Orthogonal Basis Function Approximation of Particle Distributions In Numerical Simulations of Beams

Balša Terzić
Beam Physics and Astrophysics Group

Northern Illinois University

Jefferson Lab Beam Seminar
April 3, 2008
JLab Beam Seminar, April 2008

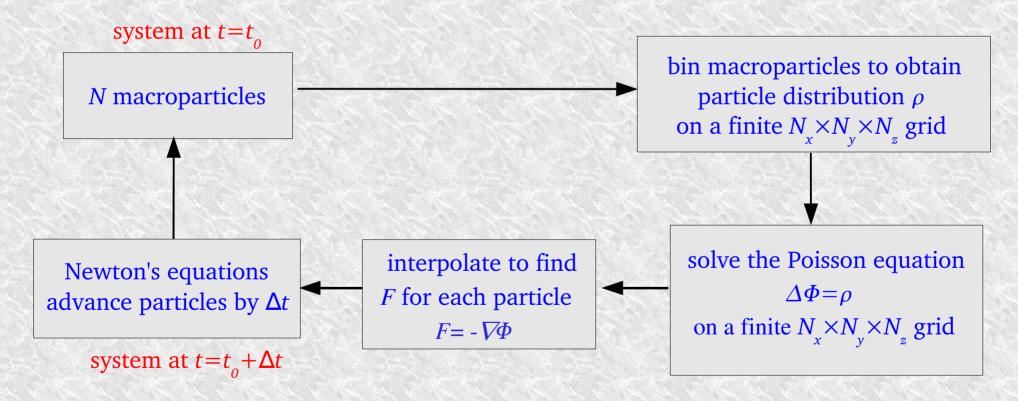
Motivation

- Studying dynamics of multi-particle systems (charged particle beams, plasma, galaxies...) heavily relies on *N*-body simulations
- It is important for *N*-body codes to:
 - be as *efficient* as possible, without compromising accuracy
 - minimize numerical noise due to $N_{\text{simulation}} << N_{\text{physical}}$
 - account for multiscale dynamics
 - for some applications: have a compact representation of history
- We present two orthonormal bases which, as a part of an *N*-body code, address these requirements
 - wavelet basis
 - scaled Gauss-Hermite basis

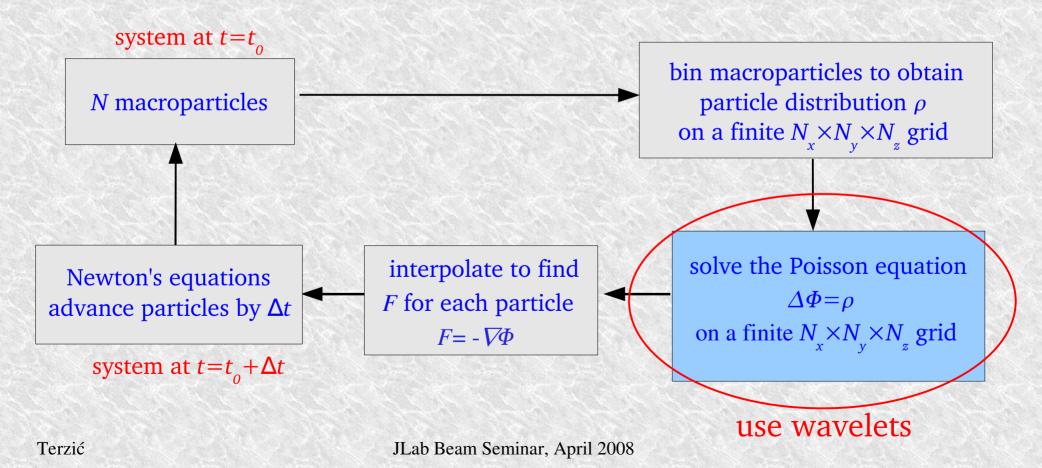
Outline of the Talk

- Algorithms for *N*-body simulations
- Wavelet basis
 - brief overview of wavelets
 - wavelet-based Poisson equation solver
 - advantages
 - applications
- Scaled Gauss-Hermite basis
 - mathematical formalism
 - Poisson equation solver
 - applications
- Discussion of further work

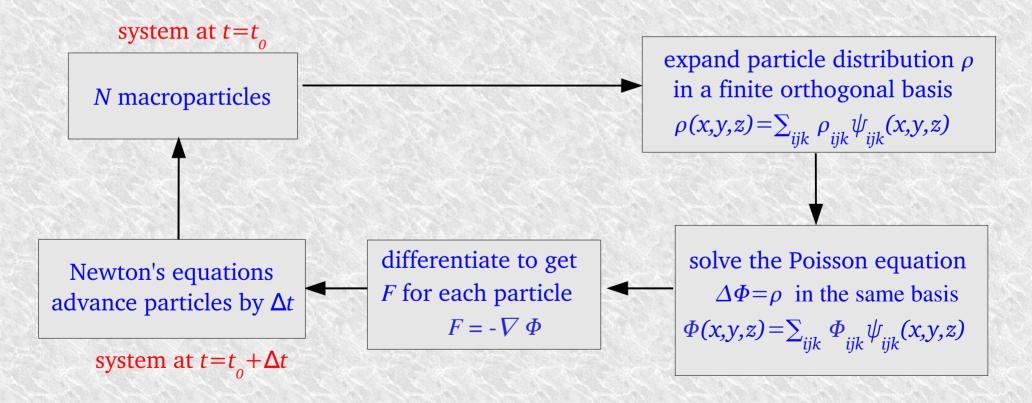
- Direct summation: CPU cost scales as N^2
- Tree: direct summation nearby and statistical treatment farther away
- Particle-In-Cell (PIC): particles binned in cells (grid)



