ERLP Status
January
2007

Lee Jones
ASTeC
ERLP Progress Update: Content

• Introduction
• Construction status
• Injector commissioning
• Accelerating modules & Cryogenics
• Beam transport system
• Ongoing work
• Future plans
• X-Ray production & EO diagnostics on the ERLP
• The EMMA NS-FFAG project
Primary Goals:
1. Foremost: *Demonstrate energy recovery*
2. Produce and maintain bright electron bunches from a photoinjector
3. Operate a superconducting LINAC
4. Produce short electron bunches from a compressor

Further Development Goals:
1. Demonstrate energy recovery during FEL operation (with an insertion device that significantly disrupts the electron beam)
2. Develop a FEL activity that is suitable for the synchronisation challenges and needs expected of 4GLS
3. Produce simultaneous photon pulses from a laser and an ERLP photon source which are synchronised at or below the 1 ps level
ERL Prototype: Accelerator Layout

- Nominal gun energy: 350 keV
- Injector energy: 8.35 MeV
- Circulating beam energy: 35 MeV
- Linac RF frequency: 1.3 GHz
- Bunch repetition rate: 81.25 MHz
- Max bunch charge: 80 pC
- Bunch train: 100 μs
- Maximum average current: 13 μA
Construction Status

- Photoinjector laser system delivering beam to cathode since April 2006
- Gun installed with a dedicated gun diagnostic beamline
- Both superconducting modules delivered from Accel
- Cryosystem installed by Linde and DeMaco, and used to cool accelerating modules down to 2 K
- All but two of the beam transport modules are present in the Tower, awaiting installation
Laser: Summary

- Nd:YVO$_4$ - Wavelength: 1064 nm, doubled to 532 nm
- Pulse energy: 20 nJ on target (required)
- Pulse duration: 7, 13, 28 ps FWHM
- Pulse repetition rate: 81.25 MHz
- Macropulse duration: 20 ms (100 μs @ 20 Hz)
- Duty cycle: 0.2%
- Timing jitter: < 400 fs
- Spatial profile: Circular top-hat on photocathode

✓ Laser system commissioned at Rutherford Lab in 2005
✓ Laser & transport commissioned at Daresbury Lab in April 2006
Gun Power Supply
Gun Assembly

- JLab design GaAs cathode
- 500 kV DC supply
- Target transverse emittance: ~3 mm mrad

- Power supply commissioned 2005
- Ceramic delivery March 2006
- Spare ceramic delivered Nov 2006
The Insulating Ceramic & Cathode Ball
Injector Diagnostic Line

ERLP Injector test beamline v2.5 (29/08/2006)
Dimensions: Survey data (A0-183-11686 dated 14/07/06)

Sections schematics when looking downstream (i.e. from the gun)
Gun Commissioning Status

• Electron gun operated July and August 2006

• First beam from the gun recorded at 01:08 on Wednesday 16th August with the gun operating at 250 kV

• Operating at 350 kV soon afterwards. Encouraging results obtained

• Following a cathode re-caesiation at the end of August, the Gun was unable to support high voltage during HV conditioning

• Gun was re-baked and still exhibited similar HV breakdown

• Gun was stripped-down, inspected & tested, thoroughly cleaned, re-assembled then baked

• Gun was HV conditioned to 450 kV last weekend (Jan. 6th & 7th)
The Crowd Looks On Nervously
J Lab Contribution

DL played host to four JLab visitors during the commissioning

- Efficient HV conditioning
- Laser/gun alignment
- Diagnostic line ‘magnetic’ properties
- SF$_6$ fill and pump systems
- Tuning and steering procedures
- Etc..etc…

Thanks to:
Fay Hannon, Carlos Hernandez-Garcia
Kevin Jordan and George Neil
Performance Achieved So Far

- Beam energy: 350 kV ✓
- Bunch charge: 5 pC (ultimate target: 80 pC)
- Quantum efficiency:
 - 0.4% measured in the gun (ultimate target: 1% to 10%)
 - 3.5% measured in the offline laboratory chamber
- Bunch train length: Single 6 ps pulse to 100 μs ✓
- Train repetition rate: Up to 20 Hz ✓
Problems With Caesiumation

\[Q.E. = \frac{124 \times I}{\lambda \times P_{\text{laser}}} \]

\[= 0.6\% \]
After cathode re-activation on 30/08/06, the gun exhibited huge out-gassing during HV conditioning.

The ensuing vacuum spikes caused frequent HV PSU trips.

