# Simulations of Coherent Synchrotron Radiation and Wavelet Methodology

#### Balša Terzić

Beam Physics and Astrophysics Group NICADD, Northern Illinois University

Jefferson Lab Seminar June 4, 2009

#### **Outline of the Talk**

- Coherent Synchrotron Radiation (CSR):
  - Physical problem
  - Mathematical problem
  - Computational problem
    - Two approaches: point-to-point (P2P) and mean field (MF)
    - We present reasons why we choose do develop a MF code from an existing P2P code designed by Rui Li
    - Demand for increased sensitivity necessitates numerical noise removal
- Wavelet Methodology
  - Brief outline of wavelets
  - Wavelet denoising: examples and applications
  - Harnessing the power of wavelets: past, present and the future
- Summary

### Coherent Synchrotron Radiation: A Physical Problem

- When a charged particle beam travels along a curved trajectory (bending magnet), beam emits synchrotron radiation
- If the wavelength  $\lambda$  of synchrotron radiation is longer than the bunch length  $\sigma_s$ , the resulting radiation is coherent synchrotron radiation (CSR)



- Incoherent synchrotron radiation: largely cancels out
- Coherent synchrotron radiation: has systematic effects

### Coherent Synchrotron Radiation: A Physical Problem

• CSR is the low frequency (long wavelength) part of the power spectrum



- *N* particles in the bunch act in phase and enhance intensity by a factor *N* (typically  $N=10^9-10^{11}$ )
- Therefore for shorter bunch ( $\sigma_{s}$  small), CSR is more pronounced

### Coherent Synchrotron Radiation: A Physical Problem

- Short bunch lengths are desirable in many different contexts:
  - FEL require high peak current for a given bunch charge
  - ERL often require a short duration of radiation
  - B-factories and linear colliders require short bunch to achieve higher luminosities
- The demand for short bunches is expected to increase in the future
- This presents a problem:

```
short beam bunch \Rightarrow CSR is dominant \Rightarrow
```

- ⇒ beam is a subject to adverse CSR effects
- Adverse CSR effects, which can seriously impair beam quality:
   Energy change ⇒ energy spread ⇒ longitudinal instability (microbunching)
   ⇒ emittance degradation
- Having a trustworthy code to simulate CSR is of great importance

### Coherent Synchrotron Radiation: A Mathematical Problem

Dynamics of an electron bunch is governed by

$$\frac{d}{dt}(\gamma m_e \vec{v}) = e(\vec{E} + \vec{\beta} x \vec{B}) \qquad \vec{\beta} = \vec{v}/c \vec{E} = \vec{E}^{ext} + \vec{E}^{self} \vec{B} = \vec{B}^{ext} + \vec{B}^{self}$$

- $\vec{E}^{ext}$ ,  $\vec{B}^{ext}$ : external EM fields
- $\vec{E}^{self}$ ,  $\vec{B}^{self}$ : self-interaction (CSR)

$$\vec{E}^{self} = -\vec{\nabla} \phi - \frac{1}{c} \frac{\partial \vec{A}}{\partial t}$$
$$\vec{B}^{self} = \vec{\nabla} \times \vec{A}$$

where 
$$\phi(\vec{r},t) = \int \frac{d\vec{r}'}{|\vec{r}-\vec{r}'|} \rho(\vec{r}',t')$$
 retarded potentials  $\vec{A} = \frac{1}{c} \int \frac{d\vec{r}'}{|\vec{r}-\vec{r}'|} \vec{J}(\vec{r}',t')$   $t'=t-\frac{|\vec{r}-\vec{r}'|}{c}$ 

charge density: 
$$\rho(\vec{r},t) = \int f(\vec{r},\vec{v},t) d\vec{v}$$
 current density:  $\vec{J}(\vec{r},t) = \int \vec{v} f(\vec{r},\vec{v},t) d\vec{v}$ 





Need to know the history of the bunch

beam distribution function (DF):  $f(\vec{r}, \vec{v}, t)$ 

- Storing and computing with a 4D (3 positions, 1 time) charge and current densities is prohibitively expensive
  - ⇒ Need simplifications/approximations
- Possible simplifications to full dimensional CSR modeling:
  - 1D line approximation (IMPACT, ELEGANT): probably too simplistic
  - 2D approximation (vertically flat beam):
    - codes by Li 1998, Bassi et al. 2006
- Based on how the DF (and, consequently, charge and current densities) are represented, two approaches emerge:
  - *Point-to-point (tracking) methods*: solving microscopic Maxwell's equation using retarded potentials
  - *Mean field (PIC, grid, mesh) methods*: solving Maxwell equation using finite difference, finite element, Green's function, retarded potentials...