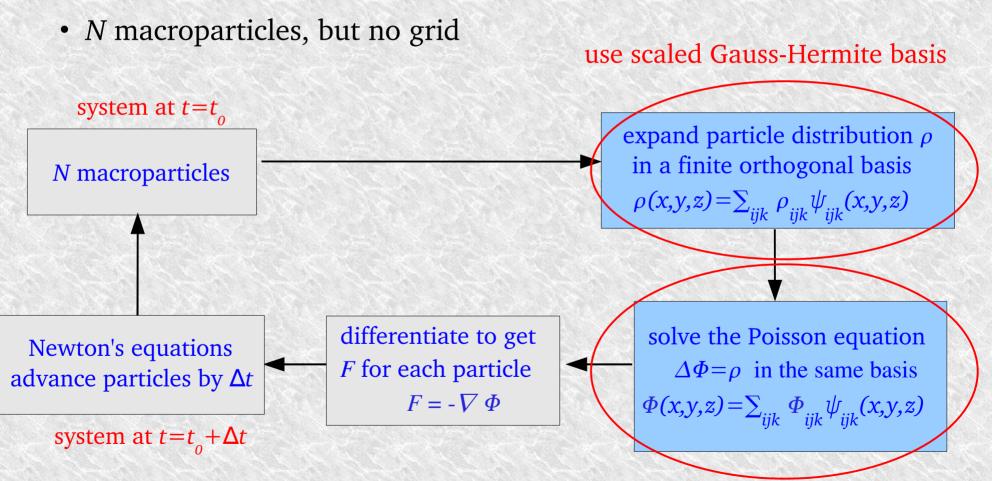
- Direct summation: CPU cost scales as N^2
- Tree: direct summation nearby and statistical treatment farther away
- Particle-In-Cell (PIC): particles binned in cells (grid)



- Alternative *N*-body algorithm: analytical function approximation
 - analytical functions form a finite orthogonal basis
 - N macroparticles, but no grid



- Alternative *N*-body algorithm: analytical function approximation
 - analytical functions form a finite orthogonal basis

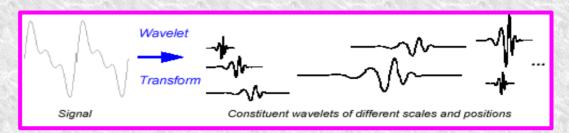


Wavelets

• Wavelets: orthogonal basis composed of scaled and translated versions of the same localized mother wavelet $\psi(x)$ and the scaling function $\phi(x)$:

$$\psi_{i}^{k}(x) = 2^{k/2} \psi(2^{k}x - i)$$

$$f(x) = s_{0}^{0} \phi_{0}^{0}(x) + \sum_{i} \sum_{k} d_{i}^{k} \psi_{i}^{k}(x)$$



- Discrete Wavelet Transfrom (DFT) iteratively separates scales
 - $-\sim O(MN)$ operation, M size of the wavelet filter, N size of the signal
- Advantages:
 - simultaneous localization in both space and frequency
 - compact representation of data, enabling compression (FBI fingerprints)
 - signal denoising: natural setting in which noise can be partially removed denoised simulation \leftrightarrow simulation with more macroparticles

Numerical Noise in PIC Simulations

- Any N-body simulation will have numerical noise
- Sources of numerical noise in PIC simulations:
 - graininess of the distribution function: $N_{\rm simulation} << N_{\rm physical}$
 - $^-$ discreteness of the computational domain: ho and Φ specified on a finite grid
- Each macroparticle is deposited onto a finite grid by either:

Numerical Noise in PIC Simulations

• For NGP, at each gridpoint, particle dist. is Poissonian:

$$P = (n!)^{-1} n_j^n e^{-n_j}$$
 n_j is the expected number in j^{th} cell; n integer

• For CIC, at each gridpoint, particle dist. is contracted Poissonian:

$$P = (n!)^{-1} (an_i)^n e^{-an_i}$$
 $a = (2/3)^{(D/2)} \sim 0.54(3D), 0.67(2D), 0.82(1D)$

• Measure of error (noise) in depositing macroparticles onto a grid:
$$\sigma^2 = (N_{grid})^{-1} \sum_{i=1}^{N_{grid}} Var(q_i) \qquad \sigma_{NGP}^2 = \frac{Q_{total}^2}{NN_{grid}} \qquad \sigma_{CIC}^2 = \frac{a^2 Q_{total}^2}{NN_{grid}}$$

where $q_i = (Q_{total}/N)n_i$, Q_{total} total charge; N_{grid} number of gridpoints

(For more details see Terzić, Pogorelov & Bohn 2007, PR STAB, 10, 034201)

- This error/noise estimate is crucial for optimal wavelet-denoising
- **IDEA:** Solve the Poisson equation in such a way so as to minimize numerical noise – USE WAVELETS

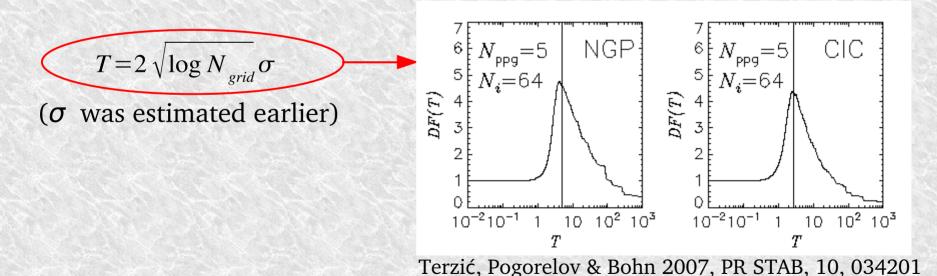
Numerical Noise in PIC Simulations

In wavelet space:

signal \rightarrow few large wavelet coefficients c_{ij} noise \rightarrow many small wavelet coefficients c_{ij}

• Denoising by wavelet thresholding: if $|c_{ij}| < T$, set to $c_{ij} = 0$ (choose threshold T carefully!)

A great deal of study has been devoted to estimating optimal T



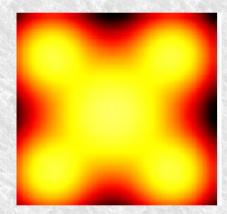
JLab Beam Seminar, April 2008

• Whenever the discrete signal is analytically known, one can compute the Signal-to-Noise Ratio (SNR) which measures its quality

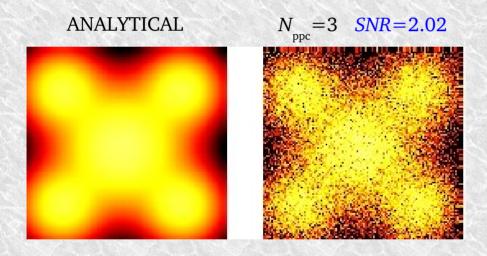
•
$$SNR \sim \sqrt{N_{ppc}}$$
 N_{ppc} : avg. # of particles per cell $N_{ppc} = N/N_{cells}$

