

4GLS and ERLP at Daresbury

Hywel Owen

Accelerator Science and Technology Centre

UK Synchrotron Radiation Provision

 The UK wants a suite of IR to XUV short-pulse sources to complement what is available to UK users.

The 4GLS Concept

4GLS Branches and Bunch Paths

4GLS: Photon Output Coverage and Repetition Rates

Spontaneous SR Range: up to 1keV

Pulse length: few ps down to 100 fs Repetition rates: 1.3 GHz/6.5 MHz/1 kHz

4GLS IR-FEL

- 2.5 to $200~\mu m$
- Oscillator FEL
- SCRF for stability
- SCRF for stability
 25 to 60 MeV
 Investigating new request 10. for 2 simultaneous IR FEL **Beams**

XUV-FEL Branch

1 nC, 750 MeV, 2 mm mrad normalised emittance, 1 kHz, 1.5 kA

XUV-FEL Compression Scheme

XUV-FEL Microbunching

Parameter	First Bunch Compressor	Second Bunch Compressor
Compression Factor	3	12
E [MeV]	200	750
I_f [A]	125	1500
$\gamma \epsilon_0 \; [\mu \mathrm{m}]$	1.8	2.5
$\beta_0 [\mathrm{m}]$	15	15
α_0	1	1
σ_{δ}	2×10^{-5}	5.3×10^{-6}
$h \ [{ m m}^{-1}]$	-4.44	-1.31
$R_{56} [{\rm m}]$	0.15	0.70
$ ho_0 \; [\mathrm{m}]$	1.51	1.51
L_b [m]	0.4	1
$\Delta L [m]$	0.8	2

Z. Huang and Peter Williams

Hywel Owen, CASA Seminar 12th June 2007

High Average Current Loop – the ERL part

100mA, 550 MeV, 2 mm-mrad normalised emittance

Undulator sources + VUV-FEL

Progressive compression, ~500 fs to 100 fs

4GLS Parameters (Present Configuration)

Bunch Parameter	XUV-FEL	100 mA HACL Operation	VUV-FEL HACL Operation	IR-FEL
Electron Energy (MeV)	750	550	550	25 to 60
Normalised Emittance (mm mrad)	2	2	2	10
RMS Projected Energy Spread	0.1 %	0.1 %	0.1 %	0.1 %
RMS Bunch Length	< 270 fs	100 to 900 fs	100 fs	1 to 10 ps
Bunch Charge	1 nC	77 pC	77 pC	200 pC
Bunch Repetition Rate	1 kHz	1.3 GHz	n x 4.33 MHz	13 MHz
Electron Beam Average Power	<1 kW	55 MW	n x 183 kW	<156 kW

Beam Separation Concept

- Much longer

 600 MeV

 750 MeV

- Spectrometer + spreader dipole
 - (instead of septa or chicane/slide)
- Single (possibly PM) dipole with opposing fields in each aperture
 - cf. LHC dipoles
- Needs engineering study and consideration of beam loss/radiation damage

XUV/HACL Outward Arc Transport

4GLS – Engineering Concept for XUV and HACL Transport

XUV-FEL traverses ~60cm above HACL arcs

4GLS LAYOUT

CONSTRUCTED FROM DRG. 205-10000C

4GLS Possible Sites

4GLS Building Concept

Outward Arc Transport

- FEL arc decompresses
- HACL arc compresses

- Building size restrictions/cost mean:
 - FEL arc outside of CW arc
- Advantages:
 - Keeps FEL arc radius large for CSR management
 - Eliminates opposing bends
- Disadvantages:
 - Vertical offset to transport to pass FEL arc over CW loop arc
 60 cm in present iteration
 - Uses solenoids to achieve vertical matching - no flat beams for FEL branch
 - Optically complex!

