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Motivation

« Studying dynamics of multi-particle systems (charged particle
beams, plasma, galaxies...) heavily relies on N-body simulations

* It is important for N-body codes to:

 be as efficient as possible, without compromising accuracy

« minimize numerical noise due to N << N

simulation physical

 account for multiscale dynamics

 for some applications: have a compact representation of history

* We present two orthonormal bases which, as a part of an N-body
code, address these requirements

 wavelet basis

* scaled Gauss-Hermite basis
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Outline of the Talk

Algorithms for N-body simulations

Wavelet basis

— brief overview of wavelets
- wavelet-based Poisson equation solver
— advantages

— applications

Scaled Gauss-Hermite basis
- mathematical formalism
— Poisson equation solver
— applications

 Discussion of further work
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Algorithms for N-body Simulations

e Direct summation: CPU cost scales as N*

» Tree: direct summation nearby and statistical treatment farther away

 Particle-In-Cell (PIC): particles binned in cells (grid)

system at t=t_

N macroparticles

Newton's equations
advance particles by At

system at t=t_+At

Terzié

interpolate to find
F for each particle
F=-V&
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bin macroparticles to obtain
particle distribution p
on a finite N XN XN grid
X y Z

l

solve the Poisson equation

- Ad=p

on a finite NXXNyXNZ grid
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Algorithms for N-body Simulations

 Alternative N-body algorithm: analytical function approximation

« analytical functions form a finite orthogonal basis

* N macroparticles, but no grid

system at t=t_

expand particle distribution p
N macroparticles » in a finite orthogonal basis

p(xy,2) =Eijk P llfl.jk(x,y, z)

l

Newton's equations differentiate to. get solve the I.’01sson equatl(?n
advance particles by At F for each particle A®=p in the same basis
F=-V& POoy,2) =2 Py ¥, 0.2
system at t=t_+At
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Algorithms for N-body Simulations

 Alternative N-body algorithm: analytical function approximation

« analytical functions form a finite orthogonal basis

* N macroparticles, but no grid

system at t=t_

N macroparticles

use scaled Gauss-Hermite basis

Newton's equations
advance particles by At

system at t=t_+At

Terzié

differentiate to get
F for each particle

=-Vo

t
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LoGiE M S

/expand particle distribution p
in a finite orthogonal basis

\p(x,y, 2)=3, Ukw (5y,2)

ijk

/‘ V_\\

solve the Poisson equation

A®=p in the same basis

POoy,2) =2, Py (0.2
N pd
\—/



Wavelets

* Wavelets: orthogonal basis composed of scaled and translated versions
of the same localized mother wavelet /(x) and the scaling function ¢(x):

w.k (.X) :2k/2 w (ka-i) Wavelet "
l :E‘.:ﬁ;.'?’.“? _+——\/\$f—— —_\/\Af\k —J*— o
fx) =59, () + S5, dy* (x) ——

Signal Constituent wavelets of different scales and positions

* Discrete Wavelet Transfrom (DFT) iteratively separates scales

— ~O(MN) operation, M size of the wavelet filter, N size of the signal
* Advantages:

- simultaneous localization in both space and frequency
— compact representation of data, enabling compression (FBI fingerprints)

— signal denoising: natural setting in which noise can be partially removed
denoised simulation <> simulation with more macroparticles
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Numerical Noise in PIC Simulations

* Any N-body simulation will have numerical noise
* Sources of numerical noise in PIC simulations:

— graininess of the distribution function: N << N

simulation physical

— discreteness of the computational domain: p and @ specified on a finite grid

* Each macroparticle is deposited onto a finite grid by either:
- Nearest Grid Point (NGP) dep. scheme

- Cloud-In-Cell (CIC) dep. scheme oF ' . -
£ d
Glgh | .-
ol” & i

r—h, zr—h /2 z x+h /2 z4+h,
Xx — marcoparticle location
® _ gridpoint location

Terzié JLab Beam Seminar, April 2008



Numerical Noise in PIC Simulations

* For NGP, at each gridpoint, particle dist. is Poissonian:
P=(n!)"'n"e " n is the expected number in j” cell;  n integer
J

* For CIC, at each gridpoint, particle dist. is contracted Poissonian:

P=(n!"(an Ve ™ a=(2/3)""?'~0.54(3D),0.67(2D),0.82(1D)
J
* Measure of error (noise) in depositing macroparticles onto a grid:
NG 2 ) 2
grid Q a Q
Dyt el 2, o total D e total
o _(Ngrid> ; Var(qi) O nop— NN Ocic™ NN

grid grid

where ¢ = (Q_ /N)n, Q total charge; Ngri , humber of gridpoints

(For more details see Terzi¢, Pogorelov & Bohn 2007, PR STAB, 10, 034201)

* This error/noise estimate is crucial for optimal wavelet-denoising

* IDEA: Solve the Poisson equation in such a way so as to minimize
numerical noise — USE WAVELETS
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Numerical Noise in PIC Simulations

* In wavelet space:

signal —> few large wavelet coefficients c,

noise —» many small wavelet coefficients C,

* Denoising by wavelet thresholding:
if |cij| < T, setto C, =0 (choose threshold T carefully!)

