A Vlasov-Maxwell Solver to Study Microbunching Instability in the FERMI@ELETTRA First Bunch Compressor System

Gabriele Bassi*

University of Liverpool and the Cockcroft Institute, UK
Collaborators

James A. Ellison, Klaus Heinemann, Math and Stat, UNM, Albuquerque, USA Robert Warnock, SLAC, Stanford University, Stanford, USA

- 1. Self Consistent Vlasov-Maxwell Treatment
- 2. Field Calculation
- 3. Self Consistent Monte Carlo Method
- 4. Microbunching Instability Studies
- * Thanks to Office of Naval Research Global for support

Self Consistent Vlasov-Maxwell Treatment II

Wave equation in lab frame with "2D" planar source:

$$(\partial_Z^2 + \partial_X^2 + \partial_Y^2 - \partial_u^2)\mathcal{E} = H(Y)\mathcal{S}(\mathbf{R}, u), \quad \mathcal{E}(\mathbf{R}, Y = \pm g, u) = 0.$$

where
$$u=ct$$
, $\mathcal{E}(\mathbf{R},Y,u)=(E_Z,E_X,B)$, $\mathbf{R}=(Z,X)$.

Vlasov equation in beam frame:

$$f_s - \kappa(s)xf_z + F_z f_{p_z} + p_x f_x + [\kappa(s)p_z + F_x]f_{p_x} = 0$$

where

$$F_z = \frac{e}{\bar{v}\bar{E}} \mathbf{V} \cdot \mathbf{E},$$

$$F_x = \frac{e}{\bar{E}\bar{\beta}^2} [-\bar{X}'(s)E_Z + \bar{Z}'(s)E_X + \bar{v}B)],$$

and
$$\mathbf{V} = \bar{v}(\mathbf{t}(s) + p_x \mathbf{n}(s))$$
, $\mathbf{E} = (E_Z, E_X)$ and B are evaluated at $\mathbf{R} = \bar{\mathbf{R}}(s) + x\mathbf{n}(s)$ and $u = (s - z)/\bar{\beta}$.

Field Calculation (Lab Frame)

$$\mathcal{E}(\mathbf{R}, u) := \langle \mathcal{E}(\mathbf{R}, \cdot, u) \rangle = \int_{-g}^{g} H(Y) \mathcal{E}(\mathbf{R}, Y, u) dY.$$

averaged field computed much more quickly

$$\mathcal{E}(\mathbf{R}, u) = -\frac{1}{2\pi} \sum_{k=0}^{\infty} (-1)^k (1 - \frac{\delta_{k0}}{2}) \int_{-\infty}^{u-kh} dv \int_{-\pi}^{\pi} d\theta \, \mathcal{S}(\hat{\mathbf{R}}, v, k)$$

where
$$\hat{\mathbf{R}} = \mathbf{R} + \sqrt{(u-v)^2 - (kh)^2}(\cos\theta, \sin\theta)$$
.

Issues

- ullet localization in heta (angular size of the beam) for $v \ll u kh$ and in v
- delicate calculation (must be done cum grano salis)

 θ integration: superconvergent trapezoidal rule

v integration: adaptive Gauss-Kronrod rule

Beam to Lab Charge/Current Density Transformation

- To solve Maxwell equations in lab frame must express lab frame charge/current density in terms of beam frame phase space density
- To a good approximation lab frame charge/current densities are

$$\rho_L(\mathbf{R}, Y, u) = H(Y)\rho(\mathbf{r}, \beta u) ,$$

$$\mathbf{J}_L(\mathbf{R}, Y, u) = \beta c H(Y)[\rho(\mathbf{r}, \beta u)\mathbf{t}(\beta u + z) + \tau(\mathbf{r}, \beta u)\mathbf{n}(\beta u + z)],$$

$$\rho(\mathbf{r}, s) = Q \int dp_z dp_x f(\zeta, s), \quad \tau(\mathbf{r}, s) = Q \int dp_z dp_x p_x f(\zeta, s),$$

where
$$\zeta = (z, p_z, x, p_x)$$

Remark: subtlety in the change of independent variable $u=ct \rightarrow s$ Derivation to be published in a forthcoming paper

Self Consistent Monte Carlo Method

Outline and comparison with PIC for Vlasov-Poisson (VP) system from s to $s+\Delta s$

From scattered beam frame points at s → smooth/global Lab frame charge/current density via a 2D Fourier method (Charge deposition (+ filtering) in VP PIC).
 1D Example:

1D orthogonal series estimator of f(x), $x \in [0,1]$

$$f_J(x) := \sum_{j=0}^J \theta_j \phi_j(x), \quad \theta_j = \int_0^1 \phi_j(x) f(x) dx, \quad \phi_0(x) = 1, \phi_j(x) = \sqrt{2} \cos(\pi j x), j = 1, 2, \dots$$

According to the fact that f(x) is a probability density

$$\theta_j = E\{I_{\{X \in [0,1]\}}\phi_j(X)\},$$
 therefore a natural estimate is $\hat{\theta}_j := \frac{1}{N} \sum_{n=1}^N I_{\{X_n \in [0,1]\}}\phi_j(X_n)$

- Calculate fields at s from history of Lab Frame charge/current density using our field formula (Solve Poisson Equation in VP PIC)
- Use fields at s to move the phase space points to $s + \Delta s$ (Same in VP PIC)

Microbuching in FERMI@ELETTRA First Bunch Compressor

Microbunching can cause an instability which degrades beam quality

This is a major concern for free electron lasers where very bright electron beams are required

FERMI@ELETTRA first bunch compressor system proposed as a benchmark for testing codes at the Workshop on the Microbunching Instability I in Trieste.

FERMI@ELETTRA First Bunch Compressor Parameters

Layout first bunch compressor system

Table 1: Chicane parameters and beam parameters at first dipole

Parameter	Symbol	Value	Unit
Energy reference particle	E_r	233	MeV
Peak current	I	120	A
Bunch charge	Q	1	nC
Norm. transverse emittance	$\gamma\epsilon_0$	1	μ m
Alpha function	$lpha_0$	0	
Beta function	eta_0	10	m
Linear energy chirp	u	-27.5	$\mid 1/m \mid$
Uncorrelated energy spread	σ_E	2	KeV
Momentum compaction	R_{56}	0.0025	m
Radius of curvature	$ ho_0$	5	m
Magnetic length	$\stackrel{ ho_0}{L_b}$	0.5	m
Distance 1st-2nd, 3rd-4th bend	L_1	2.5	m
Distance 2rd-3nd bend	L_2	1	m

Initial charge density in norm. coordinates for A=0.05, $\lambda=100\mu$ m. Init. phase space density = $(1+A\cos(2\pi z/\lambda))\mu(z)\rho_c(z,p_z)g(x,p_x)$.

Gain factor := $|b(k_f,s_f)/b(k_0,0)|$, where $b(k,s)=\int dz \exp(-ikz) F(z,s)$ and $k_f=k_0/(1+uR_{56}(s_f))$ for a given initial wavelength $\lambda=2\pi/k_0$. Here the compressor factor $C=1/(1+uR_{56}(s_f))=3.54$, $s_f=8.029$ m.

FERMI@ELETTRA First Bunch Compressor IV

Charge density in normalized coordinates at $s=8.029 \mathrm{m}$ for $\lambda=200 \mu \mathrm{m}$.

FERMI@ELETTRA First Bunch Compressor V

Section of charge density in norm. coord. at $s=8.029 \mathrm{m}$ for $\lambda=200 \mu \mathrm{m}$

Charge density in norm. coordinates at $s=8.029 \mathrm{m}$ for $\lambda=80 \mu \mathrm{m}$

 $\mathbf{E} \cdot \mathbf{t}$ in normalized coordinates at s=8.029m for $\lambda = 200 \mu \mathrm{m}$.

FERMI@ELETTRA First Bunch Compressor XI

Enlargement of $\mathbf{E} \cdot \mathbf{t}$ in norm. coord. at s=8.029m for $\lambda = 200 \mu \text{m}$.

FERMI@ELETTRA First Bunch Compressor XIII

Enlargement of $\mathbf{E} \cdot \mathbf{t}$ in norm. coord. at s=8.029m for $\lambda = 100 \mu \text{m}$.

Main Issues and Accomplishments

- FERMI@ELETTRA microbunching studies at $\lambda \ge 80 \mu \text{m}$:
 - Very small effect of μBI on mean power and transverse emittance
 - Gain factor at short wavelengths indicates weaker μBI than predicted by analytical formula
 - Simulations done at the HPC at UNM and on NERSC at LBNL, typical runs on NERSC: N procs = 200-700, N particles = 2×10^7 - 2×10^8 , 10-20 hours of CPU time
- Storage/computational cost very important
 - Analytical work + state of the art numerical techniques: integration, interpolation, density estimation, quasirandom generator
 - Parallel computing
- Delicacy of field calculation, support of charge/phase space density

Future Work

- \bullet Study wavelengths shorter than $\lambda=80\mu\mathrm{m}$ and different amplitudes of the initial modulation
- Complete studies for benchmark microbunching instability including RF cavities
- A paper will be submitted shortly to PRSTAB EPAC08 Special Issue