- Whenever the discrete signal is analytically known, one can compute the Signal-to-Noise Ratio (SNR) which measures its quality
- $SNR \sim \sqrt{N_{ppc}}$ N_{ppc} : avg. # of particles per cell $N_{ppc} = N/N_{cells}$ 2D superimposed Gaussians on 256×256 grid

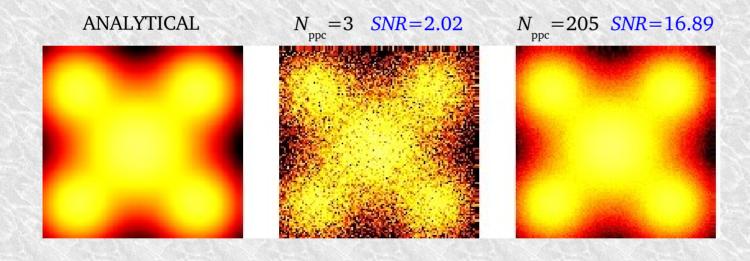
ANALYTICAL



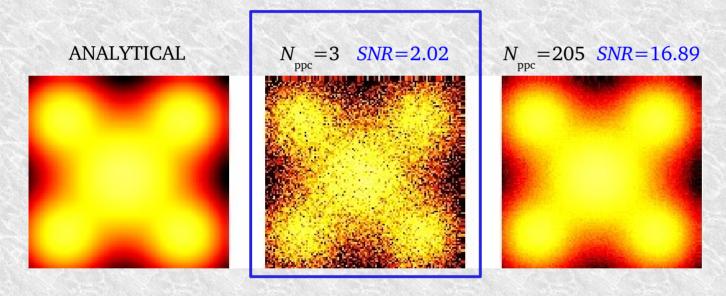
- Whenever the discrete signal is analytically known, one can compute the *Signal-to-Noise Ratio (SNR)* which measures its quality
- $SNR \sim \sqrt{N_{ppc}}$ N_{ppc} : avg. # of particles per cell $N_{ppc} = N/N_{cells}$ 2D superimposed Gaussians on 256×256 grid



- Whenever the discrete signal is analytically known, one can compute the *Signal-to-Noise Ratio (SNR)* which measures its quality
- $SNR \sim \sqrt{N_{ppc}}$ N_{ppc} : avg. # of particles per cell $N_{ppc} = N/N_{cells}$ 2D superimposed Gaussians on 256×256 grid

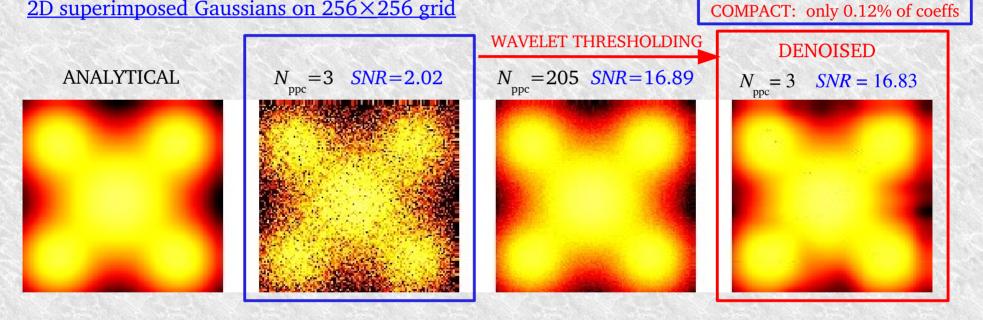


- Whenever the discrete signal is analytically known, one can compute the Signal-to-Noise Ratio (SNR) which measures its quality
- $SNR \sim \sqrt{N_{ppc}}$ N_{ppc} : avg. # of particles per cell $N_{ppc} = N/N_{cells}$ 2D superimposed Gaussians on 256×256 grid



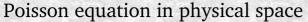
• denoising by wavelet thresholding: if $|c_{ij}| < T$, set to 0

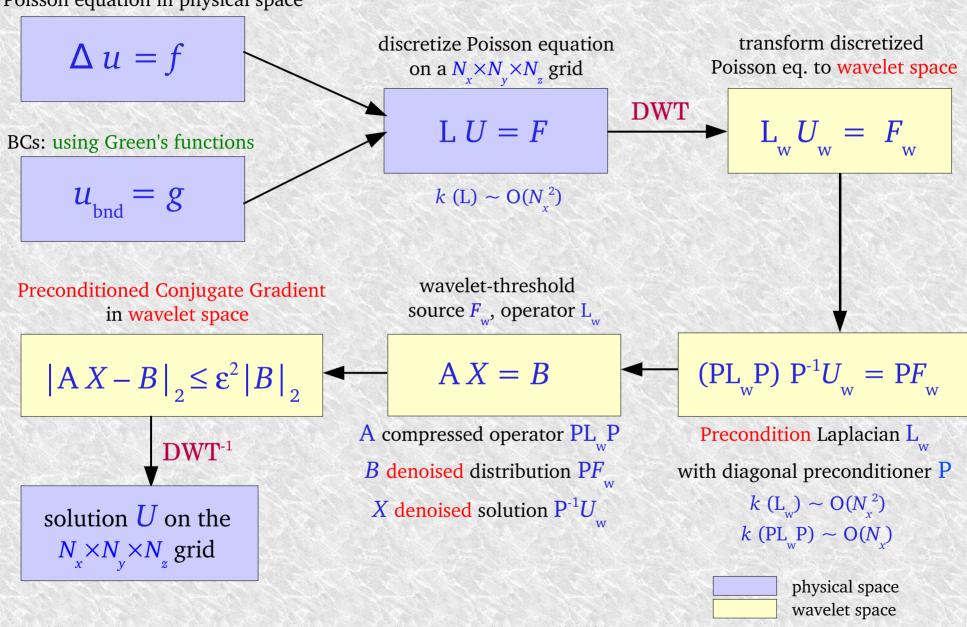
- Whenever the discrete signal is analytically known, one can compute the *Signal-to-Noise Ratio (SNR)* which measures its quality
- $SNR \sim \sqrt{N_{ppc}}$ N_{ppc} : avg. # of particles per cell $N_{ppc} = N/N_{cells}$ 2D superimposed Gaussians on 256×256 grid COMPACT: only 0.129



- denoising by wavelet thresholding: if $|c_{ij}| < T$, set to 0
- *Advantages:* increase in *SNR* by $c \leftrightarrow c^2$ more macroparticles (here c=8.3, $c^2=69$)
 - compact storage in wavelet space (in this example 79/65536: 0.12%)