• Point-to-point approach (2D): Li 1998

$$\begin{split} f(\vec{r}\,,\vec{v}\,,t) &= q \sum_{i=1}^{N} n_{m} (\vec{r}\,-\vec{r}_{0}^{(i)}(t)) \,\delta(\vec{v}\,-\frac{\vec{v}_{0}^{(i)}(t)}{c}) & \text{DF} \\ \rho(\vec{r}\,,t) &= q \sum_{i=1}^{N} n_{m} (\vec{r}\,-\vec{r}_{0}^{(i)}(t)) & \text{charge density} \\ \vec{J}\,(\vec{r}\,,t) &= q \sum_{i=1}^{N} \vec{\beta}_{0}^{(i)}(t) n_{m} (\vec{r}\,-\vec{r}_{0}^{(i)}(t)) & \text{current density} \\ n_{m} (\vec{r}\,-\vec{r}_{0}^{(i)}(t)) &= \frac{1}{2\pi\sigma_{m}^{2}} e^{-\frac{(x-x_{0}(t))^{2}+(y-y_{0}(t))^{2}}{2\sigma_{m}^{2}}} & \text{Gaussian macroparticle} \end{split}$$

- Charge density is sampled with *N* Gaussian-shaped 2D macroparticles (2D distribution without vertical spread)
- Each macroparticle interact with each other one throughout history
- Expensive: computation of retarded potentials and self fields  $\sim O(N^2)$ 
  - $\Rightarrow$  small number  $N \Rightarrow$  poor spatial resolution
  - ⇒ difficult to see small-scale structure
- While useful in obtaining low-order moments of the beam, point-to-point approach is not optimal for studying CSR

• Mean field approach with retarded potentials (2D): Terzić & Li, in preparation

$$f(\vec{x}, \vec{v}, t) = q \sum_{i=1}^{N} \delta(\vec{r} - \vec{r}_{0}^{(i)}(t)) \delta(\vec{v} - \frac{\vec{v}_{0}^{(i)}(t)}{c}) \qquad \text{DF (Klimontovich)}$$
 
$$\rho(\vec{x}_{\vec{k}}, t) = q \sum_{i=1}^{N} \int_{-h}^{h} \delta(\vec{x}_{\vec{k}} - \vec{x}_{0}^{(i)}(t) + \vec{X}) p(\vec{X}) d\vec{X} \qquad \text{charge density}$$
 
$$\vec{J}(\vec{x}_{\vec{k}}, t) = q \sum_{i=1}^{N} \vec{\beta}_{0}^{(i)}(t) \int_{-h}^{h} \delta(\vec{x}_{\vec{k}} - \vec{x}_{0}^{(i)}(t) + \vec{X}) p(\vec{X}) d\vec{X} \qquad \text{current density}$$

- Charge and current densities are sampled with N point-charges ( $\delta$ -functions) & deposited on a finite grid  $\vec{x_k}$  using a deposition scheme  $p(\vec{X})$ 
  - Two main deposition schemes:
    - Nearest Grid Point (NGP) (constant: deposits to 1<sup>D</sup> points)
    - Cloud-In-Cell (CIC)

       (linear: deposits to 2<sup>D</sup> points)

       There exist higher-order schemes



• Particles do not directly interact with each other, but only through a mean-field of the gridded representation

- *Mean field approach with retarded potentials (2D)*: Terzić & Li, in preparation (continued)
  - Grid resolution is specified *a priori* (fixed grid) or changes as necessary

(adaptive grid)

- $N_X$ : # of gridpoints in X
- $N_{Y}$ : # of gridpoints in Y
- $N_{grid} = N_X N_Y$  total gridpts
- Grid:  $\vec{x}_{\vec{k}} = [\tilde{X}_{ij}, \tilde{Y}_{ij}]$  $i = 1,..., N_X$   $j = 1,..., N_Y$
- Inclination angle  $\alpha$