HACL Progressive Compression Concept (CDR Configuration)

Resistive Wall Wakefields

Cu, 1 nC, 50 fs

(In reality bunches will not be Gaussian)

HACL Pseudo-S2E Simulation (CDR Configuration)

4GLS VUV-FEL

- 3 to 10 eV, ~500MW output
- Regenerative Amplifier system
- 4.33 MHz compared with 1 kHz XUV FEL
- Very tolerant to mirror degradation
- Reflectivity only 40 to 60% needed
- No seed
- 300 A peak current

Undulator	
Undulator Period λ_w	60 mm
Periods per module	37
Number of modules	5
ELECTRON BEAM	
Electron Beam Energy	$600~{ m MeV}$
Relative Energy Spread (rms)	0.1~%
Bunch Charge	$80 \ \mathrm{pC}$
Peak Current	300 A
Normalised emittance	$2~\mathrm{mm\text{-}mrad}$
OPTICAL CAVITY	
$\overline{\text{Cavity length } L_{cav}}$	34.6 m
Upstream ROC r_1	$12.85~\mathrm{m}$
Downstream ROC r_2	$22.75~\mathrm{m}$
Rayleigh length z_R	$2.8~\mathrm{m}$
Fundamental mode waist w_0	$0.34~\mathrm{mm}$
Waist position (measured from US mirror)	$12.2 \mathrm{\ m}$
Outcoupling hole radius	2 mm
Cavity stability $g_1 \times g_2$	0.88

4GLS Dual-Phase Compression Concept

Main linac compression scheme

Longitudinal cavity wake from complete main linac
1 nC@40ps gives ~50 kV shift to 80 pC bunch (~10-4 at 600 MeV)

Signs of Compression

Only the phases and signs of compression are different

Polarity of R56 – A and B Type Compression

A - Arc-like
$$R_{56} = \int \frac{\eta(s)}{\rho(s)} ds$$
 B - BC-like

A chirp goes with A compression **B** chirp goes with **B** compression

Your sign convention is up to you!

Wakefield and CSR Issues can help you choose which way round!

Higher-Harmonic or Sextupoles?

- At first glance, higherharmonic and T566 correction look pretty equivalent
 - This is true unless you are really pushing your parameters
- Consider a toy system
 - 10 to 100 MeV
 - Single stage
 - T566 or 3rd harmonic
 - All parameters optimised
- Third harmonic is more effective at linearising than T566

What happens with a longer bunch length?

T566 (Sextupoles)

Third Harmonic

10x smaller bunch length!

- This behaviour is probably generally true
- If you want to use sextupoles, then you have to keep your input (injector) bunch length short
 - 4GLS HACL injector meets these requirements about 2ps/0.4% at 10 MeV

HACL v1.1

No lasing

• (1D Model)

HACL v1.1

Lasing

• (1D model)

HACL BBU Threshold

- 4GLS will use 7-cell cavities adapted from TESLA 9-CELL cavities
- These have been modelled in Microwave Studio
- For more accurate modelling the couplers and dampers must be included
- BBU threshold depends on HOMs and focusing scheme
 - Using doublet scheme similar to Cornell ERL (half-half)
- See more detailed talk by Emma Wooldridge

Collimation in 4GLS

4GLS Shielding and Interlocks

Normal conductive 1.5-cell RF photocathode gun

Distribution of accelerating RF and focusing magnetic field in the gun

ASTRA simulation of the XUV-FEL injector

ASTRA simulation of the XUV-FEL injector

VUV-FEL injector

Beam parameters at the entrance of main linac

High voltage DC photocathode gun

Parameter of the photocathode gun

Gun voltage, kV	500
Average beam current, mA	100
Bunch repetition rate, GHz	1.3
RMS laser pulse length, ps	20
Laser pulse shape	Gaussian
Estimated operational life	
time, hours	27
Estimated rms transverse	
emittance, π·mm·mrad	2.8
Estimated rms bunch	
Length, ps	30

