A prototype positron source for CEBAF as part of the ISU/JLab collaboration in accelerator physics and education

Giulio Stancari Idaho State University and Jefferson Lab

Jefferson Lab - Newport News, Virginia February 12, 2009

Facilities at Idaho State University

13 full-time faculty, all involved in nuclear-related fields:

- nuclear and particle physics
- accelerator applications
- radiation effects in materials and devices
- radiobiology
- health physics

Undergraduate program, ~100 students:

- Associate Degrees for technical careers
- BA in Physics for prospective teachers and bio-science careers
- BSc in Physics or Health Physics for applied physics and graduate school

Graduate program, ~70 students:

- MNS in Physics
- MSc in Applied Physics or Health Physics
- PhD in Applied Physics

Host US Particle Accelerator School at ISU/IAC in the future?

IAC Main Campus: Accelerator Lab #1

44-MeV Short Pulsed Linac

- 1.3 GHz L-band traveling-wave linac
- 50 ps to 4 μ s pulse width
- 120 Hz rep rate
- 5 nC/pulse (50 ps width)
- 2 μ C/pulse (4 μ s width)
- 4 MeV 44 MeV energy range
- 0.5% 4% energy resolution

Lab workhorse:

- neutron time-of-flight spectrometry
- laser Compton scattering

- ...

IAC Main Campus: Accelerator Lab #1

25-MeV Linac

- 2.8 GHz S-band standing-wave linac
- 0.5 μ s to 4 μ s pulse width
- 600 Hz rep rate
- 40 nC/pulse (0.5 μ s width)
- 350 nC/pulse (4 μ s width)
- 5 MeV 25 MeV energy range
- 5% energy resolution

Versatile machine:

- delayed neutron and gamma-ray signature for material identification
- irradiation damage testing on PbF₂ crystals for JLab Hall-A DVCS calorimeter
- wire detector efficiency measurements for CLAS12

IAC Main Campus: Accelerator Lab #2

777 sq ft hall for construction and testing of accelerator components

10 ft underground

25-MeV Linac similar to the one in Lab #1 under construction

Will be dedicated to laser Compton scattering:

- source of monochromatic X-rays
- laser-based beam diagnostics

IAC Main Campus: ISIS Lab

7700 sq ft high-bay lab

Idaho State Induction accelerator System (ISIS)

- high-intensity, pulsed-power machine
- 3-MeV electron injector
- 10-cell, spiral-shaped induction accelerator
- 9.5-MeV 10-kA 35-ns pulse every 2 min
- 0.1 TW instantaneous power!

- radiation effects in electronic and biological systems
- single-pulse detection of fissionable material

IAC Airport Facility

Located near Pocatello Regional Airport

- 20,000 sq ft high-bay space for large-scale system testing
- 15 acres of open area for field testing

Physical Sciences Building: HRRL Lab

- 400 sq ft accelerator hall

- 700 sq ft shielded experimental area

High Repetition Rate Linac (HRRL)

- 2.8 GHz S-band standing-wave linac
- 70 ns pulse width
- 1.2 kHz rep rate
- 8.4 nC/pulse
- 3 MeV 16 MeV energy range
- 8% energy resolution
- role of γ polarization in photofission
- calibration of CLAS12 wire chambers
- tests of positron production for CEBAF?

Studies on positrons for CEBAF

Scientific motivation: inner structure of the proton

Nucleon structure described by Generalized Parton Distributions (GPDs)

GPDs accessible by measuring amplitude of deeply virtual Compton scattering (DVCS) in the process $e\,p \to e\,p\,\gamma$

DVCS amplitude small compared to Bethe-Heitler amplitude, i.e., real photon radiated by incoming or scattered electron

Guichon, Prog. Part. Nucl. Phys. 41, 125 (1998)

Ji, Ann. Rev. Nucl. Part. Sci. <u>54</u>, 413 (2004)

Beam charge asymmetry related to real part of DVCS amplitude

$$\frac{d^5\sigma^+}{d\Omega^5} - \frac{d^5\sigma^-}{d\Omega^5} = 4 A_{\rm BH} \Re(A_{\rm DVCS})$$

BH process well understood => clean determination of DVCS amplitude

Beam helicity asymmetry related to imaginary part of DVCS amplitude

$$\frac{d^5 \overrightarrow{\sigma}}{d\Omega^5} - \frac{d^5 \overleftarrow{\sigma}}{d\Omega^5} = 2 A_{\rm BH} \Im(A_{\rm DVCS}) + 2 \Re(A_{\rm DVCS}) \Im(A_{\rm DVCS}). \tag{small}$$