Wavelet-Based Poisson Equation Solver

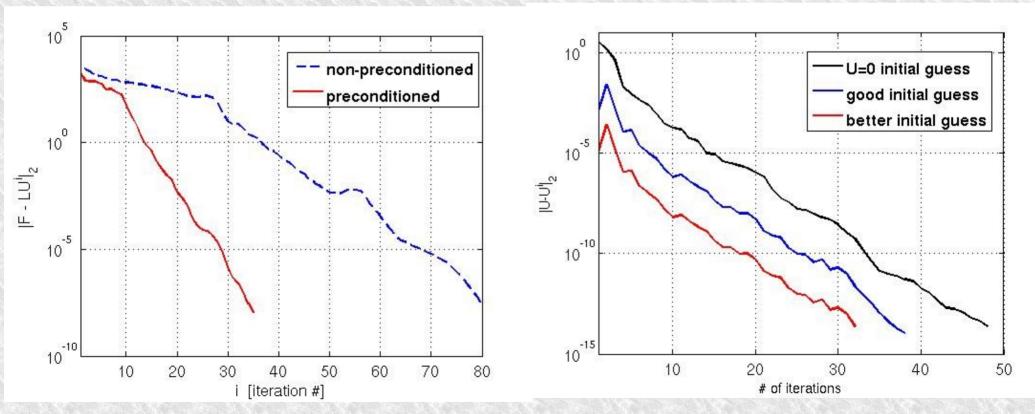




Terzić

JLab Beam Seminar, April 2008

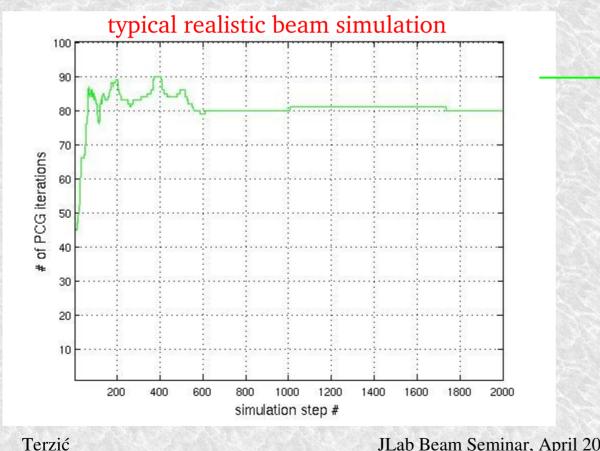
- convergence rate depends on condition number $k |u-u^i|_2 \le \left(\frac{\sqrt{k}-1}{\sqrt{k}+1}\right)^i |u|_2$
- preconditioning (diagonal in wavelet space): $k \sim O(N_x^2) \rightarrow k \sim O(N_x)$
- good initial approximation: solution at previous time step



Terzić

JLab Beam Seminar, April 2008

- $\left|u-u^{i}\right|_{2} \leq \left|\frac{\sqrt{k-1}}{\sqrt{k+1}}\right|^{i} \left|u\right|_{2}$ convergence rate depends on condition number k
- preconditioning (diagonal in wavelet space): $k \sim O(N_z^2) \rightarrow k \sim O(N_z)$
- good initial approximation: solution at previous time step



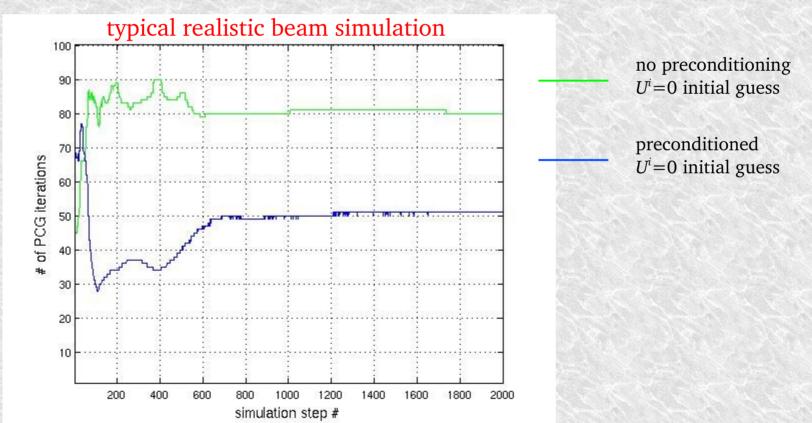
no preconditioning $U^i = 0$ initial guess

average over 30000-step run

75.2

JLab Beam Seminar, April 2008

- convergence rate depends on condition number $k |u-u^i|_2 \le \left(\frac{\sqrt{k-1}}{\sqrt{k+1}}\right)^i |u|_2$
- preconditioning (diagonal in wavelet space): $k \sim O(N_x^2) \rightarrow k \sim O(N_x)$
- good initial approximation: solution at previous time step