Photocathode preparation set-up

Beam dynamics in the VUV-FEL injector

Laser for VUV-FEL injector

For GaAs photocathodes λ <850 nm, for λ =520 nm

Wavelength, nm	520
Repetition rate, GHz	1.3
RMS pulse with, ps	10
Average laser power for Q _e =10%, W	2.3
Average laser power for Q _e =1%, W	23
Average laser power for Q _e =1%,η=0.7, W	33
Timing jitter, fs	100

4GLS Timescales

✓ April 02 Scientific case approved (Gateway 0)
 ✓ Nov 02 Business case approved (Gateway 1)

✓ April 03 & 04 £13.9 M funding for prototype accelerator (ERLP) and R&D (OST £8 M, CCLRC £5.9 M)

✓ Feb 05 EUROFEL R&D work funded (Euro 9M)

✓ March 05 Funding for 4GLS Technical Design (CCLRC £1.6 M)

✓ Nov 05 £3 M NWSF funding for ERLP science

✓ Spring 06 4GLS CDR

summer 2007 Review of light source provision for UK

• late 2007
ERLP energy recovery

spring 2008 4GLS TDR

2008/09/10 Approval for 4GLS and first spend

2013/14 Facility starts to become available to researchers

Other Things...

- Things I haven't mentioned:
 - Path Length Correction
 - Jitter and lasing tolerances (N. Thompson, G. Hirst etc. etc.)
 - XUV-FEL S2E by Peter Williams
 - High power dump Novosibirsk/RAL

- Thanks to:
 - 4GLS staff
 - Collaborators, including:
 - JLab
 - EuroFEL
 - Cornell
 - Stanford
 - Novosibirsk
 - MaxLab
 - Everyone else who's helped us
 - Esp. discussions at this workshop and the last one

www.4gls.ac.uk

ERLP Status

- Introduction
- Laser, gun
- Diagnostic line
- Injector commissioning
- Cryogenics
- Superconducting RF
- Beam transport system
- Ongoing work
- Future plans

Technical Priorities for the ERL Prototype

- Operate a superconducting linac
- Produce and maintain bright electron bunches from a photoinjector
- Produce short electron bunches from a compressor
- Demonstrate energy recovery
- Demonstrate energy recovery (with an insertion device that significantly disrupts the electron beam)
- Have an FEL activity that is suitable for the synchronisation needs
- Produce simultaneous photon pulses from a laser and a photon source of the ERL Prototype that are synchronised at or below the 1ps level

Accelerator Layout

Laser

Wavelength: 1.05μm, multiplied to 0.53μm/0.26μm (NdYvanadate)

Pulse energy: 80nJ on target

Pulse duration: 10ps FWHM

Pulse repetition rate: 81 MHz

Macropulse duration: 20 ms

Duty cycle: 0.2%

Timing jitter: <1ps

Spatial profile: circular.top hat) on photocathode

- ✓ Laser system commissioned '05
- ✓ Laser & transport commissioned April '06

computer controlled translation stages

Gun Power Supply

Gun Assembly

Anode Plate

- •JLab design GaAs cathode
- •500 kV DC supply
- •transverse emittance ~3 mm mrad

- ✓ Power supply commissioned '05
- ✓ Ceramic delivery March '06
- ✓ Spare ceramic delivered Nov '06

Ceramic, Cathode Ball and Gun

Diagnostics Line

Sections schematics when looking downstream (i.e. from the gun)

Gun Commissioning Status

- First beam at 01:08 on 16th August @ 250 kV
- Encouraging results obtained
- Contamination during cathode activation
- Limited by field emission to lower volts
- Cathode change after mechanical damage to flap
- Operation at 350 kV and 250 kV
- Diagnostic, buncher and kicker commissioned
- Cathode lifetime very poor, halo problems some field emission from flap during conditioning
- Change cathode, "solved" DC ion current problem, tightened handling methods, changed vacuum criteria, increased uniformity of bake, changed to NF₃
- Gun is currently under vacuum awaiting imminent delivery of high temp gaskets

First Beam!