* A great deal of study has been devoted to estimating optimal T

3: NGP{ st CIC

Cr=2lieah, 0 >—> | | |
5 : = 4 = 4F
(0 was estimated earlier) B L v
& St & St
1f 14

S3 I P S I P

107510 1 10 10% 108 107107 1 10 0% 108
T T

Terzi¢, Pogorelov & Bohn 2007, PR STAB, 10, 034201
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Wavelet Denoising and Compression

* Whenever the discrete signal is analytically known, one can compute the
Signal-to-Noise Ratio (SNR) which measures its quality

e« SNR ~ \/Nppc N_:avg. # of particles percell N = N/N

PP PP cells
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Wavelet Denoising and Compression

* Whenever the discrete signal is analytically known, one can compute the
Signal-to-Noise Ratio (SNR) which measures its quality
e« SNR ~ \/Nppc N_:avg. # of particles percell N = N/N

PP PP cells
2D superimposed Gaussians on 256 X256 erid

ANALYTICAL
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Wavelet Denoising and Compression

* Whenever the discrete signal is analytically known, one can compute the
Signal-to-Noise Ratio (SNR) which measures its quality
e« SNR ~ \/Nppc N_:avg. # of particles percell N = N/N

PP PP cells
2D superimposed Gaussians on 256 X256 erid

ANALYTICAL Nppc =3 SNR=2.02
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Wavelet Denoising and Compression

Whenever the discrete signal is analytically known, one can compute the
Signal-to-Noise Ratio (SNR) which measures its quality
SNR ~ \/Nppc N_:avg. # of particles percell N = N/N

PP PP cells
2D superimposed Gaussians on 256 X256 erid

ANALYTICAL Nppc=3 SNR=2.02 Nppc=205 SNR=16.89
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Wavelet Denoising and Compression

* Whenever the discrete signal is analytically known, one can compute the
Signal-to-Noise Ratio (SNR) which measures its quality
e SNR ~ \/Nppc N :avg. # of particles percell N = N/N

pp PP cells
2D superimposed Gaussians on 256 X256 grid

ANALYTICAL Nppc=3 SNR=2.02 Nppc=205 SNR=16.89

» denoising by wavelet thresholding: if Icij |l<T,setto0
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Wavelet Denoising and Compression

* Whenever the discrete signal is analytically known, one can compute the
Signal-to-Noise Ratio (SNR) which measures its quality

e SNR ~ VN N :avg. # of particles percell N = N/N
ppc ppc ppc cells
2D superimposed Gaussians on 256 X256 grid COMPACT: only 0.12% of coeffs
WAVELET THRESHOLDING DENOISED
ANALYTICAL Npp =3 SNR=2.02 Npp =205 SNR=16.89 N =3 SNR=16.83
b ¢ ppe

» denoising by wavelet thresholding: if Icij |l<T,setto0

* Advantages: - increase in SNR by ¢ <> ¢* more macroparticles (here c=8.3, ¢?=69)
- compact storage in wavelet space (in this example 79/65536: 0.12%)
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Wavelet-Based Poisson Equation Solver

Poisson equation in physical space

Au=f

Preconditioned Conjugate Gradient
in wavelet space

l DWT

solution U on the
Nx><Ny><NZ grid

Terzié

BCs: using Green's funCtiOHS/v' LU=F
— o 2
u =8 k(L) ~ OV 2)

discretize Poisson equation
onaN XN XN grid
3¢ y Z

DWT

transform discretized
Poisson eq. to wavelet space

wavelet-threshold
source F , operator L

AX-B| <¢’|B|, =— AX=B

A compressed operator PL P

B denoised distribution PFW

X denoised solution P'lUW
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» L U =F

w W \%4%

v

(PLWP) P'lUW = PF

w

Precondition Laplacian LW

with diagonal preconditioner P

k(L)~OW?
k (PL_P) ~ O(N)