average over 30000-step run

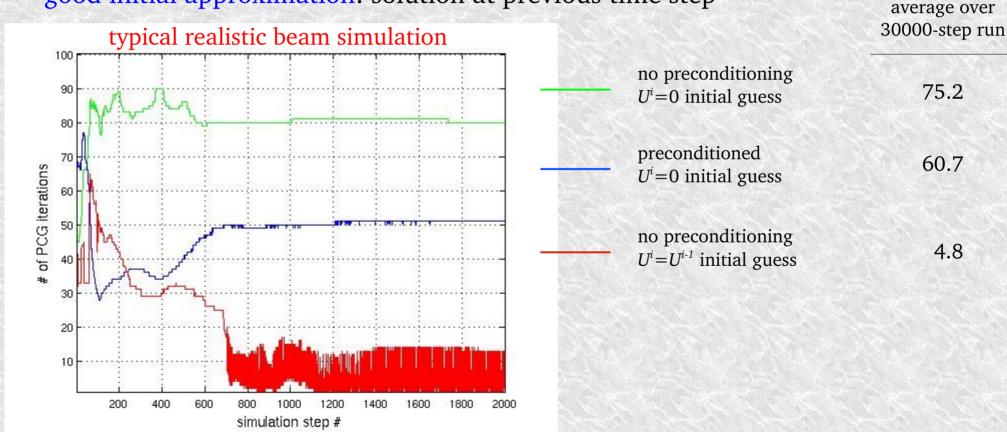
75.2

60.7

Terzić

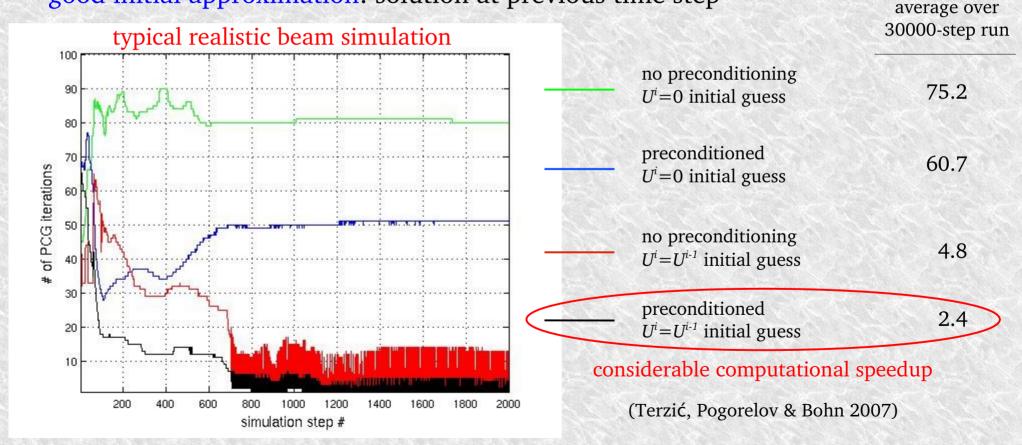
- convergence rate depends on condition number $k |u-u^i|_2 \le \left(\frac{\sqrt{k}-1}{\sqrt{k}+1}\right)^i |u|_2$
- preconditioning (diagonal in wavelet space): $k \sim O(N_x^2) \rightarrow k \sim O(N_x)$
- good initial approximation: solution at previous time step

Terzić



JLab Beam Seminar, April 2008

- convergence rate depends on condition number $k |u-u^i|_2 \le \left(\frac{\sqrt{k}-1}{\sqrt{k}+1}\right)^i |u|_2$
- preconditioning (diagonal in wavelet space): $k \sim O(N_x^2) \rightarrow k \sim O(N_x)$
- good initial approximation: solution at previous time step



Terzić

JLab Beam Seminar, April 2008

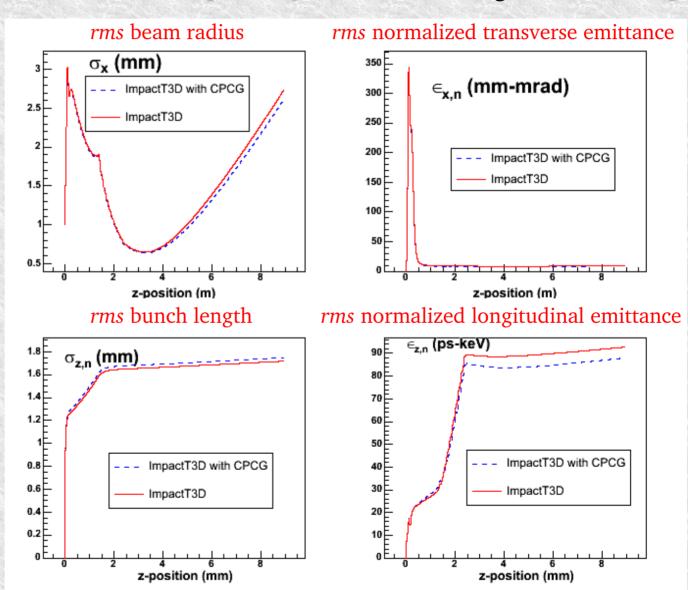
Using PCG in Numerical Simulations

- Our goal: develop wavelet-based Poisson solver which can easily be integrated into existing PIC codes
- First: test the PCG as a stand-alone solver on examples from:
 - beam dynamics
 - galactic dynamics
- Second: insert the PCG Poisson solver into an existing PIC code (IMPACT-T) and run realistic charged particle beam simulations (Terzić, Pogorelov & Bohn 2007, PR STAB, 10, 034201)
 - compare (conventional FFT-based) IMPACT-T Vs. IMPACT-T with PCG:
 - rms properties
 - · level of detail
 - computational speed

Conventional IMPACT-T vs. IMPACT-T with PCG Code Comparison: <u>rms Properties</u>

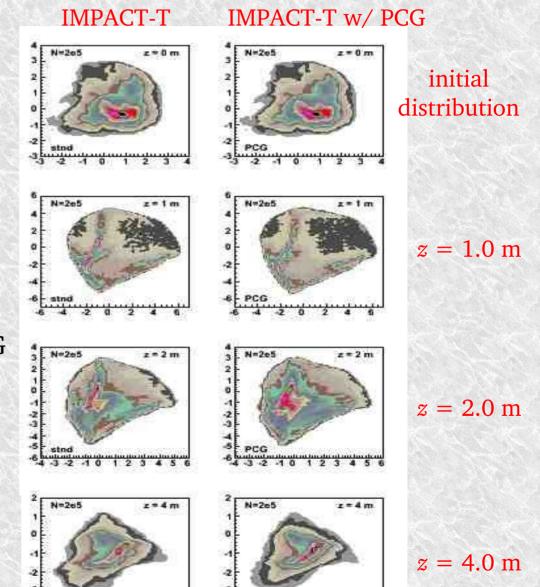
Fermilab/NICADD photoinjector 32×32×32 grid 1 nC charge

Good agreement to a few percent



Conventional IMPACT-T vs. IMPACT-T with PCG Code Comparison: <u>Level of Detail & Speed</u>

- transverse charge distribution for the Fermilab/NICADD photoinjector simulation
- very non-axisymmetric beam
- $32 \times 32 \times 32$ grid, N = 200000
- very good agreement in detail
- Speed comparison: IMPACT-T w/ PCG
 ~ 10% faster than the conventional serial IMPACT-T