Grid is determined so as to tightly envelope all particles
 Minimizing number of empty cells ⇒ optimizing spatial resolution

- *Mean field approach with retarded potentials (2D)*: Terzić & Li, in preparation (continued)
  - Computational cost:
    - Particle deposition (yields charge and current densities on the grid):
      - O(N) operations
    - Integration over history (yields retarded potentials):
      - $O(N_{grid}^2)$  operations
    - Finite difference (yields self-forces on the grid):
      - $O(N_{grid})$  operations
    - Interpolation (yields self-forces acting on *N* individual particles)
      - O(N) operations
    - Total cost  $\sim O(N_{grid}^2) + O(N)$  operations (in realistic sim.:  $N_{grid}^2 >> N$ )
  - $N_{grid}$  and N should be chosen *judiciously*
  - Favorable scaling allows for larger *N*, and reasonable grid resolution
    - ⇒ improved spatial resolution

- Point-to-point (P2P) Vs. Mean field (MF):
  - Computational cost:  $O(N^2)$  Vs.  $O(N_{grid}^2) + O(N)$

<u>Fair comparison</u>: P2P with N macroparticles and MF with  $N_{grid} = N$ 

• 2D grid:  $N_x = N_y = 32$ 







Signal-to-Noise Ratio

$$SNR = \sqrt{\frac{\sum_{i} \bar{q}_{i}^{2}}{\sum_{i} (q_{i} - \bar{q}_{i})^{2}}}$$

 $\bar{q}_i = exact$  $q_i = approx$ .







- MF approach provides superior spatial resolution to P2P approach
  - → Modify Rui Li's P2P CSR code into a MF

### Coherent Synchrotron Radiation: Numerical Noise in the Mean Field Simulations

- There are the two major sources of numerical noise in MF simulations:
  - graininess of the distribution function:  $N_{\text{simulation}} << N_{\text{physical}}$
  - discreteness of the computational domain: quantities defined on a finite grid
- One must first understand the profile of the numerical noise associated with the discreteness of the computational in order to be able to remove it
- Systematic removal of numerical noise from the MF simulations leads to physically more reliable results, equivalent to simulations with many more particles

### Coherent Synchrotron Radiation: Numerical Noise in the Mean Field Simulations

- If many random realizations of a given particle distribution have are deposited onto a grid, the number of particles in each gridpoint is Poisson-distributed (variance = mean)  $\Rightarrow$  noise is *signal-dependent*
- Wavelet denoising is at its most powerful (and mathematically strongest ground) when the noise is Gaussian-distributed (signal-independent, white)
- Signal contaminated with Poissonian noise can be transformed to signal with Gaussian noise by a variance-stabilizing *Anscombe transform* (1948):

$$Y_G = 2\sqrt{Y_P + \frac{3}{8}}$$
  $Y_P = \text{signal with Poissonian noise}$   $Y_G = \text{signal with Gaussian noise}$ 

- After the transformation the noise in each gridpoint is (nearly) Gaussian-distributed with variance  $\sigma$ =1
- Essentially, we have pre-processed the signal before denoising it
- This error/noise estimate  $\sigma$  is crucial for optimal wavelet noise removal [For more details see Terzić, Pogorelov & Bohn 2007, PR STAB, 10, 034201]

### Coherent Synchrotron Radiation: Removing Numerical Noise from Mean Field Simulations

- It is desirable to remove noise from the MF simulations less numerical noise ⇔ running simulations with more particles
  - ⇒ increased sensitivity to physical small-scale structure
- Noise removal from the MF simulations can be done in several ways:
  - Particle deposition schemes:
    - Higher order deposition schemes serve as smoothing filters
  - Filtering:
    - Savitzky-Golay smoothing filter (local polynomial regression)
  - In Fourier space:
    - Truncating the highest Fourier frequencies
  - In wavelet space:
    - Wavelet coefficient thresholding
- Wavelets provide a natural setting for judicious noise removal (other methods indiscriminantly smooth over/truncate small scale structures)