=> Strong case for polarized positron beams (Dumas, Grames, Voutier) to control systematics in charge-asymmetry data

Scientific motivation: role of two-photon amplitudes in nucleon form factors

Jones et al., Phys. Rev. C 74, 032201 (2006)

Discrepancy between Rosenbluth separation and polarization transfer measurements probably due to two-photon processes

Hyde-Wright and de Jager, Ann. Rev. Nucl. Part. Sci. <u>54</u>, 217 (2004)

Carlson and Vanderhaeghen, Ann. Rev. Nucl. Part. Sci. <u>57</u>, 171 (2007)

Deviation from unity of ratio between elastic e⁺ p and e⁻ p scattering would be direct evidence of multiple photon exchange

Three proposed experiments:

- at VEPP-3 in Novosibirsk (arXiv:nucl-ex/0408020)
- at JLab with CLAS (proposal to PAC31, Dec '06)
- at DESY, with BLAST detector in DORIS ring (web.mit.edu/olympus)

IAC research program would benefit from intense source of positrons

Example: positron annihilation spectroscopy to detect material defects in bulk

Width of annihilation spectrum is related to microscopic structure

DeBenedetti et al., Phys. Rev. <u>76</u>, 440 (1949) Asoka-Kumar et al., J. Appl. Phys. <u>76</u>, 4935 (1994)

World's first 2-D defect density map in thick material obtained at IAC

Hunt et al., Nucl. Instrum. Meth. B <u>241</u>, 262 (2005)

β⁺ radioactive decay eg ²²Na, 2.6 y half life

Positron sources:

More common for accelerators:

pair production <= - higher phase-space density

- controllable time structure

"Conventional" sources (SLAC, KEK) and ILC designs exploit multi-GeV primary electron beams

Several people working on positron source for CEBAF:

- A. Freyberger, J. Grames, R. Kazimi (JLab)
- E. Voutier, J. Dumas (LPSC Grenoble)
- C. Hyde, S. Golge (ODU)
- T. Forest, G. Stancari (ISU)

Previous work by W. J. Kossler, A. J. Greer, and L. D. Hulett

Kossler et al., Nucl. Instrum. Meth. B 79, 345 (1993)

Concept of "low energy" positron source:

- 10-mA 10-MeV CW electron beam (JLab FEL injector)
- tungsten radiator target
- collection and energy selection with quadrupole triplets
- maximize yield in CEBAF admittance 200 π mm mrad (rms, normalized) transverse
 - ± 2% longitudinal

Advantages:

- below neutron activation threshold
- energy spread of positron limited by primary electron energy
- compact in size
- unique continuous source

Disadvantages:

- lower pair-production cross section
- large divergence of positron beam
- heat load on target

Calculations and simulations using GEANT4, G4BEAMLINE, DIMAD

Goal is to optimize yields and heat loads as a function of:

- electron beam energy
- target material and thickness
- beam incidence angle
- collection system

(Golge, Dumas)

Positrons emerging from radiator target

e⁻: 10 MeV, 0.5 mm rms W: 0.5 mm

Total forward production: 8E-4 e⁺/e⁻

Dumas, Internship Report, LPSC Grenoble, June 2007

Emerging paradigm:

- 10-mA 10-MeV primary electron beam, 0.5 mm rms transverse size
- 0.5 mm tungsten radiator target
- collection and momentum selection with quadrupole triplets

Sarma, J. Phys. D 36, 1896 (2003)

- water-cooled rotating tungsten wheel?
- liquid metal target?

Golge et al., Proc. of PAC07, p. 3133

Positrons after collimator

Yield into CEBAF: 20 nA e⁺ (2E-6 e⁺/e⁻) at 3 MeV/c

Golge et al., Proc. of PAC07, p. 3133

Bend l 10-MeV e 40 nA peak $_{2mm}$ \bigvee W4-mm rms spot 45Q2 Bend 2 L90Q1 L90Q2 Phosphorus Flag Pb wall Concrete Dirt Concrete Pb wall Pb wall -83cm 2mm² 54cm -26.3cm

(e)

First tests at IAC 25-MeV linac in Accelerator Lab #1

Feb '08 and May '08 (Forest, Freyberger, Golge)

Seen positron signal

Need to improve control and diagnostics

HRRL Lab at PSB to test prototype positron sources?

- maintain or improve electron and photon capability

- need to move HRRL? => dose measurements

- use existing dipoles and quads

- need correctors and diagnostics

EXPERIMENTAL AREA

TARGET

19 T/m, 1" quads