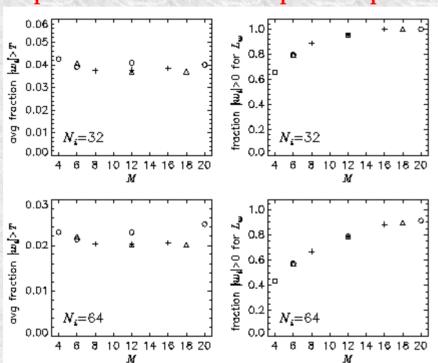


Terzić

Data Compression with PCG

• PCG provides excellent compression of data and operators in wavelet space

Fermilab/NICADD photoinjector: Real Simulations



$$32\times32\times32$$
 grid, $N=125~000$, $N_{ppc}=4.58$

~ 3.5% coefficients retained on average

$$64 \times 64 \times 64$$
 grid, $N=1\ 000\ 000$, $N_{ppc}=4.58$

~ 1.75% coefficients retained on average

- compact storage of beam's distribution history needed for CSR simulations
- compact storage of beam's potential needed for modeling halo formation

Ongoing Project: Improving the PCG Solver

- Currently, we (graduate student Ben Sprague and I) are working on a number of improvements to the wavelet-based Poisson equation solver:
 - change from fixed to adaptive grid
 - simplify BC computation (currently a computational bottleneck)
 - further exploit sparsity of operators and data sets
 - use a non-standard operator form to better separate scales
 - use more sophisticated wavelet families (biorthogonal, lifted)
 - explore other preconditioners
 - parallelize and optimize
- Possible future applications of PCG solver:
 - CSR simulations: computation of retarded potentials requires integration over history of the system – compactly represented in wavelet space
 - develop a new PIC code to simulate self-gravitating systems

Scaled Gauss-Hermite Basis

Gauss-Hermite orthonormal basis: (solution to quantum harmonic oscillator)

$$\psi_n(x) = \frac{1}{\sqrt{2^n n! \sqrt{\pi}}} H_n(x) e^{-x^2}$$

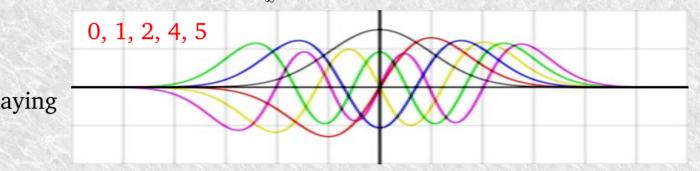
• Orthonormal:
$$\int_{-\infty}^{\infty} \psi_l(x) \psi_m(x) e^{x^2} dx = \delta_{lm} \qquad \int_{-\infty}^{\infty} \psi_m(x) dx = \delta_m \qquad \delta_{lm}, \delta_m \quad \text{Kronecker delta}$$

$$\int_{0}^{\infty} \psi_{m}(x) dx = \delta_{m}$$

$$\delta_{lm}$$
, δ_{m} Kronecker delta

Basis functions:

- oscillatory
- exponentially decaying



Infinite expansion (2D):
$$f(x,y) = \sum_{l=0}^{\infty} \sum_{m=0}^{\infty} a_{lm} \psi_l(x) \psi_m(y)$$
 finite: $\sum_{l=0}^{\infty} \sum_{m=0}^{\infty} \rightarrow \sum_{l=0}^{L} \sum_{m=0}^{M} a_{lm} \psi_l(x) \psi_m(y)$

Scaled and translated version:

$$f(\frac{x}{\alpha_1} + \overline{x}, \frac{y}{\alpha_2} + \overline{y}) = \sum_{l=0}^{L} \sum_{m=0}^{M} a_{lm} \psi_l(x) \psi_m(y) \qquad \begin{cases} \sigma_x^2 \\ \sigma_y^2 \end{cases} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left\{ (x - \overline{x})^2 \\ (y - \overline{y})^2 \right\} f(x, y) dx dy$$

$$\alpha_1 = \frac{1}{\sqrt{2}\sigma_x}, \quad \alpha_2 = \frac{1}{\sqrt{2}\sigma_y} \qquad \begin{cases} \overline{x} \\ \overline{y} \end{cases} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left\{ x \\ y \right\} f(x, y) dx dy$$

$$\begin{cases} \sigma_x^2 \\ \sigma_y^2 \end{cases} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left\{ \frac{(x - \overline{x})^2}{(y - \overline{y})^2} \right\} f(x, y) dx dy$$

$$\alpha_1 = \frac{1}{\sqrt{2}\sigma_x}, \quad \alpha_2 = \frac{1}{\sqrt{2}\sigma_y} \qquad \begin{cases} \overline{x} \\ \overline{y} \end{cases} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left\{ \frac{x}{y} \right\} f(x, y) dx dy$$

Scaled Gauss-Hermite Basis

• Define collocation points: $\{\tilde{\gamma}_j\}_{j=0}^N$ roots of $H_{L+1}(x)$

$$\{\tilde{\beta}_k\}_{k=0}^M$$
 roots of $H_{M+1}(y)$

• At collocation points: $f(\tilde{\gamma}_j, \tilde{\beta}_k) = \sum_{l=0}^{L} \sum_{m=0}^{M} a_{lm} \psi_l(\gamma_j) \psi_m(\beta_k)$

$$\tilde{\gamma}_j = \frac{\gamma_j}{\alpha_1} + \bar{x}$$

$$\tilde{\beta}_k = \frac{\beta_k}{\alpha_2} + \bar{y}$$

Take advantage of the relation for Hermite polynomials:

$$\sum_{k=0}^{n} \frac{H_{k}(x)H_{k}(y)}{2^{k}k!} = \frac{H_{n+1}(x)H_{n}(y) - H_{n}(x)H_{n+1}(y)}{2^{n+1}n!(x-y)}$$

to obtain

$$a_{lm} = \sum_{j=0}^{L} \sum_{k=0}^{M} \frac{1}{C_{jk}} f(\tilde{\gamma}_{j}, \tilde{\beta}_{k}) \psi_{l}(\gamma_{j}) \psi_{m}(\beta_{k}) \qquad 0 \leq l \leq L, \quad 0 \leq m \leq M$$

$$C_{jk} = \sum_{l=0}^{L} [\psi_n(\gamma_j)]^2 \sum_{m=0}^{M} [\psi_m(\beta_k)]^2 \qquad 0 \le j \le L, \quad 0 \le k \le M$$