] physical space
] wavelet space




F- LUy,

Preconditioned Conjugate Gradient (PCG)

convergence rate depends on condition number k  |u—u', < Vi1 Iul
Ve+1
preconditioning (diagonal in wavelet space): k ~ O(Nxz) — k~ O )
good initial approximation: solution at previous time step
5
10 ! ! ! ! ! ! ! 0
1 : : , I e e e j .
.| =~ non-preconditioned — U=0 initial guess
~ preconditioned — good initial guess
; ~ better initial guess
10 Fro e e L AROITINEE RRERIRERE B . E ' :
\\ 1|:| .................................................................................
. T : : o
D N : =
: N : o]
h : o
= e o
L [ i R SR R R I R """ HH"‘» """ il 1D-1EI ..............................................................................
10 1 1 1 1 1 1 1 10 1 I I 1
10 20 30 40 50 60 70 80 10 20 30 40 50
i [iteration #] # of iterations
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* convergence rate depends on condition number k  |u—ul|, <

* preconditioning (diagonal in wavelet space):

* good initial approximation: solution at previous time step

100

T T T
BD .........................................................................................
1 S T P =
W |
» ;
8 _ ||
ﬁ 50 e e e A e S A e S e A -
ik
2
(5 5|:|' ................................................................................... -
&
o :
i 4|:| ........................................... ............................................
(=] ¥
* :
I S e I .......................................... -
ED ........................................... ......................................... ]
1|:|_ .......................................... ........................................... -
| 1 | 1 I | | | |
200 400 GO0 800 1000 1200 1400 1600 1800 2000
simulation step #
Terzic

Preconditioned Conjugate Gradient (PCG)

typical realistic beam simulation

l

PRy
f+1
k~ON? — k~ON)

average over
30000-step run

no preconditioning
U'=0 initial guess 75.2
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Preconditioned Conjugate Gradient (PCG)

* convergence rate depends on condition number k

* preconditioning (diagonal in wavelet space): k ~

* good initial approximation: solution at previous time step

typical realistic beam simulation

a0 T ! ! ! I ! T T !

# of PCQ iterations

200 400  BOO 800 1000 1200 1400 1600 1800 2000
simulation step #
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TR e L
e

ON?) — k~ON)

average over
30000-step run

no preconditioning
U'=0 initial guess 75.2

preconditioned
U'=0 initial guess

60.7



Preconditioned Conjugate Gradient (PCG)

* convergence rate depends on condition number k  |u—u, < \/\/: |u|
k+1
* preconditioning (diagonal in wavelet space): k ~ O(Nxz) — k ~ O(Nx)

* good initial approximation: solution at previous time step
daverage over

typical realistic beam simulation 30000-step run

L.t Sl S S T S
. ' ' .4 | ' ' ' no preconditioning
U'=0 initial guess 75.2

preconditioned
U'=0 initial guess

60.7

no preconditioning

U'=U"" initial guess 4.8

# of PCQ iterations

200 400  BOO 800 1000 1200 1400 1600 1800 2000
simulation step #
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Preconditioned Conjugate Gradient (PCG)

* convergence rate depends on condition number k

* preconditioning (diagonal in wavelet space):

* good initial approximation: solution at previous time step

typical realistic beam simulation

100 T T T T T T T T T

[= 0l SR 1 ....... ¥ ........ ........ . ........ ........ ........ ......... ........ -. ........

# of PCQG iterations

1000
simulation step #

400 GO0 aao 1200 1400 1g00 1800

Terzié

2000

TR e L
e

k~ON? — k~ON)

average over
30000-step run

no preconditioning

U'=0 initial guess 75.2
preconditioned
U'=0 initial guess 60.7
no preconditionin

4 3 4.8

U'=U"" initial guess

preconditioned 9.4
U'=U"" initial guess '

considerable computational speedup

(Terzic, Pogorelov & Bohn 2007)
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Using PCG in Numerical Simulations

* Our goal: develop wavelet-based Poisson solver which can easily be
integrated into existing PIC codes

* First: test the PCG as a stand-alone solver on examples from:

— beam dynamics

— galactic dynamics

* Second: insert the PCG Poisson solver into an existing PIC code

(IMPACT-T) and run realistic charged particle beam simulations
(Terzi¢, Pogorelov & Bohn 2007, PR STAB, 10, 034201)

- compare (conventional FFT-based) IMPACT-T Vs. IMPACT-T with PCG:
* rms properties
* level of detail

* computational speed
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Conventional IMPACT-T vs. IMPACT-T with PCG
Code Comparison: rms Properties

Good agreement
to a few percent

Terzié

Fermilab/NICADD photoinjector 32x32x32 grid 1 nC charge

1.52 nz,n {mmj_”__ .