On reaching the 320 – 340 kV regime it was clear that the HV PSU current was highly erratic, and then

DC Gun HV tests

Data: 20/09/2006 #166,179,184,190
HV Breakdown

- SS Support tube, 12.4 MV/m
- SS Ball cathode, ~ 8 MV/m
- Photocathode: GaAs wafer (6.0 MV/m), activated to the NEA state by depositing Cs from INSIDE the Ball cathode

40 cm
Caesium Channels

Before

After
Second Phase Commissioning

• Currently on-schedule to commence the second phase of injector commissioning in January (from this coming weekend)

• Expected 2 weeks of HV conditioning, though 485 kV was reached in a weekend

• Optimisation of laser system in parallel to HV conditioning

• Injector to be operated from mid-January, possibly until the end of February

• Minimum goals have been established for this phase of injector commissioning
Cryosystem & Accelerating Modules

• 4 K commissioning was carried out in May 2006
• ScRF Modules were delivery in April and July
• The modules were cooled separately to 2 K, the LINAC in October and the booster in November. In December, both modules were cooled together
• Low-power RF tests have confirmed the booster HOM coupler is OK
• Heater failed - Addressed by Linde in Dec. 2006, then again in Jan. 2007
• Will need to get many hours of operating experience before we have mastered this cryosystem.
1St Cooldown – Towards 2 K
The 2 K Box
Superconducting RF Modules

- 2 x Stanford/Rossendorf cryomodules, one configured as the *Booster* and the other as the *Main LINAC*.

- **Booster module:**
 - 4 MV/m gradient
 - 32 kW RF power

- **Main LINAC module:**
 - 14 MV/m gradient
 - 16 kW RF power

Delivery April/July 2006 (~7 months late)

JLab HOM coupler design adopted for the LINAC module
ERLP Cavity Test Results

Specification of $> 15 \text{ MV/m}$ at $Q_o \geq 5 \times 10^9$

- **Booster Module**
 - Cavity ACCEL1: Test 1, Datum: 19 Jul 05
 - Cavity ACCEL2: Test 4, Datum: 05 Dec 05

- **LINAC Module**
 - Cavity ACCEL3: Test 1, Datum: 19 Sep 05
 - Cavity ACCEL4: Test 1, Datum: 05 Dec 05
Electron Beam Transport System Status
Electron Beam Transport System

Status

• All but two modules are now fully-assembled and located in the Tower, waiting to be positioned and connected to form the ring BTS
• The last two share some components with the gun diagnostic line, or are being modified to add extra valves. They will be moved from the assembly area shortly
Ongoing work

- Preparations for 2nd phase of gun commissioning during January & February 2007
- Understanding and testing of the cryogenic system
- Installation and testing of all RF systems
- Commissioning of the booster and LINAC modules
- Final installation of the beam transport system
- Commissioning and acceptance of the terawatt laser
Future Plans

- Injector rebuild and bake to UHV Xmas
- HV conditioning early Jan
- Confirmation of LINAC gradient early Jan
- Stable 2 K Cryo end Jan
- Gun commissioning finished end of Feb
- Full RF tests of modules early March
- Beam through the booster mid April
- Beam through the LINAC end of June
- **Demonstrate energy recovery** end Sept

- Install the wiggler
- Energy recovery from FEL-disrupted beam
- Generate photon output from the FEL
The Terawatt Laser for CBS & EO
ERLP Photon Science:

North West Science Fund
Award of £3m over 3 years

X-rays:
Time resolved X-ray diffraction studies probing shock compression of matter on sub-picosecond timescales.

Laser-SR synergy:
Pump-probe expts with table-top laser and SR

THz:
Ultrahigh intensity, broadband THz radiation to be utilised for the study of live tissues.

Started Dec 2005
Longitudinal Diagnostics: Electro-Optic Concept

encoding
(bunch profile into optical pulse)

decoding
(optical pulse into profile measurement)
Compton Back-Scattering ⇒ X-rays

\[E_\gamma = \frac{E_L (1 - \beta \cos \theta_1)}{(1 - \beta \cos \theta_2) + E_L [1 - \cos(\theta_2 - \theta_1)]/E_e} \]

\[\Theta_1 = \pi, \Theta_2 = 0 \]

\[E_{bs}^{\gamma} = \frac{E_L (1 + \beta)E_e}{(1 - \beta)E_e - 2E_L} \approx \frac{E_L (1 + \beta)^2 E_e}{E_e/\gamma^2} \approx 4\gamma^2 E_L \]

\[\Theta_1 = \pi/2, \Theta_2 = 0 \]

\[E_{bs}^{\gamma} = 2|\gamma^2 E_L| \]
Each colour represents a 1 keV energy band, with the 20-21 keV band on outside, and the 30-31 keV band at the centre.
What we expect to get from CBS

