code (IMPACT), benchmarked it
and used to model Fermilab/NICADD photoinjector
- First application of wavelets to 3D beam simulations

 We provide a detailed treatment of noise in PIC simulations and
implemented wavelet denoising
- Roadmap to follow in the current project

— Sprague 2008, Sprague & TerziC in preparation:
 Tutorial of for wavelet use in solving PDEs

* Enhanced the original solver by implementing adaptive grid
- Will use this to further improve spatial resolution in our MF code



Harnessing the Power of Wavelets:
The Present

e [ am currently involved in two projects which bring CSR and wavelets
together:

— Collaboration with Rui Li on modifying her 2D CSR P2P code into a MF
code:

« Wavelet denoising of the representation is already implemented
(can be turned on and off, enabling a clear comparison)

* We already ascertained that only a small fraction of coefficients on the
grid (<1% or so) is needed to accurately represent densities
— Can this translate into a more efficient code?

* Once the code is completed and tested, we will conduct a
comprehensive comparison of the effects of denoising:

— How much does wavelet denoising improve spatial resolution?

— How accurate is the wavelet denoised representation?



Harnessing the Power of Wavelets:
The Present

— Bassi & Terzi¢ 2009:

e Improved particle representation in Bassi's 2D CSR code by replacing
analytic cosine expansion with a wavelet approximation

— Better spatial resolution (needed to study microbunching)
— Appreciably more accurate (after wavelet thresholding)
— Orders of magnitude faster

Flat-top with sinusoidally modulated frequency
e How accurately can small-scale (FERMI@ELETTRA first bunch compressor)

structures be represented by
an approximation?

— Analytic Monte Carlo cosine
— Simple grid

— Thresholded FFT (grid)

— Thresholded wavelet (grid)
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Harnessing the Power of Wavelets:
The Present

— Bassi & Terzi¢ 2009:

e Improved particle representation in Bassi's 2D CSR code by replacing
analytic cosine expansion with a wavelet approximation

— Better spatial resolution (needed to study microbunching)

— Appreciably more accurate (after wavelet thresholding)

— Orders of magnitude faster
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Harnessing the Power of Wavelets:
The Present

— Bassi & Terzi¢ 2009:

e Improved particle representation in Bassi's 2D CSR code by replacing
analytic cosine expansion with a wavelet approximation

— Better spatial resolution (needed to study microbunching)
— Appreciably more accurate (after wavelet thresholding)
— Orders of magnitude faster
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grid resolution: N =128, N =1024



Harnessing the Power of Wavelets:
The Future

* In the future, we plan to further harness the power of wavelets:

- Translate sparsity of operators and datasets in wavelet space to
computational efficiency

 Fast application of discretized operators
 Efficient preconditioners for other operators?
 Fast interpolation of discrete data from sparse wavelet representation

— Use adaptive grid in wavelet-based methods to increase spatial resolution

- Explore applicability of what we have learned about wavelets to other PDEs



Summary

We presented two computational approaches to simulating CSR: P2P
and MF

- Demonstrated that the MF approach is better because of:
 Better spatial resolution (a “must” for small-scale instabilities)
» Better scaling with the number of particles N

— We are now working on converting Rui Li's P2P code into a MF code
(We hope to start benchmarking it within the next few months)

Compare with Bassi's 2D CSR code for consistency

Closing in on our intermediate goal: having an accurate, efficient and
trustworthy code which faithfully simulates CSR

Long-term goal: being able to quantitatively simulate CSR in real
machines, as a first step toward controlling its adverse effects



Auxiliary Slides



Multi-Resolution Analysis and Wavelets

Multi-Resolution Analysis (MRA) is a decomposition of Hilbert space L*(R)
into a chain of closed subspaces V: 0c..cV_,cV,cV,c..cL’(R)

Define an associated sequence of subspaces W as an orthogonal
complementof V. inV: V=V, +w, Also: V=X, W,

J

A set of dilations and translations of the scaling function ¢ (x):