Performance Achieved So Far

- Beam energy 350 kV (spec value)
- Bunch charge 11 pC (22 pC) (ultimate target 80 pC)
- Quantum efficiency measured in the gun 1.2%, measured in the lab 3.5% (ultimate target ~few percent)
- Bunch train length 100 µs (spec value)
- Train repetition rate 20 Hz (spec value)

Cryosystem

- 4 K commissioning was carried out May 06
- Module delivery April and July 06
- 2K cryogenic commissioning started Sept 06
- Both modules have been cooled to 2K early 07
- RF low level RF test confirmed booster HOM coupler OK.
- Problems transfer path heat leaks and heater failure
- System Acceptance May 07
- Will need to get many hours of operation under our belt before we have fully mastered cryosystem.

Cryosystem

Superconducting Modules

- 2 x Stanford/Rossendorf cryomodules - 1 Booster and 1 Main LINAC.
- Booster module:
 - 4 MV/m gradient
 - 32 kW RF power
- Main LINAC module:
 - 14 MV/m gradient

CASA Seminar 12th June 2007

Delivery April/July 2006

Linac high power tests now.

• Cavity 1:13 MV/m

• Cavity 2:10 MV/m

Electron Beam Transport System Status

- All modules are under vacuum
- Two modules share some components with the gun diagnostic line

ERLP takes shape

March 2007

ERLP first e-beam

1:08 am Wednesday 16th August 2006

- First electrons from the photoinjector and further commissioning continuing
- Linac & booster modules cooled down to 2K
- Stable operation of the cryogenics plant at 2K
- High power RF commissioning underway.

Planning for energy recovery by Christmas

Future Plans

- Confirmation linac gradient July
- Confirmation booster gradient end August
- Gun & diag line studies finished Mid Sept
- Booster repositioned Late Sept
- Beam through booster
 Oct
- Beam through the linac end Nov
- Energy recovery demonstrated Christmas!
- 2008:
- Compton backscatter phase 1
- THz production
- Install wiggler
- Energy recovery from FEL-disrupted beam
- Produce output from the FEL

EMMA – A Non-Scaling FFAG Accelerator

What is an FFAG?

Fixed magnetic field - members of the cyclotron family

Magnetic field variation B(θ)	Fixed RF frequency (CW operation)	Frequency modulated (pulsed beam)
Uniform	Classical	Synchro-
Alternating	Sector-focused	FFAG

SFC

What is a non-scaling FFAG?

- Scaling FFAGs have radius proportional to energy (a 'modulated cyclotron'
- Non-scaling don't have proportional radius smaller magnet apertures.
 - As the energy goes up, you cross lots of resonances but only in 10-30 turns (depending on the RF voltage); not really sure what is going to happen
 - No-one has built one, so we are going to!

Why a non-scaling FFAG?

- Two motivations:
 - Cheap, fast acceleration of muons EMMA a model of this
 - Cheap proton acceleration for radiotherapy PAMELA proposal

EMMA Cell Layout

Geometry consisting of 42 identical(ish) straight line segments of length 394.481 mm

Long drift	210.000 mm
F Quad	58.782 mm
Short drift	50.000 mm
D Quad	75.699 mm

Circumference = 16.568m

Magnet Reference Offsets

D = 34.048 mm

F = 7.514 mm

Magnet Yoke Lengths

D = 65 mm

F = 55 mm

Hywel Owen, CASA Seminar 12th June 2007

Clockwise

Beam

EMMA Ring

EMMA – RF Provision

Machine Parameters	Value
Frequency (GHz)	1.3
Number of Straights	21
Number of Cavities	19
Total Acc per turn	2.3 MV
Upgrade Acc per turn	3.4 MV
Beam Aperture	40mm
RF Bunch Length	1.6 ms
RF Repetition rate	10 Hz
Phase Control	0.02°
Amplitude Control	2x10 ⁻⁴

