

JOINT CASA / SRF INSTITUTE SEMINAR

Sponsored by the Accelerator Division

SRF Development for FRIB at Argonne

April 17, 2008

Speaker: Kenneth Shepard

"The moving target" or "the parade of the acronyms"

- ISL (IsoSpin Lab) 1992
 - ~200 \$M (Walter Henning)
 - 215 MV NC linac for protons & deuterons
 - 265 MV SC linac for protons xenon
- RIA (Rare-isotope Accelerator) 1999-2004
 - ~1000 \$M (Hermann Grunder)
 - 1.4 GV SC linac with SNS e-cell high-energy section
 - 1.4 GV SC linac with triple-spoke high-energy section
- ½ RIA → AEBL (Advanced Exotic Beam Laboratory) 2006
 - ~550 \$M
 - 865 MV SC linac
- FRIB (Facility for Rare-Isotope Beams) 2008
 - ~550 \$M (Walter Henning)

Status of FRIB

- Draft Funding Opportunity Announcement (FOA) issued by DOE in February
- 550 \$M project, very modest funding to start in 2009
- Final FOA expected within weeks
- Proposals to be submitted within a few months
- Site selection by end of (fiscal) year?

SRF R&D: Cavities, Couplers, Tuners, Cryomodules

FRIB SRF Systems						
	History	Status Plann				
Cavities	Dev. for FRIB	Shown feasible	R&D			
Couplers	Dev. for FRIB	Dev. Req'd	R&D			
Tuners	Dev. for FRIB	Shown feasible	Development			
Cryomodules	Dev. for FRIB	Shown feasible	Development			

- Will try to overview where we are, how we got here, what needs to be done
- Identify opportunities for enhancing performance, reducing costs
- Discuss (please feel free to question and interrupt!) options going forward

From the start, we believed spoke cavities were the way to a driver linac – following Delayen's 1992 β =0.3, 800 MHz demonstration, we

tested a 350 MHz version at beta 0.4

Mike Kelly, as a post-doc, took on developing high-pressure water rinsing for TEM cavities and in early 2001 dramatically improved single spoke cavity performance

Assembling and Processing

Welding a Dozen Support Gussets

Excellent Performance in Initial Tests

40 Years of SC Cavities at ANL

SC QWR
Cavities for the
NSC Linac
(New Delhi)

Niobium-to-Stainless Cu Braze Transition

- Modification of established CERN Cu braze technique
- Single Cu wire at top flows through the joint producing a fillet on the back side
- Repeated cold shocks/mechanical loading tests verify joint integrity
- Dozens of units in service
- Adopted at Cornell, FNAL

ANL has prototyped 5 types of TEM cavities required for the AEBL driver linac (the remaining two are similar to

existing types)

115 MHz β=0.15
SteeringCorrected QWR

172.5 MHz β=0.26 HWR

345 MHz β =0.40 Double-spoke

57.5 MHz QWR-based structures 0.03< β <0.14

345 MHz β=0.5 Triplespoke

Voltage gain per cavity in the SC section

Niobium Parts Following Electropolish

- EP major assemblies
- Closure welds post-EP
- Handling is critical

Current cavity performance (after removing hydrogen): 30-35 MV/m, 800 – 1000 G peak surface fields

FRIB SC Cavity development (high priority)

- Finish getting the good out of existing prototypes
 - 600 C bake & re-process
 - Diagnose magnetic field limiting quench sites
 - Use as coupler and tuner development platform
- Build FRIB prototypes of low-beta QWR and Fork cavities

New single-cavity test cryostat (delivery in early May)

- Facilitates rapid clean assembly
- continuous 2K capability w/ ATLAS refrigerator
- Accommodates many types of cavity

TC3 – multiple configuration capability: FRIB, HINS, ILC

FRIB SC Cavity R&D – High opportunity triple-spoke option

Ivan Gonin (FNAL - HINS) has devised a triple spoke cavity design with substantially reduced peak magnetic field

Petr Ostroumov and Jin Xu have adapted Gonin's design to FRIB

Triple-spoke options for FRIB						
Current			Proposed			
Beta	Epeak	Bpeak	Beta	Epeak	Bpeak	
0.5	2.79	86 G	0.4	2.8	65	
0.63	2.93	90 G	0.54	2.9	67	
Peak fields at an accelerating gradient of 1 MV/m						

The FRIB Cryomodules

- Primary requirement as far as possible a common design throughout linac:
 - 6 or 7 very different types of cavity
 - 4 different rf frequencies
- Minimize initial and operating costs:
 - Minimize clean room assembly time!
 - Maximize percentage of assembly done by vendor
- Our design and development process (to which JLAB people have contributed)
 - Considered ATLAS, JLAB, SNS, and many other cryomodule designs
 - Has arrived at a "generic" design which adapts easily to different lengths and heights

AEBL Cryomodule Assembly – typical active elements

AEBL Cryomodule Assembly – the clean-room assembly (completes cavity vacuum system)

AEBL Cryomodule Assembly – all systems assembled and can be checked, except outer cryogenic vacuum box

AEBL Cryomodule Assembly – the final step is simple and quick - - - in theory...

In fact, we'll find out next week...

Microphonics, noise, and fast-tuners

- We use reactive (PIN diode) tuners on ATLAS, but FRIB requires more (X10) tuning capacity
- Reduce microphonics by reducing df/dp
- Develop a mechanical fast-tuner

Fast tuner development – Zach Conway (now at Cornell)

has proved the principle

Microphonics spectrum and piezo tuner test

Figure 5.5: The β = 0.5 TSR cavity RF frequency variation vibration spectrums with the input power = 110 W (E_{acc} = 8.5 MV/m) at 4.5 K with and without piezoelectric damping of the RF frequency variations.

Figure 5.4: The β = 0.5 TSR cavity RF frequency variation spectral densities with the input power = 110 W (E_{acc} = 8.5 MV/m) at 4.5 K with and without piezoelectric damping of the RF frequency variations.

RF Coupler for FRIB

Conceptual design with Anna Maria Porcellato (INFN Legnaro)

■ Variable coupler, magnetic coupled, 58 – 345 MHz

Since start the target has shifted from 4K to 2K and from 5 kW to 10 kW

If FRIB at ANL then major JLAB participation

- My understanding of the present thinking is that JLAB:
 - Takes responsibility for
 - the high-energy section of linac
 - Refrigeration system
 - Low-level RF system
 - Coupler development
 - Is a partner in
 - Fast-tuner development
 - Spoke cavity development
 - Cryomodule and other development as suitable
- Lack of MOU is holding us back
 - Need confidentiality for participation in proposal
 - JLAB could participate now in ongoing work at ANL