#### **Brief Overview of Wavelets**

• Wavelets: orthogonal basis composed of scaled and translated versions of

the same localized wavelet  $\psi(x)$ :

$$\psi_i^k(x) = 2^{k/2} \psi(2^k x - i) \quad k, i \in \mathbb{Z}$$
$$f(x) \approx \sum_k \sum_i d_i^k \psi_i^k(x)$$



- Each new resolution level *k* is orthogonal to the previous levels
- Wavelets are derived from the scaling function  $\phi(x)$  which satisfies

$$\phi(x) = \sqrt{2} \Sigma_j h_j \phi(2x - j)$$

$$\psi(x) = \sqrt{2} \Sigma_j g_j \phi(2x - j)$$



(only finite number of filter coefficients  $h_j$  and  $g_j$  are non-zero: *compact support*)

- In order to attain orthogonality of different scales, their shapes are strange
   Makes them suitable to represent irregularly shaped functions
- For discrete signals (gridded quantities), fast Discrete Wavelet Transform (DFT) is an O(MN) operation, M size of the wavelet filter, N signal size

### **Brief Overview of Wavelets**

• Wavelet transform separates scales



#### **Brief Overview of Wavelets**

- Advantages of wavelet formulation:
  - Wavelet basis functions have compact support ⇒ signal localized in space
     Wavelet basis functions have increasing resolution levels
    - ⇒ signal localized in frequency
    - *⇒ simultaneous localization in space and frequency* (FFT only frequency)
  - Wavelet basis functions correlate well with various signal types (including signals with singularities, cusps and other irregularities)
    - ⇒ compact and accurate representation of data (compression)
  - Wavelet transform *preserves hierarchy of scales*
  - In wavelet space, discretized operators (Laplacian) are also sparse and have an efficient preconditioner  $\Rightarrow$  *solving some PDEs is faster and more accurate*
  - Wavelets provide a natural setting for noise removal  $\Rightarrow$  wavelet denoising

### **Wavelet Denoising**

- In wavelet space:
  - signal  $\rightarrow$  few large wavelet coefficients  $c_{ij}$
  - noise  $\rightarrow$  many small wavelet coefficients  $c_{ii}$
- Denoising by wavelet thresholding:

if 
$$|c_{ij}| < T$$
, set to  $c_{ij} = 0$ 

• A great deal of study has been devoted to estimating optimal *T* 

$$T = \sqrt{2\log N_{grid}} \sigma$$

( $\sigma$ =1 after Anscombe transform)

Denoising factor (*DF*):

$$DF = \frac{Error_{original}}{Error_{denoised}}$$



[Terzić, Pogorelov & Bohn 2007, PR STAB, 10, 034201]

When the signal is known, one can compute Signal-to-Noise Ratio (SNR):  $SNR = \sqrt{\frac{\sum_{i} \bar{q}_{i}^{2}}{\sum_{i} (a_{i} - \bar{a}_{i})^{2}}} \qquad \bar{q}_{i} = exact$ compute *Signal-to-Noise Ratio (SNR)*:

$$SNR = \sqrt{\frac{\sum_{i} \bar{q}_{i}^{2}}{\sum_{i} (q_{i} - \bar{q}_{i})^{2}}} \qquad \bar{q}_{i} = exact$$

$$q_{i} = approximation q_{i}$$

• 
$$SNR \sim \sqrt{N_{ppc}}$$
  $N_{ppc}$ : avg. # of particles per cell  $N_{ppc} = N/N_{cells}$ 

When the signal is known, one can compute Signal-to-Noise Ratio (SNR):  $SNR = \sqrt{\frac{\sum_{i} \bar{q}_{i}^{2}}{\sum_{i} (q_{i} - \bar{q}_{i})^{2}}} \qquad \bar{q}_{i} = exact$ compute *Signal-to-Noise Ratio (SNR)*:

$$SNR = \sqrt{\frac{\sum_{i} \bar{q}_{i}^{2}}{\sum_{i} (q_{i} - \bar{q}_{i})^{2}}} \qquad \qquad \bar{q}_{i} = exact$$

$$q_{i} = approx$$

•  $SNR \sim \sqrt{N_{ppc}}$   $N_{ppc}$ : avg. # of particles per cell  $N_{ppc} = N/N_{cells}$ 2D superimposed Gaussians on 256×256 grid