18]

rms beam radius

oy (mm)
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Conventional IMPACT-T vs. IMPACT-T with PCG
Code Comparison: Level of Detail

transverse charge distribution for the
Fermilab/NICADD photoinjector
simulation

very non-axisymmetric beam
32%32x%32 grid, N=200000

very good agreement in detail

Speed comparison: IMPACT-T w/ PCG
~ 10% faster than the conventional
serial IMPACT-T
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IMPACT-T
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Data Compression with PCG

* PCG provides excellent compression of data and operators in wavelet space

006
s 0.05F

Il F
E 0.04F

awg fractizn

o3t

=
]
%

awg fraction }u.lJ)T

0.0 [

Fermilab/NICADD photoinjector: Real Simulations
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o

* compact storage of beam's distribution history needed for CSR simulations

* compact storage of beam's potential needed for modeling halo formation

Terzié
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Ongoing Project: Improving the PCG Solver

* Currently, we (graduate student Ben Sprague and I) are working on a number
of improvements to the wavelet-based Poisson equation solver:

— change from fixed to adaptive grid

* simplify BC computation (currently a computational bottleneck)
* further exploit sparsity of operators and data sets

— use a non-standard operator form to better separate scales

— use more sophisticated wavelet families (biorthogonal, lifted)
— explore other preconditioners

- parallelize and optimize

* Possible future applications of PCG solver:

— CSR simulations: computation of retarded potentials requires integration
over history of the system — compactly represented in wavelet space

— develop a new PIC code to simulate self-gravitating systems
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Basis functions:

- oscillatory

Orthonormal;

Scaled Gauss-Hermite Basis

sz

- exponentially decaying

Terzié

Infinite expansion (2D):

Gauss-Hermite orthonormal basis:
(solution to quantum harmonic oscillator)

)e” dx= 0,

—0o0

1

waﬁ=f§%77;

w, (x)dx=0 a0

() e

m

Kronecker delta

NN % ¥

Scaled and translated version:

W

v (») finite zzﬁzz
sz T P (x—x

= o f(x, y)dxdy
2J.m:w(y—y

l= [ [ flx, y)dedy

Ly —00 — o0 y
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Scaled Gauss-Hermite Basis

- Define collocation points: {7,};_, roots of iS00

~

(p ], Toots ofH L)

5 Y amN
* At collocation points: f(7,,5,) = Z Zalmw, v, (B,) VJZZJI“LX
=0 m=0
fi=Cte
* Take advantage of the relation for Hermite polynomials: e
¢ HHO) | Hyp ) HL )= H, () By )
e S ghou SRk DASIRN N 6
to obtain
LM 1
& ZZC_ 2 V’J(V])V/ (B) O<i<L, 0sm=M
j=0 k=0
L M
l=0 m=0

* This formalism is general and can easily be extended to higher dimensions
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Poisson Equation in Scaled Gauss-Hermite Basis

* Poisson equation:

o Je e e e Ve o
Acb(a1+x,a2+) [a +a] (a1+x’0c2+y) Kf(a1+x’a2+y)

B(+3%, Z+) i iobzmwz(xwm(y)

a4 o, 1=0
where b are given by the difference relation:

2a.\1(1—-1)b

n—2m =3 2a§\/m<m_1>blm—2 = Kalm

with “boundary” coefficients:

( \
= 1=0,1 A m=2,

205V(m+2)(m+1

K

a b
\2(1?\/(14—2)(14—1) Ryt

) alm+2’

nm

m=0,1 A [=2,

/
* No need to invert the difference equation: compute “boundary” first, and then
work inside — computationally simple and efficient
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Simulating Multiparticle Systems with Scaled

Gauss-Hermite Expansion

* N-body realization of the discrete particle distribution:

1.

i

N
1
Ll = FZ o(x—x)d(y—y,)
i=1
* Expanding f(x,y) in scaled Gauss-Hermite basis reduces to the following steps:
tabulate the unchanging quantities: Z 112D v, (BT
[=0 m=0
8 wz(y,)wm(ﬁ)
WA T plmjk =g
compute X ,y,a,,a, Cx
1 N y X 1-1/2
I s L A e Ve
e N; % a N;(xl X)_ ]_;flqt
1 N 2 N 2'—1/2 ° ﬁk
s Nzyi a, = ﬁz(y, ») Bt
i=1 : -