{ij( )=2 le(l)(ij—k)}keZ

forms an orthonormal basis of VJ

A set of dilations and translations of the wavelet function @(x):

{QU{((X ) — 2j/2 L:U ( 2] x— k) }kez Quadrature Mirror Filters H= {hk}, G={gk}
. used in the Discrete Wavelet Transform
forms an orthonormal basis of W] (only few of them are non-zero: compact support)
/
They satisfy refinement relations: O()=N2Eh(2x—k) g —(—1)n,
Y(x)= \/ZZkgk(zx k)

Projection of function f(x) onto VJ :
(P f)(x)= k625]¢k< Xx)= Zj'<j2kezdl; (I)li(x)



How Do Wavelets Work?

Wavelet analysis (wavelet transform):

S LIT TP ]

1 ,, | S - signal
1A L B A - approximation
A > EEEEEEEE D - detail
¥ ¥ *

~{A - |D ENEEEEEE

¥ Y ¥

Approximation — apply low-pass filter to Signal and down-sample
Detail — apply high-pass filter to Signal and down-sample

Wavelet synthesis (inverse wavelet transform): up-sampling & filtering
Complexity: 4MN, M the size of the wavelet, N number of cells

- Recall: FFT complexity 4N log N



Wavelet Decomposition

The continuous wavelet transform of a function f(t) is
y(s,7)=] f()w, (1)di

wm(t>=%w

\)

T
t__

\)

W ( [ ) mother wavelet with scale and translation dimensions s and T
respectively

— N 4

Signal Constituent wavelets of different scales and positions

Transform

Wavelst + A}“‘V
“"uﬂv
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Harnessing the Power of Wavelets:
The Present

— Bassi & Terzi¢ 2009:

e Improved particle representation in Bassi's 2D CSR code by replacing
analytic cosine expansion with a wavelet approximation

— Better spatial resolution (needed to study microbunching)
— Appreciably more accurate (after wavelet thresholding)

- Orders of magnitude faster
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N=10° cosine expansion: N =40, M =100

grid resolution: N =128, N =1024



Numerical Noise in PIC Simulations
In wavelet space:

signal —> few large wavelet coefficients C,

noise —» many small wavelet coefficients C,

. . . Anscombe transformation . .
Poissonian noise s Gaussian noise

Denoising by wavelet thresholding:
if |cij| <T,settoc =0 (choose threshold T carefully!)

A great deal of study has been devoted to estimating optimal T

TE - TE :
GE _ : ] BE _ : ;
@\/ logN D—» E N,=5 NGP N, =5 CIC
~ [ t in ~ ,E L -
 4F - ~ 4F - J
. . Q " ' ~ I '
(0 was estimated earlier) < : =
2f ; 5 2
—————————————— w/ Anscombe transformation 1k ]
— w/out Anscombe transformation ak ] af : _
{1 I [ v I ("I [ ralR v 0™ " A [ Il v e
'y T

Terzic, Pogorelov & Bohn 2007, PR STAB, 10, 034201



Coherent Synchrotron Radiation:
Numerical Noise in the Mean Field Simulations

For NGP, at each gridpoint, density dist. is Poissonian:
P=(n! )_ln;.l e n is the expected number in j™cell; ninteger

For CIC, at each gridpoint, density dist. is contracted Poissonian:
P=(n!)"(an,)'e™  a=(2/3)""*'~0.54(3D),0.67(2D),0.82(1D)
[For more details see Terzi¢, Pogorelov & Bohn 2007, PR STAB, 10, 034201]

* Measure of error (noise) in depositing macroparucles onto a grid:

2 A2
Qtotal 2 a Qtotal

2
gl’ld Z Var ql O-NGP_ NNgrid O-CIC: NN

grid

where ¢ = (Q_ /N )n , Q__ total charge

This error/noise O estimate is crucial for optimal noise removal

- Signal with Poissonian noise can be transformed to the signal with
Gaussian noise by Anscombe transformation:

, 3 Y = signal with Poissonian (multiplicative) noise
Y= \/YP +§ Y_ = signal with Gaussian (additive) noise
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