#### **ANALYTICAL**



• When the signal is known, one can compute *Signal-to-Noise Ratio (SNR)*:

SNR = 
$$\sqrt{\frac{\sum_{i} \bar{q}_{i}^{2}}{\sum_{i} (q_{i} - \bar{q}_{i})^{2}}}$$
  $\bar{q}_{i} = exact$ 
 $q_{i} = approx.$ 

•  $SNR \sim \sqrt{N_{ppc}}$   $N_{ppc}$ : avg. # of particles per cell  $N_{ppc} = N/N_{cells}$ 2D superimposed Gaussians on 256×256 grid



• When the signal is known, one can compute *Signal-to-Noise Ratio (SNR)*:

SNR = 
$$\sqrt{\frac{\sum_{i} \bar{q}_{i}^{r}}{\sum_{i} (q_{i} - \bar{q}_{i})^{r}}}$$
  $\bar{q}_{i} = exact$ 
 $q_{i} = approx.$ 

•  $SNR \sim \sqrt{N_{ppc}}$   $N_{ppc}$ : avg. # of particles per cell  $N_{ppc} = N/N_{cells}$ 2D superimposed Gaussians on 256×256 grid





$$N_{\rm ppc} = 3 SNR = 2.02$$



$$N_{\rm ppc} = 205 \ SNR = 16.89$$



• When the signal is known, one can compute *Signal-to-Noise Ratio (SNR)*:

SNR = 
$$\sqrt{\frac{\sum_{i} \bar{q}_{i}^{2}}{\sum_{i} (q_{i} - \bar{q}_{i})^{2}}}$$
  $\bar{q}_{i} = exact$ 
 $q_{i} = approx.$ 

•  $SNR \sim \sqrt{N_{ppc}}$   $N_{ppc}$ : avg. # of particles per cell  $N_{ppc} = N/N_{cells}$ 2D superimposed Gaussians on 256×256 grid



• denoising by wavelet thresholding: if  $|c_{ij}| < T$ , set to 0

When the signal is known, one can compute *Signal-to-Noise Ratio (SNR)*:

**ANALYTICAL** 

$$SNR = \sqrt{\frac{\sum_{i} \bar{q}_{i}^{2}}{\sum_{i} (q_{i} - \bar{q}_{i})^{2}}} \qquad q_{i} = exact$$

$$q_{i} = approx.$$

 $SNR \sim \sqrt{N_{_{\mathrm{ppc}}}}$  $N_{\rm ppc}$ : avg. # of particles per cell  $N_{\rm ppc} = N/N_{\rm cells}$ COMPACT: only 0.12% of coeffs

2D superimposed Gaussians on 256×256 grid



- Wavelet denoising yields a representation which is:
  - Appreciably more accurate than non-denoised representation
  - Sparse (if clever, we can translate this sparsity in computational efficiency)

- We have already used wavelets in mean field solvers and will greatly benefit from it in the current project:
  - Terzić, Pogorelov & Bohn 2007:
    - Designed a new 3D wavelet-based Poisson equation solver and optimized it for use in PIC beam simulations
    - Integrated the Poisson solver in beam code (IMPACT), benchmarked it and used to model Fermilab/NICADD photoinjector
      - First application of wavelets to 3D beam simulations
    - We provide a detailed treatment of noise in PIC simulations and implemented wavelet denoising
      - Roadmap to follow in the current project
  - Sprague 2008, Sprague & Terzić in preparation:
    - Tutorial of for wavelet use in solving PDEs
    - Enhanced the original solver by implementing adaptive grid
      - Will use this to further improve spatial resolution in our MF code

- I am currently involved in two projects which bring CSR and wavelets together:
  - Collaboration with Rui Li on modifying her 2D CSR P2P code into a MF code:
    - Wavelet denoising of the representation is already implemented (can be turned on and off, enabling a clear comparison)
    - We already ascertained that only a small fraction of coefficients on the grid (<1% or so) is needed to accurately represent densities
      - Can this translate into a more efficient code?
    - Once the code is completed and tested, we will conduct a comprehensive comparison of the effects of denoising:
      - How much does wavelet denoising improve spatial resolution?
      - How accurate is the wavelet denoised representation?

