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ERL Prototype: Technical Priorities

Primary Goals:

1. Foremost: Demonstrate energy recovery

2. Produce and maintain bright electron bunches from a photoinjector
3. Operate a superconducting LINAC

4. Produce short electron bunches from a compressor

Further Development Goals:

.

Demonstrate energy recovery during FEL operation (with an
insertion device that significantly disrupts the electron beam)

Develop a FEL activity that is suitable for the synchronisation
challenges and needs expected of 4GLS

Produce simultaneous photon pulses from a laser and an ERLP
photon source which are synchronised at or below the 1 ps level



ERL Prototype: Accelerator Layout

35 MeV

Superconducting
Linac

Dipole Chicane
Compressor

Diagnostics
Room

* Nominal gun energy

* Injector energy

* (Circulating beam energy

* Linac RF frequency

*  Bunch repetition rate

*  Max bunch charge

*  Bunch train

* Maximum average current

350 keV
8.35 MeV
35 MeV
1.3 GHz
81.25 MHz
80 pC

100 ps

13 HA



Construction Status

 Photoinjector laser system delivering beam to cathode since April 2006
» Gun installed with a dedicated gun diagnostic beamline
* Both superconducting modules delivered from Accel

 Cryosystem installed by Linde and DeMaco, and used to cool accelerating
modules down to 2K

« All but two of the beam transport modules are present in the Tower, awaiting
installation




Laser: Summary

Nd:YVO, - Wavelength: 1064 nm,
doubled to 532 nm

Pulse energy: 20 nJ on target (required)

Pulse duration: 7, 13, 28 ps FWHM

Pulse repetition rate: 81.25 MHz

Macropulse duration: 20 ms (100 ps @ 20 Hz)
Duty cycle: 0.2%

Timing jitter: <400 fs

Spatial profile: Circular top-hat on photocathode

v' Laser system commissioned at
Rutherford Lab in 2005 -

o ER
v" Laser & transport commissioned wy o A g

at Daresbury Lab in April 2006 ﬂud

computer controlled
translation stages



Laser:

Overview

Camera #2

Nd:YVO, Laser LS1 Mechanical shutter
7 ps FWHM, mode- (water-cooled) (water-cooled, 140 s
locked at 81.25 MHz ~ LNP Operation Camera #1 @ 1,2, 5,10 or 20 Hz) J1 | @L
S,
/ =610 mm @ T £,=762 mm —— screen
1064 nm_|["] A || H (2
: = e S,
= = | U U U /- # |—°
\ 2 2 A Waveplate, Pockels . PDI1 (Red)
Beam dump s ) cell and output polariser Mirror Fast
S, for optical g Optical chopper (Single pulse to 100 ps (99% reflection Photodiode
Mode: chopper ¢ (140 us @ 100 Hz) bunch @ 1,2, 5, 10 or 20 Hz) @ 1064 nm)
locking =
Phase 2
Laser  —°,ise =
synchro- g e
nisat_ion B ] ;,Nmec Webscope at Second
unit External = : € | hitp://148.79.186.49 Harmonic
RF reference _E (er]pscope dl.ac.uk) Generator
=]
' —— Pinhole
Mirror
Camera Variable attenuator .
. (98% reflection PD2 (G
iz Variable ND filter (motorised % 5 wave- @ 532 nm) o
l plate + polariser) :
""""""""""""""""""""""" Beam \ Photodiode
" L] ][] waist A s
N N e M o .
o ] L ' N
3= mm scréen
S?:::ZES \ ; M?:jeablet]ens , <Optional> Pulse stretcher b :
POSIION SO8s pg (B-barium oxide crystals T
i ©
in series) size:atcathiode) 13 ps FWHM with one Operated from IL‘.
crystal, 28 ps with both) laser control synoptic Camera #3

\‘Blade’
L-BTS —» | (with padlock)



o e v 0 64 ..1.-........u.?.\
--n--o---u---.