<table>
<thead>
<tr>
<th>Laser Power: 8 TW @ 10 Hz</th>
<th>Head-on Collision</th>
<th>Side or Top Collision</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-ray Energy</td>
<td>≈ 30 keV</td>
<td>≈ 15 keV</td>
</tr>
<tr>
<td>X-rays</td>
<td>15×10⁶</td>
<td>3.5 (top) to 8 (side) ×10⁶</td>
</tr>
<tr>
<td>X-ray Pulse</td>
<td>~ Electron Bunch Length</td>
<td>~ Laser Pulse Length</td>
</tr>
<tr>
<td>X-ray Source Size</td>
<td>50 μm × 20 μm</td>
<td>10 μm × 20 μm or 10 μm × 50 μm</td>
</tr>
</tbody>
</table>
Diagnostics Room

Laser Room

2.2 mJ, 35 fs at 1 kHz for EO

800 mJ, 100 fs at 10 Hz for CBS

Diagnostics Room
Installation of the TW Laser

Evolution

Micra

Legend

Power Amplifier
The *Micra* Master-Oscillator
The *Legend* Regenerative Amplifier

$> 2.2 \text{ mJ} / 35 \text{ fs} @ 1 \text{ kHz}$
The Multi-Pass Power Amplifier

CONTINUUM Powerlite Plus

> 1.5 J / 200 ps @ 10 Hz
The **Compressor**: Chirped-Pulse Amplifier
The EMMA Project

42 CELL/0.2T POLETIP FIELD
15.9M CIRCUMFERENCE
7 MODULES
AT 2.27M
BASROC: British Accelerator Science and Radiation Oncology Consortium

- The long-term aim of BASROC is to build a complete hadron therapy facility using Non-Scaling Fixed-Field Alternating Gradient (NS-FFAG) accelerator technology, combining the best features of cyclotron and synchrotron accelerators.

- An FFAG combines the intensity and ease-of-use of cyclotrons, coupled with the benefits of synchrotrons, specifically beam control and the ability to accelerate proton and heavy ion beams to various energies.

- **EMMA:** The Electron Model of Many Applications will use the ERLP as an injector at 10 MeV, accelerating electrons to 20 MeV. The goal is to learn how to design NS-FFAGs for various applications, including hadron therapy.

- **PAMELA:** The Particle Accelerator for Medical Applications will be a 70 to 100 MeV proton NS-FFAG, itself a prototype to demonstrate the potential use of NS-FFAGs in hadron therapy, thus strengthening the case for hadron therapy.

- **Awarded £6.9m over 3½ years to design and build EMMA:**

- Leading to a complete facility for the treatment of patients using hadron beams.
Scaling FFAG Technology

- Scaling Fixed-Field Alternating Gradient (FFAG) accelerators were invented in the 1950’s. Machines of this type have been built and successfully tested in Japan, Russia and the US.

- Fixed magnet fields enable FFAGs to be cycled faster than synchrotrons, limited only by the characteristics of the RF. This simplifies power supplies and reduces costs, eases operation, and yields rapid acceleration.

- They have large beam acceptance, allowing high intensities with low beam loss, and are physically compact making them easier to locate in industrial or clinical environments.

- FFAGs have the potential to achieve a major development in accelerator technology by replacing cyclotrons and synchrotrons in some applications, allowing major developments in new areas of technology.
NS-FFAG Technology

• The (non-scaling) NS-FFAG was invented in 1999, and differs from a scaling FFAG in two keys respects:
 – Linear variation in the magnet field causes a parabolic variation in orbit length with energy, thus greatly compressing the range of orbit radii and reducing the magnet aperture
 – Smaller and simpler magnets reduce cost, and yield a more-compact machine than an equivalent scaling FFAG

• It is possible to use a fixed RF frequency, thus simplifying the RF system

• Magnet fields do not scale with energy, so tunes will vary and many transverse resonance conditions will be crossed during acceleration

• This is a new acceleration mode offering many new challenges, and
 no such machine has been built anywhere else
To Scale, or *Not* to Scale?