- Bassi & Terzić 2009:
  - Improved particle representation in Bassi's 2D CSR code by replacing analytic cosine expansion with a wavelet approximation
    - Better spatial resolution (needed to study microbunching)
    - Appreciably more accurate (after wavelet thresholding)
    - Orders of magnitude faster
  - How accurately can small-scale structures be represented by an approximation?
    - Analytic Monte Carlo cosine
    - Simple grid
    - Thresholded FFT (grid)
    - Thresholded wavelet (grid)

Flat-top with sinusoidally modulated frequency (FERMI@ELETTRA first bunch compressor)



- Bassi & Terzić 2009:
  - Improved particle representation in Bassi's 2D CSR code by replacing analytic cosine expansion with a wavelet approximation
    - Better spatial resolution (needed to study microbunching)
    - Appreciably more accurate (after wavelet thresholding)
    - Orders of magnitude faster



Flat-top with sinusoidally modulated frequency (FERMI@ELETTRA first bunch compressor)



 $N=10^8$  cosine expansion:  $N_c=40$ ,  $M_c=100$  grid resolution:  $N_x=128$ ,  $N_z=1024$ 

- Bassi & Terzić 2009:
  - Improved particle representation in Bassi's 2D CSR code by replacing analytic cosine expansion with a wavelet approximation
    - Better spatial resolution (needed to study microbunching)
    - Appreciably more accurate (after wavelet thresholding)

- Orders of magnitude faster



 $N=10^8$  cosine expansion:  $N_c=40$ ,  $M_c=100$  grid resolution:  $N_x=128$ ,  $N_z=1024$ 

### Harnessing the Power of Wavelets: The Future

- In the future, we plan to further harness the power of wavelets:
  - Translate sparsity of operators and datasets in wavelet space to computational efficiency
    - Fast application of discretized operators
    - Efficient preconditioners for other operators?
    - Fast interpolation of discrete data from sparse wavelet representation
  - Use adaptive grid in wavelet-based methods to increase spatial resolution
  - Explore applicability of what we have learned about wavelets to other PDEs

### Summary

- We presented two computational approaches to simulating CSR: P2P and MF
  - Demonstrated that the MF approach is better because of:
    - Better spatial resolution (a "must" for small-scale instabilities)
    - Better scaling with the number of particles *N*
  - We are now working on converting Rui Li's P2P code into a MF code (We hope to start benchmarking it within the next few months)
- Compare with Bassi's 2D CSR code for consistency
- Closing in on our intermediate goal: having an accurate, efficient and trustworthy code which faithfully simulates CSR
- Long-term goal: being able to quantitatively simulate CSR in real machines, as a first step toward controlling its adverse effects

## Auxiliary Slides

### Multi-Resolution Analysis and Wavelets

- Multi-Resolution Analysis (MRA) is a decomposition of Hilbert space  $L^2(\mathbf{R})$  into a chain of closed subspaces V:  $0 \subset ... \subset V_{-1} \subset V_0 \subset V_1 \subset ... \subset L^2(\mathbf{R})$
- Define an associated sequence of subspaces W as an orthogonal complement of  $V_{j-1}$  in  $V_j$ :  $V_j = V_{j-1} + W_j$  Also:  $V_j = \Sigma_{j' < j} W_{j'}$
- A set of dilations and translations of the *scaling function*  $\phi(x)$ :  $\{\phi_k^j(x)=2^{j/2}\phi(2^jx-k)\}_{k\in\mathbb{Z}}$  forms an orthonormal basis of  $V_j$ .
- A set of dilations and translations of the *wavelet function*  $\psi(x)$ :  $\{\psi_k^j(x)=2^{j/2}\psi(2^jx-k)\}_{k\in\mathbb{Z}}$ Quadrature Mirror Filters  $H=\{h_k\}$

forms an orthonormal basis of  $W_i$ .

