Second Sound as a Cavity Diagnostic Tool

Don Hartill Cornell Laboratory for Accelerator-Based Sciences and Education

Collaborators

Zack Conway

Eric Smith

Nick Szabo

Hasan Padamsee

plus the Cornell SRF Group

Contents

- Properties of Liquid Helium
- Transducers to Detect Second Sound
- First Multi-cell Tests
- Single Cell Tests
- Future Developments and Conclusions

Liquid Helium Properties

- Wave propagation in liquid helium
- Normal density wave = First Sound
- Below the Lambda Point a temperature wave can propagate (= change in the ratio of superfluid to normal fluid) = Second Sound
- Density wave in superfluid = Fourth Sound
- Velocities are ~ 300 m/sec, ~ 20 m/sec, and ~ 300 m/sec respectively
- Velocity of Second Sound is temperature dependent
- Attenuation of Second Sound is also temperature dependent especially near the Lambda Point

Liquid Helium Properties

Second Sound Velocity vs Pressure

Second Sound Detection

- Resistors with large temperature coefficients can be used
- Oscillating Superleak Transducers (OST) sense only Second Sound and provide a much more sensitive and selective detector in noisy environments (see R. A. Sherlock and D. O. Edwards, "Oscillating Superleak Second Sound Transducers" Rev. Sci. Instrum. 41, Pg. 1603 (1970))
- Response time can be in the range of 0.1 msec or less which implies a spatial uncertainty of ~ 2 mm if the start time can be determined to this same timing uncertainty.

Second Sound Detection

 Oscillating superleak transducers used to detect second sound waves (shown on the right)

 Operation is analogous to a Helmholtz resonator

 Typical tests use 8 transducers to locate the location of defects

Multi-cell Cavity Tests

- Tests of nine cell cavity manufactured by AES
- Cell geometry is based on the re-entrant design that holds the record accelerating gradient (59 MV/m accelerating) for single cell cavity
- First test was without OSTs
- Second test with 8 OSTs but one signal cable opened on cool down
- During the third test the Type N connector on the input coupler failed
 not able to get enough power into the cavity to cause a quench but
 did get the resistor thermometer data

First Successful Use of OSTs to Locate Quench

First Successful Use of OSTs to Locate Quench

@ $2K (v_s = 16.68 \text{ m/s})$, horizontal scale = 5 ms/Div

Making Sure This Works!

Defect Identification

 Use a Questar telescope and mirror/light source arrangement originally developed by Curtis Crawford while he was at Cornell

Defect Identification

- The defect near the weld in cell
- For scale, the weld is ~ 4 mm wide

Defect Identification

- By changing the drive frequency, it is possible to excite different modes that have higher fields in various cells
- For the $\pi/9$ mode the center cells went to ~ 40 MV/m accelerating while in π mode cell 1 quenched at 14.6 MV/m accelerating gradient
- By using different modes one can then identify other quench (defect) locations using the OSTs

FIG. 2. The rf field amplitudes of the normal and fundamental modes (FMs) in 9-cell cavities.

Multi-cell Summary

- Resistor thermometers verified quench location identified by the OSTs
- Visual inspection using our simplified telescope and lighting system identified a pit near the weld zone in cell #1 at the location indicated by both the OSTs and the thermometers
- Cavity has been tumbled for several weeks removing ~ 80 microns of material and the pit is no longer visible
- Cavity will receive ~ 200 micron electro-polish and then come to Jefferson Lab for hydrogen removal
- Cavity will then get a light electro-polish (~ 25 micron), high pressure rinse and low temperature bake
- And, the Type N connector has been replaced with the next test sometime in early 2009
- Stay tuned.....

- Cornell has a program to test six Niowave single cell cavities for Fermilab
- Has been very useful in refining and confirming the usefulness of this new diagnostic technique using OSTs
- All six cavities have been tested and OSTs have been used in all the tests
- Today and tomorrow the single cell re-entrant cavity is being retested using the high pulsed power klystron setup (1300 MHz, 250 µsec pulse width, 1 MW peak power)
- Hope to see quench location move around depending on the klystron pulse parameters

Typical setup for single cell tests

60 μm

254 μm

184 μm

205 μm

NR1-3

NR1-4

NR1-5

NR1-6

December 4, 2008

Single Cell Tests

3.8 e 9

1.3 e 9

3.6 e 9

3.8 e 9

Marred Surface

RF Power

Equator Weld Defect

Equator Weld Defect

19

)		1/2/2/2/2	. N. S. W. 7/1	3/	
Niowave Cavity	BCP (1:1:2) Etch	Q ₀ (1.94 K)	Peak E _{acc}	Q at Peak E _{acc}	Field Limit
NR1-1	85 μ m	8.2 e 9	27.9 MV/m	1.2 e 9	RF Power
NR1-2	113 μm	1.2 e 10	29.2 MV/m	1.5 e 9	Marred Surface

23.8 MV/m

27.4 MV/m

24.7 MV/m

26.8 MV/m

Jefferson Lab Seminar

1.3 e 10

1.5 e 10

1.4 e 10

1.5 e 10

Niowave 3
 with OSTs
 and
 thermometer
 array

• Niowave #3 thermometer response

• Niowave #3 thermometer response

• Niowave #3 temperature map

 Defect in Niowave 3 in center of area indicated by the OSTs and the thermometers

 Die used to form the cavity cups before welding at Niowave

Niowave #5 waveforms

• Niowave #5 waveforms

• Niowave #5 waveforms

Defect in Niowave 5 orientation

Defect in Niowave 5 orientation

31

Re-entrant
 Cavity with
 OSTs on
 klystron test
 stand

- First test after light electro-polish with amplifier drive found quench site near equator weld but at an accelerating gradient of ~ 40 MV/m not 59 which it went to previously
- Had field emission at lower gradient but processed away
- Single cell re-entrant tests to try to see quench site move with different pulse power from klystron
- With short pulse can be sure of start time of the quench and verify that the OSTs are responding only to a point quench site

Future Plans and Conclusions

- OSTs are now in regular service during cavity tests at Cornell
- OSTs provide as simple and reliable method of determining the location of quench sites
- By powering multi-cell cavities to excite different cavity modes, quench sites in each cell can be identified
- Eight sensors versus thousands of resistors is a much simpler path
- Could provide a robust method of quench protection in multi-cell cavities in operating accelerators
- Very interested in establishing collaborations to use this technique elsewhere

December 4, 2008 Jefferson Lab Seminar 33