8% S

, Wand




Gun Assembly

Cathode ball  JLab design GaAs cathode
* 500 kV DC supply

Cathode Ceramic , Taroet transverse emittance:
SF6 ~3 mm mrad
Vessel removed
3
a
= AR
= A LL{MMMLHAH M0
o |- _

|I- LN
V

o
%

Stem
v Power supply commissioned 2005

1
Anode Plat
hode Hate v' Ceramic delivery March 2006

v' Spare ceramic delivered Nov 2006



The Insulatlng Ceramlc & Cathode Ball




Injector Diagnostic Line

ERLP Injector test beamline v2.5 (29/08/2006) 0 @
FC2
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Gun Commissioning Status

* Electron gun operated July and August 2006

e First beam from the gun recorded at 01:08 on Wednesday 16t
August with the gun operating at 250 kV

 Operating at 350 kV soon afterwards. Encouraging results obtained

 Following a cathode re-caesiation at the end of August, the Gun
was unable to support high voltage during HV conditioning

 Gun was re-baked and still exhibited similar HV breakdown

* Gun was stripped-down, inspected & tested, thoroughly cleaned,
re-assembled then baked

« Gun was HV conditioned to 450 kV last weekend (Jan. 61 & 7™)






First Beam !




JLab Contribution

DL played host to four JLab visitors during the
commissioning

Efficient HV conditioning
Laser/gun alignment
Diagnostic line ‘magnetic’
properties

SF, fill and pump systems
Tuning and steering procedures |
Etc..etc... |

Thanks to:
Fay Hannon, Carlos Hernandez-Garcia
Kevin Jordan and George Neil



Performance Achieved So Far

* Beam energy:

* Bunch charge: (ultimate target: 80 pC)
* Quantum efficiency:
measured in the gun (ultimate target: 1% to 10%)

measured in the offline laboratory chamber

e Bunch train length:

* Train repetition rate:



Problems With Caesiation




Current, mA

After cathode re-activation on 30/08/06, the gun
exhibited huge out-gassing during HV conditioning.

The ensuing vacuum spikes caused frequent HV
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HV Breakdown

SS Support tube, 12.4 MV/m
1 SS Ball cathode, ~8 MV/m

=
{

(6.0 MV/m), activated to
the NEA state by
depositing Csfrom
INSIDE the Ball cathode

m Photocathode: GaAs wafer

Zhe P
)




Caesium Channels




Second Phase Commissioning

Currently on-schedule to commence the second phase
of 1njector commissioning in January (from this
coming weekend)

Expected 2 weeks of HV conditioning, though
485 kV was reached 1n a weekend

Optimisation of laser system 1n parallel to HV
conditioning

Injector to be operated from mid-January, possibly
until the end of February

Minimum goals have been established for this phase
of 1njector commissioning



Cryosystem & Accelerating Modules

* 4K commissioning was carried out in May 2006

* ScCRF Modules were delivery in April and July

» The modules were cooled separately to 2 K, the LINAC in October and the
booster in November. In December, both modules were cooled together

» Low-power RF tests have confirmed the booster HOM coupler is OK
 Heater failed - Addressed by Linde in Dec. 2006, then again in Jan. 2007

» Will need to get many hours of operating experience before we have

mastered this cryosystem.
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Superconducting RF Modules

« 2 x Stanford/Rossendorf cryomodules,
one configured as the Booster and the
other as the Main LINAC.