Quadrature Mirror Filters  $H=\{h_k\}$ ,  $G=\{g_k\}$  used in the Discrete Wavelet Transform (only few of them are non-zero: *compact support*)

- They satisfy refinement relations:  $\phi(x) = \sqrt{2} \sum_{k} h_{k} \phi(2x-k)$   $\psi(x) = \sqrt{2} \sum_{k} g_{k} \phi(2x-k)$   $g_{i} = (-1)^{i} h_{1-i}$   $\psi(x) = \sqrt{2} \sum_{k} g_{k} \phi(2x-k)$ 
  - Projection of function f(x) onto  $V_i$ :

$$(P_{j}f)(x) = \sum_{k \in \mathbb{Z}} s_{j}^{k} \psi_{k}^{j}(x) = \sum_{j' < j} \sum_{k \in \mathbb{Z}} d_{j}^{k} \phi_{k}^{j}(x)$$

$$s_{k} = \int_{\infty}^{\infty} f(x) \phi_{k}^{j}(x) dx$$

$$d_{k} = \int_{\infty}^{\infty} f(x) \psi_{k}^{j}(x) dx$$

#### **How Do Wavelets Work?**

Wavelet analysis (wavelet transform):



- Approximation apply low-pass filter to Signal and down-sample
- Detail apply high-pass filter to Signal and down-sample
- Wavelet synthesis (inverse wavelet transform): up-sampling & filtering
- Complexity: 4MN, M the size of the wavelet, N number of cells
  - Recall: FFT complexity 4N log<sub>2</sub>N

### **Wavelet Decomposition**

The continuous wavelet transform of a function f(t) is

$$\gamma(s,\tau) = \int_{-\infty}^{\infty} f(t) \psi_{s,\tau}(t) dt$$

$$\psi_{s,\tau}(t) = \frac{1}{\sqrt{s}} \psi \left( t - \frac{\tau}{s} \right)$$

 $\psi(t)$  mother wavelet with scale and translation dimensions s and  $\tau$  respectively



- Bassi & Terzić 2009:
  - Improved particle representation in Bassi's 2D CSR code by replacing analytic cosine expansion with a wavelet approximation
    - Better spatial resolution (needed to study microbunching)
    - Appreciably more accurate (after wavelet thresholding)
    - Orders of magnitude faster



 $N=10^8$  cosine expansion:  $N_c=40$ ,  $M_c=100$  grid resolution:  $N_x=128$ ,  $N_z=1024$ 

#### **Numerical Noise in PIC Simulations**

- In wavelet space:
  - signal ightarrow few large wavelet coefficients  $c_{_{ij}}$
  - noise  $\rightarrow$  many small wavelet coefficients  $c_{ij}$
- Poissonian noise

Anscombe transformation

Gaussian noise

- Denoising by wavelet thresholding:
  - if  $|c_{ij}| < T$ , set to  $c_{ij} = 0$  (choose threshold T carefully!)
- A great deal of study has been devoted to estimating optimal *T*



Terzić, Pogorelov & Bohn 2007, PR STAB, 10, 034201

### Coherent Synchrotron Radiation: Numerical Noise in the Mean Field Simulations

• For NGP, at each gridpoint, density dist. is Poissonian:

 $P = (n!)^{-1} n_j^n e^{-n_j}$   $n_j$  is the expected number in  $j^{th}$  cell; n integer

• For CIC, at each gridpoint, density dist. is contracted Poissonian:

$$P = (n!)^{-1} (an_i)^n e^{-an_i}$$
  $a = (2/3)^{(D/2)} \sim 0.54 (3D), 0.67 (2D), 0.82 (1D)$ 

[For more details see Terzić, Pogorelov & Bohn 2007, PR STAB, 10, 034201]

• Measure of error (noise) in depositing macroparticles onto a grid:

$$\sigma^{2} = (N_{grid})^{-1} \sum_{i=1}^{N_{grid}} Var(q_i) \qquad \sigma_{NGP}^{2} = \frac{Q_{total}^{2}}{N N_{grid}} \qquad \sigma_{CIC}^{2} = \frac{a^{2} Q_{total}^{2}}{N N_{grid}}$$

where  $q_i = (Q_{total}/N)n_i$ ,  $Q_{total}$  total charge

- This error/noise  $\sigma$  estimate is crucial for optimal noise removal
- Signal with Poissonian noise can be transformed to the signal with Gaussian noise by *Anscombe transformation*:

$$Y_G = 2\sqrt{Y_P + \frac{3}{8}}$$
  $Y_P = \text{signal with Poissonian (multiplicative) noise}$   $Y_G = \text{signal with Gaussian (additive) noise}$