This formalism is general and can easily be extended to higher dimensions

Poisson Equation in Scaled Gauss-Hermite Basis

Poisson equation:

$$\Delta\Phi\left(\frac{x}{\alpha_{1}} + \bar{x}, \frac{y}{\alpha_{2}} + \bar{y}\right) = \left[\partial_{x}^{2} + \partial_{y}^{2}\right] \Phi\left(\frac{x}{\alpha_{1}} + \bar{x}, \frac{y}{\alpha_{2}} + \bar{y}\right) = \kappa f\left(\frac{x}{\alpha_{1}} + \bar{x}, \frac{y}{\alpha_{2}} + \bar{y}\right)$$

$$\Phi\left(\frac{x}{\alpha_{1}} + \bar{x}, \frac{y}{\alpha_{2}} + \bar{y}\right) = \sum_{l=0}^{\infty} \sum_{m=0}^{\infty} b_{lm} \psi_{l}(x) \psi_{m}(y)$$

where b_{lm} are given by the difference relation:

$$2\alpha_1^2\sqrt{l(l-1)}b_{n-2m} + 2\alpha_2^2\sqrt{m(m-1)}b_{lm-2} = \kappa a_{lm}$$

with "boundary" coefficients:

 No need to invert the difference equation: compute "boundary" first, and then work inside → computationally simple and efficient

Simulating Multiparticle Systems with Scaled Gauss-Hermite Expansion

• *N*-body realization of the discrete particle distribution:

$$f(x,y) = \frac{1}{N} \sum_{i=1}^{N} \delta(x-x_i) \delta(y-y_i)$$

- Expanding f(x,y) in scaled Gauss-Hermite basis reduces to the following steps:
 - 1. tabulate the unchanging quantities:

$$C_{jk} = \sum_{l=0}^{L} [\psi_l(\gamma_j)]^2 \sum_{m=0}^{M} [\psi_m(\beta_k)]^2$$

$$p_{lmjk} = \frac{\psi_l(\gamma_j)\psi_m(\beta_k)}{C_{jk}}$$

2. compute \bar{x} , \bar{y} , α_1 , α_2 :

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_{i} \qquad \alpha_{1} = \left[\frac{2}{N} \sum_{i=1}^{N} (x_{i} - x)^{2} \right]^{-1/2} \qquad \tilde{\gamma}_{j} = \frac{\gamma_{j}}{\alpha_{1}} + \bar{x}$$

$$\bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_{i} \qquad \alpha_{2} = \left[\frac{2}{N} \sum_{i=1}^{N} (y_{i} - y)^{2} \right]^{-1/2} \qquad \tilde{\beta}_{k} = \frac{\beta_{k}}{\alpha_{2}} + \bar{y}$$

- 3. evaluate $f(\tilde{\gamma}_j, \tilde{\beta}_k)$ at the nodes
- 4. compute coefficients $a_{lm} = \sum_{j=0}^{L} \sum_{k=0}^{M} p_{lmjk} f(\tilde{\gamma}_{j}, \tilde{\beta}_{k})$

Simulating Multiparticle Systems with Scaled **Gauss-Hermite Expansion**

N-body realization of the discrete particle distribution:

$$f(x,y) = \frac{1}{N} \sum_{i=1}^{N} \delta(x - x_i) \delta(y - y_i)$$

- Expanding f(x,y) in scaled Gauss-Hermite basis reduces to the following steps:
 - 1. tabulate the unchanging quantities:

$$C_{jk} = \sum_{l=0}^{L} [\psi_l(\gamma_j)]^2 \sum_{m=0}^{M} [\psi_m(\beta_k)]^2$$

$$p_{lmjk} = \frac{\psi_l(\gamma_j)\psi_m(\beta_k)}{C_{jk}}$$

2. compute \bar{x} , \bar{y} , α_1 , α_2 :

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \qquad \qquad \alpha_1 = \left[\frac{2}{N} \sum_{i=1}^{N} (x_i - x)^2 \right]^{-1/2} \qquad \qquad \tilde{\gamma}_j = \frac{\gamma_j}{\alpha_1} + \bar{x}$$

$$\bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i \qquad \qquad \alpha_2 = \left[\frac{2}{N} \sum_{i=1}^{N} (y_i - y)^2 \right]^{-1/2} \qquad \qquad \tilde{\beta}_k = \frac{\beta_k}{\alpha_2} + \bar{y}$$

$$\tilde{\gamma}_{j} = \frac{\gamma_{j}}{\alpha_{1}} + \bar{x}$$

$$\tilde{\alpha}_{j} = \frac{\beta_{k}}{\alpha_{1}} + \bar{x}$$

3. evaluate $f(\tilde{\gamma}_j, \tilde{\beta}_k)$ at the nodes

function estimation from a discrete sample

4. compute coefficients $a_{lm} = \sum_{i=0}^{\infty} \sum_{k=0}^{\infty} p_{lmjk} f(\tilde{\gamma}_j, \tilde{\beta}_k)$

Simulating Multiparticle Systems with Scaled **Gauss-Hermite Expansion**

• Evaluate $f(\tilde{\gamma}_i, \tilde{\beta}_k)$ from a discrete sample (nonparametric density estimation)

$$f(\tilde{\gamma}_{l}, \tilde{\beta}_{m}) = \frac{\int_{-h_{x}-h_{y}}^{h_{x}} \int_{y}^{h_{y}} f(\tilde{\gamma}_{l}+\tilde{x}, \tilde{\beta}_{m}+\tilde{y}) d\tilde{y} d\tilde{x}}{\int_{-h_{x}-h_{y}}^{h_{x}} \int_{y}^{h_{y}} d\tilde{y} d\tilde{x}}$$

$$\int_{-h_{x}-h_{y}}^{h_{x}} \int_{y}^{h_{y}} d\tilde{y} d\tilde{x}$$
Shifted histogram estimator with "window" $[-h_{y}, h_{x}] \times [-h_{y}, h_{y}]$
Optimal size of the window:
$$h_{opt} = \left(\frac{9}{2}\right)^{1/5} \left[\int_{-h_{x}}^{h_{x}} f''(x) dx\right]^{1/5} N^{-1/5}$$

- Integrated means square error (IMSE)

IMSE =
$$\frac{5}{4} 2^{-4/5} 9^{-1/5} \left[\int_{-h_x}^{h_x} f''(x) dx \right]^{1/5} N^{-4/5} \sim N^{-4/5}$$

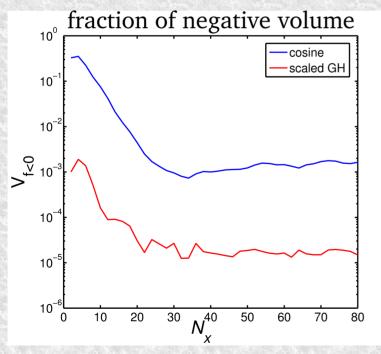
- Other, more sophisticated estimators are available:
 - kernel, adaptive estimators, and others...