- The *scaling* machine has a constant orbit shape, whilst the *non-scaling* machine clearly does not.
- If the tune changes rapidly, the resonances encountered during acceleration do not have time to destroy the beam.
- Rapid acceleration: Big turn-to-turn energy variation.
- This is plausible, but needs verifying.
ERLP Layout in the NSF Tower

Energy Recovery Linac Project Building Layout

Constructed from Layout Drawing - 180/10080 F
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Design Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy range</td>
<td>10.5 to 20.5 MeV</td>
</tr>
<tr>
<td>Number of cells</td>
<td>42</td>
</tr>
<tr>
<td>Lattice</td>
<td>Doublet</td>
</tr>
<tr>
<td>Cell length</td>
<td>393.33 mm</td>
</tr>
<tr>
<td>Circumference</td>
<td>16.519 m</td>
</tr>
<tr>
<td>Height from ground</td>
<td>1.4 m</td>
</tr>
<tr>
<td>Repetition rate</td>
<td>1 Hz</td>
</tr>
<tr>
<td>Orbit swing</td>
<td>3 cm</td>
</tr>
</tbody>
</table>
EMMA Magnet Sections
EMMA Cell in 3D
EMMA Cavity: Modified ERLP Buncher Cavity

- 1.3 GHz Operating frequency
- OFHC copper construction
- Body machined from 2 pieces
- Vacuum brazed assembly
- CF flanges TIG welded

FZ Rossendorf design, modified for ERLP, manufactured by Vacuum Generators (UK)
EMMA Girders

42 lattice cells assembled on 7 girders. Each 6-cell girder will be 2.33 m long.
Timescales for EMMA

- Design review on January 4th at DL to freeze major elements of the specification
- Official project start date is April 2007

Implementation phase of Project:

- 12 months detailed design phase
- 16 month procurement phase in parallel
- 8 month off line assembly and test
- 6 months installation and testing in the ERLP Accelerator Hall
- 6 month of full ring studies
- Some overlapping of the above to make a 3½ year programme

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept design complete</td>
<td>Dec 30th 2005</td>
</tr>
<tr>
<td>Feasibility design complete</td>
<td>Mar 30th 2007</td>
</tr>
<tr>
<td>Detailed design</td>
<td>Mar 10th 2008</td>
</tr>
<tr>
<td>Procurement complete</td>
<td>Aug 1st 2008</td>
</tr>
<tr>
<td>Construction phase complete</td>
<td>Jul 23rd 2009</td>
</tr>
<tr>
<td>Commissioning with electrons complete</td>
<td>Sep 17th 2009</td>
</tr>
<tr>
<td>Phase 1 full ring studies complete</td>
<td>Mar 5th 2010</td>
</tr>
<tr>
<td>Phase 1 advanced ring studies complete</td>
<td>Jul 9th 2010</td>
</tr>
</tbody>
</table>
The ERLP & 4GLS Team

At Daresbury Laboratory

Thank you for listening ……
…… And thank you to J Lab
ERLP Status
January
2007

Lee Jones
ASTeC
- 4GLS Conceptual Design report (CDR)
 - April '06
- 4GLS Design Configuration Report (DCR)
 - Dec '06
- 4GLS Technical Design Report
 - Autumn '07
- Baseline costing exercise of 4GLS design v1.0 (CDR) completed
- First round of layout refinement 4GLS v1.1
- Started work on S2E
- Work on detailed accelerator physics issues
- R&D on SCRF for 4GLS
- FEL simulations and seeding
- ...

4GLS Design Studies update
EuroFEL SRF Injector Investigations

- Investigation on injectors for high current ERLs (4GLS)
 - A comprehensive report has been issued and accepted by the EuroFEL science committee, outlining the full requirements of high current operation and a suggested R&D plan
- SRF Gun Development (collaboration with BESSY & FZR)
 - Simulations of existing design have been carried out
 - Work has commenced on suitable upgrades for higher current operation

<table>
<thead>
<tr>
<th>Current Design</th>
<th>Design Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>10 MeV → 1 GeV</td>
</tr>
<tr>
<td>Current</td>
<td>1 mA → 100 mA</td>
</tr>
<tr>
<td>Eacc</td>
<td>10 MV → 5-10 MV</td>
</tr>
<tr>
<td>Qbunch</td>
<td>77 nC → 77 nC</td>
</tr>
<tr>
<td>RF Power</td>
<td>10 kW → 0.5-1 MW</td>
</tr>
</tbody>
</table>