* Booster module:

— 4 MV/m gradient
— 32kW RF power

e Main LINAC module:
— 14 MV/m gradient A

Delivery April/July 2006 (~7 months late)

JLab HOM coupler design adopted for the
LINAC module



ERLP Cavity Test Results
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Electron Beam Transport System

Status
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Electron Beam Transport System
Status

« All but two modules are now fully-assembled and located in the Tower, waiting
to be positioned and connected to form the ring BTS
* The last two share some components with the gun diagnostic line, or are being

modified to add extra valves. They will be moved from the assembly area shortly

Quadrupole Dipole
Magnet

&
Corrector Coil and

EBPM Assembly




Ongoing work

* Preparations for 2" phase of gun commissioning during
January & February 2007

» Understanding and testing of the cryogenic system

» Installation and testing of all RF systems

« Commissioning of the booster and LINAC modules

* Final installation of the beam transport system

» Commissioning and acceptance of the terawatt laser



Future Plans __
* Injector rebuild and bake to UHV ~ Xmas

4

L)

®

<+ HV conditioning early Jan
<+ Confirmation of LINAC gradient early Jan
<+ Stable 2K Cryo end Jan
< Gun commissioning finished end of Feb
» Full RF tests of modules early March
<+ Beam through the booster mid April

L)

L X 2

* Beam through the LINAC end of June
> Demonstrate energy recovery end Sept

4

L)

L)

<+ Install the wiggler
» Energy recovery from FEL-disrupted beam
<+ Generate photon output from the FEL



The Terawatt Laser for CBS & EO




ERLP Photon Science:

/X-r‘ays:

Time resolved X-ray diffraction studies
probing shock compression of matter on

Wecond timescales. ’
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Diagnostics

Laser-SR synergy: Started Dec 2005

Pump-probe expts with table-top laser and SR




Electro-Optic
Concept

Longitudinal Diagnostics:

encoding
(bunch profile into optical pulse)

decoding

(optical pulse into profile measurement)



Compton Back-Scattering = X-rays
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ack-Scattering Angular Distribution
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What we expect to get from CBS

Laser Power:

8 TW @ 10 Hz Head-on Collision Side or Top Collision
X-ray Energy ~ 30 keV ~ 15 keV
X-rays 15%106 3.5 (top) to 8 (side) x106
X-ray Pulse ~ Electron Bunch Length ~ Laser Pulse Length
X-ray Source Size 50 um % 20 um 10pum > 20 um or

10 pm x 50 um
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Installatlon of the TW Laser




The Micra Master-Oscillator
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22mJ/35fs@ 1 kHz
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>15J/200ps@ 10 Hz



The Compressor:. Chirped-Pulse Amplifier

SIMPLFD REP: NO_COVER

XX +-0.1
XXX +-0.03
X.XXX +-0.010
ANG. +-0.5
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British Accelerator Science and
Radiation Oncology Consortium

BASROC :

The long-term aim of BASROC is to build a complete hadron > ility
using Non-Scaling Fixed-Field Alternating Gradient ac nology
(NS-FFAG), combining the best features of cyclotron

accelerators

An FFAG combines the intensity and ease-0* ~fclotrons ....... coupled
with the benefits of synchrotrons, specj control and the ability to
accelerate proton and heavy ion be Ous energies

EMMA: The Electron Mode
: ,?;,"L* €ctrons to 20 MeV. The goal 1s to learn how
oUs applications, including hadron therapy




(Scaling) FFAG Technology

Scaling Fixed-Field Alternating Gradient (FFAG) accelerators were
invented in the 1950°s. Machines of this type have been built and
successfully tested in Japan, Russia and the US

Fixed magnet fields enable FFAGs to be cycled faster than synchrotrons,
limited only by the characteristics of the RF. This simplifies power supplies
and reduces costs, eases operation, and yields rapid acceleration

They have large beam acceptance, allowing high intensities with low beam
loss, and are physically compact making them easier to locate in industrial
or clinical environments

FFAGs have the potential to achieve a major development in accelerator
technology by replacing cyclotrons and synchrotrons in some applications,
allowing major developments in new areas of technology



NS-FFAG Technology

The (non-scaling) NS-FFAG was invented in 1999, and differs from a
scaling FFAG in two keys respects:

— Linear variation in the magnet field causes a parabolic variation in orbit
length with energy, thus greatly compressing the range of orbit radii and
reducing the magnet aperture

— Smaller and simpler magnets reduce cost, and yield a more-compact
machine than an equivalent scaling FFAG

It 1s possible to use a fixed RF frequency, thus simplifying the RF system

Magnet fields do not scale with energy, so tunes will vary and many
transverse resonance conditions will be crossed during acceleration

This is a new acceleration mode offering many new challenges, and
no such machine has been built anywhere else



ron-scaling FFAG

o E

husgeh

loww E

The scaling machine has a constant orbit shape,
whilst the non-scaling machine clearly does not

If the tune changes rapidly, the resonances
encountered during acceleration do not have time to
destroy the beam

Rapid acceleration: Big turn-to-turn energy variation

This 1s plausible, but needs verifying
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Energy Recovery Linac Project Building Layout

Constructed from Layout Drawing - 180/10080 F




Parameter Design Value
Energy range 10.5 to 20.5 MeV EM MA on ERLP
Number of cells 42
Lattice Doublet
Cell length 393.33 mm
Circumference 16.519 m
Height from ground 1.4m
Repetition rate 1 Hz
Orbit swing 3cm




EMMA Magnet Sections
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EMMA Cell Layout Plan
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EMMA Cell iIn 3D




EMMA Cavity: Modified ERLP Buncher Cavity [ias

Probe

Input Coupler

70 mm

FZ Rossendorf design, modified for ERLP,
manufactured by Vacuum Generators (UK)

Adjustable
Tuner

1.3 GHz Operating frequency

OFHC copper construction
Body machined from 2 pieces
Vacuum brazed assembly

CF flanges TIG welded



EMMA Girders

42 lattice cells assembled on 7 girders. Each 6-cell girder will be 2.33 m long.




Timescales for EMMA

* Design review on January 4 at DL to
freeze major elements of the specification
» Official project start date is April 2007

Implementation phase of Project:

* 12 months detailed design phase

16 month procurement phase in parallel

» 8 month off line assembly and test

6 months installation and testing in the
ERLP Accelerator Hall

» 6 month of full ring studies

» Some overlapping of the above to make a
3% year programme

Concept design complete | Dec 30t 2005

Feasibility design Mar 30t 2007
complete

Detailed design Mar 10t 2008

Procurement complete

Aug 1512008

Construction phase
complete

Jul 231 2009

Commissioning with
electrons complete

Sep 17t 2009

Phase 1 full ring studies
complete

Mar 5t 2010

Phase 1 advanced ring
studies complete

Jul 9t 2010




The ERLP & 4GLS Team

At Daresbury Laboratory

I el

Thank you for listening ......
...... And thank you to JLab
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4GLS
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4GLS Design Studies update

*+ 4GLS Conceptual Design report (CDR)

- April '06

* 4GLS Design Configuration Report (DCR)
- Dec '06

* 4GLS Technical Design Report

- Autumn ‘07



4GLS Design Studies update

- Baseline costing exercise of 4GLS
design v1.0 (CDR) completed

- First round of layout refinement
4GLS v1.1

- Started work on S2E

- Work on detailed accelerator physics
ISsues

- R&D on SCRF for 4GLS
- FEL simulations and seeding



EuroFEL SRF Injector Investigations

» Investigation on injectors for high current ERLs (4GLS)

— A comprehensive report has been issued and accepted by the EuroFEL science
committee, outlining the full requirements of high current operation and a
suggested R&D plan

* SRF Gun Development (collaboration with BESSY & FZR)

— Simulations of existing design have been carried out

— Work has commenced on suitable upgrades for higher current operation

x T Current Design Design Goal
« EYROFEL
Energy 10MeV =P 1GeV
Current 1 mA > 100 mA
Eacc oMV P 510MV
Qbunch 77 nC - 77nC
RF Power 10 kW -» 051 MW

DL RF Group
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