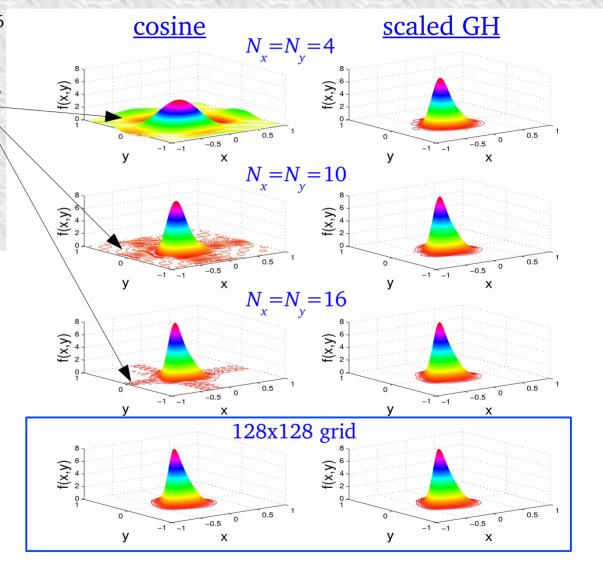
- Future application of scaled Gauss-Hermite approximation: 2D CSR code of Bassi, Ellison, Heinemann and Warnock:
 - particle distribution is sampled by *N* macroparticles
 - distribution is approximated at each timestep with a cosine expansion
 - beam self-forces are computed from the analytic expansion
 - <u>Problems</u>:
 - *unphysical "wiggles"* in the tails of the distribution
 - computational speed: each coefficient requires N cosine evaluations
 - <u>Problems resolved (?)</u> with scaled Gauss-Hermite:
 - no wiggles basis functions are exponentially decaying
 - computing coefficients scales more favorably and does not involve evaluation of any expensive function (addition & multiplication)

• Typical simulation: $N=10^6$

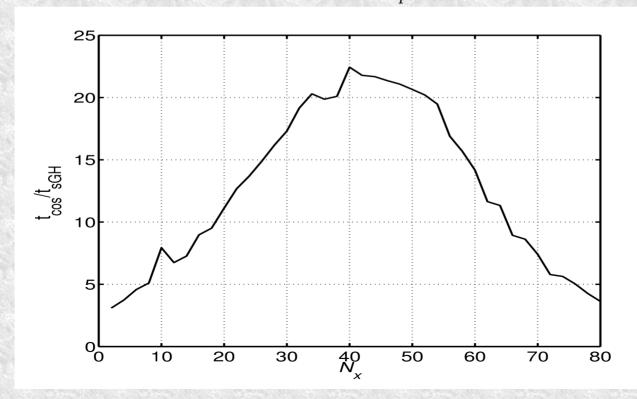
"Wiggles" in cosine expan.

 Reduced by orders of mag. in scaled GH



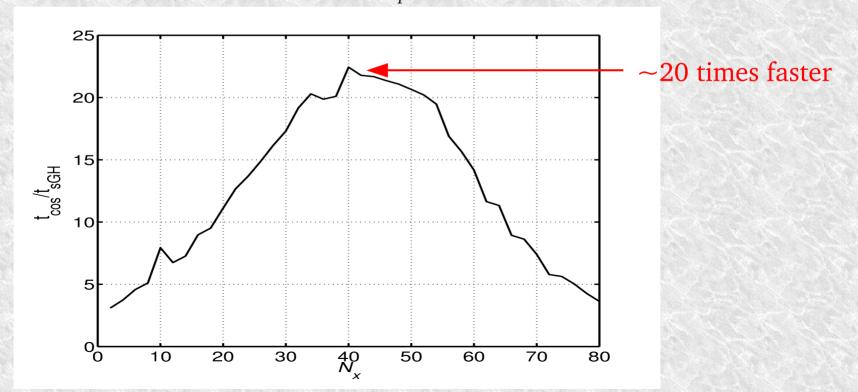


- Scaled Gauss-Hermite expansion is computationally appreciably faster:
 - cosine expansion: $t_{cos} \sim O(LMN_{part})$
 - scaled Gauss-Hermite: $t_{\text{sGH}} \sim O((L+M)N_{part}) + O(L^2M^2)$
 - ratio $t_{cos}/t_{sGH} \sim O(L) + O(N_{part}/L^2)$ (assume L=M)



Terzić

- Scaled Gauss-Hermite expansion is computationally appreciably faster:
 - cosine expansion: $t_{cos} \sim O(LMN_{part})$
 - scaled Gauss-Hermite: $t_{\text{sGH}} \sim O((L+M)N_{part}) + O(L^2M^2)$
 - ratio $t_{cos}/t_{sGH} \sim O(L) + O(N_{part}/L^2)$ (assume L=M)



Terzić

Scaled Gauss-Hermite Expansion: Loose Ends

- There are several issues with the scaled Gauss-Hermite expansion that we are still exploring/resolving:
 - convergence
 - different estimators for evaluating $f(\tilde{\gamma}_j, \tilde{\beta}_k)$
 - optimal number of basis functions (when is "more" less?)
 - what do we lose by using an analytic expansion?
 - avoid danger of smoothing over physical small-scale structures
 - adequate resolution: can this approach resolve physical small-scale structure?
- When these issues are properly addressed, we will have another tool
 with which to attack CSR and integration over beam's history

Summary

- Designed an iterative wavelet-based Poisson solver (PCG)
 - wavelet compression and denoising achieves computational speedup
 - preconditioning and sparsity of operators and data in wavelet space reduce CPU load
 - integrated PCG into a PIC code (IMPACT-T) for beam dynamics simulations
 - current efforts: adaptive grid, parallelization, optimization
 - *future uses*: probe usefulness of wavelet methodology in CSR simulations
 - simulate self-gravitating systems
- Developed a scaled Gauss Hermite approximation (still a prototype):
 - efficient representation of particle distribution
 - Poisson equation solved directly at a marginal cost
 - current efforts: resolving issues of convergence, truncation of expansion
 - future uses (?): in Bassi et al.'s 2D CSR code
 - in Rui Li's 2D CSR code