Terzié

. compute coefficients a,

. evaluate f(7;, ;) at the nodes

= 22 lm]kf )
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D\

Simulating Multiparticle Systems with Scaled
Gauss-Hermite Expansion

* N-body realization of the discrete particle distribution:

flx

& 2 Olx=x)a(y=)

* Expanding f(x,y) in scaled Gauss-Hermite basis reduces to the following steps:

1. tabulate the unchanging quantities:

—» 2. compute X, 7y, a
1 N
iz N;
1 N
S NZ%

i=1

1-1/2

Zo Wm(ﬁk)]z

Wz(V,)';”m(,B )
G

- Sl

=0

plmjk g

—1/2

3. evaluate f(7,, 5;) at the nodes%<

function estimation

L__ 4. compute coefficients

Terzié

alm =
j=0 k=0
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Simulating Multiparticle Systems with Scaled
Gauss-Hermite Expansion

Evaluate /(7,, §;) from a discrete sample (nonparametric density estimation)

| | ro+x B, +ydydx S .
Pl R shifted histogram estimator
Vis Pm } izf with “window” [-h,h ]1X[-h yhy]
d yd ¥
ShEh, ; ek e 1/5
Optimal size of the window: 4, = (E) ff"(x)dx N
—h,
Integrated means square error (IMSE)
7 1/5
IMSE — %2—4/59—1/5 ff"(x)dx A e
—h,

Other, more sophisticated estimators are available:

- Kkernel, adaptive estimators, and others...
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Applying Scaled Gauss-Hermite Expansion

* Future application of scaled Gauss-Hermite approximation:
2D CSR code of Bassi, Ellison, Heinemann and Warnock:

— particle distribution is sampled by N macroparticles
- distribution is approximated at each timestep with a cosine expansion
— beam self-forces are computed from the analytic expansion

— Problems:

* unphysical “wiggles” in the tails of the distribution
* computational speed: each coefficient requires N cosine evaluations

— Problems resolved (?) with scaled Gauss-Hermite:

* no wiggles — basis functions are exponentially decaying

* computing coefficients scales more favorably and does not involve
evaluation of any expensive function (addition & multiplication)
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Applying Scaled Gauss-Hermite Expansion

 Typical simulation: N=10° cosine , Scaled GH

* “Wiggles” in cosine expan.

* Reduced by orders
of mag. in scaled GH

e fraction of negative volume

—cosine
—scaled GH

0 10 20 30 N40 50 60 70 80

X
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Applying Scaled Gauss-Hermite Expansion

* Scaled Gauss-Hermite expansion is computationally appreciably faster:

- cosine expansion: t _~ OCMN )

- scaled Gauss-Hermite: t .~ O((L +M)Npart) + O(L°M?)

e ratio ¢/t~ O() + O(Npm/LZ) (assume L=M)

25

cos/tsGH

t

(0] 10 20 30 4/\-/0 50 60 70 80
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Applying Scaled Gauss-Hermite Expansion

* Scaled Gauss-Hermite expansion is computationally appreciably faster:

- cosine expansion: t _~ OCMN )

- scaled Gauss-Hermite: t .~ O((L +M)Npart) + O(L°M?)

e ratio ¢/t~ O() + O(Npart/LZ) (assume L=M)

25

~20 times faster

cos/tsGH

t

(0] 10 20 30 4/\-/0 50 60 70 80
Terzié



Scaled Gauss-Hermite Expansion: Loose Ends

* There are several issues with the scaled Gauss-Hermite expansion that
we are still exploring/resolving:

— convergence

~

* different estimators for evaluating f(7,, )
* optimal number of basis functions (when is “more” less?)

- what do we lose by using an analytic expansion?

* avoid danger of smoothing over physical small-scale structures

— adequate resolution: can this approach resolve physical small-scale
structure?

* When these issues are properly addressed, we will have another tool
with which to attack CSR and integration over beam's history
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Summary
* Designed an iterative wavelet-based Poisson solver (PCG)

- wavelet compression and denoising achieves computational speedup

— preconditioning and sparsity of operators and data in wavelet space reduce CPU load
— integrated PCG into a PIC code (IMPACT-T) for beam dynamics simulations

— current efforts: adaptive grid, parallelization, optimization

— future uses: - probe usefulness of wavelet methodology in CSR simulations
- simulate self-gravitating systems

* Developed a scaled Gauss Hermite approximation (still a prototype):

- efficient representation of particle distribution
— Poisson equation solved directly at a marginal cost
— current efforts: resolving issues of convergence, truncation of expansion

— future uses (?): - in Bassi et al.'s 2D CSR code
- in Rui Li's 2D CSR code
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