

... for a brighter future

An Exploration of Upgrade Options for the Advanced Photon Source

Michael Borland
Operations and Analysis Group
Accelerator Systems Division
January 24, 2007

A U.S. Department of Energy laboratory managed by The University of Chicago

Outline

- Rationale and goals for the upgrade
- Storage ring and ERL strengths and weaknesses
- Storage ring options
- ERL options
- Performance comparison
- Brief survey of ERL challenges.

Why Upgrade?

- There has been a massive investment in beamlines built up around the APS ring
- An increasing number of experiments could benefit from more than APS can presently deliver
- We are close to the end of what we can do to improve performance with the existing design
- If APS is not upgraded, it risks becoming obsolete
 - Planning and execution of such a project requires ~10 years...
 - Start now!

Goal for the Upgrade

- Provide revolutionary new experimental capabilities for x-ray users
- Accelerator changes can potentially support
 - Time-resolved studies requiring picosecond pulses
 - Higher flux
 - Higher brightness
 - Improved transverse coherence
 - Significantly longer straight sections
 - More beamlines
- We have investigated two major types of accelerator upgrades
 - Replacement storage ring
 - Energy recovery linac (ERL) injector
- Which is best depends on the x-ray science case and other factors.

Storage Ring Option

- Demonstrated strengths
 - High brightness (e.g., APS, ESRF, SPRing-8)
 - High current and flux (e.g., 1 A is not out of the question)
 - Stable and reliable
 - Well known technology
 - Safety issues well understood and controlled
 - Relatively inexpensive
- Known weaknesses
 - Difficult to be revolutionary:
 - Difficult to make short bunches (e.g., <10 ps)
 - Difficult to get ultra-low emittance (e.g., < 1nm)
 - Hard to support sector-by-sector beam customization
 - Can't have ultra-low energy spread (e.g., <0.1%)
 - Long dark time for installation (e.g., 1 year).

ERL Option

- Projected strengths
 - Ultra-high brightness
 - Short pulses (e.g., 1~2 ps rms)
 - Option for ultrashort pulses (e.g., 100 fs rms)
 - "No" dark time required for installation
- Known weaknesses
 - All strengths are projected, particularly
 - Low emittance
 - Ultrashort pulses
 - Difficult to achieve high average current
 - Multiple incompatible operating modes for different user communities
 - Operating reliability unlikely to be as high as ring
 - Very expensive.

Storage Ring Design Challenges

- For fixed-size ring, reduction of emittance requires strong focusing
 - This makes for strong chromatic aberrations and therefore strong sextupoles
 - These cause reduction of the transverse injection aperture
- Sextupoles and quadrupoles become difficult to build
 - Want them to be shorter, generally
 - Need them to have higher integrated strength
 - Forces us to smaller gaps
 - Makes alignment tolerances much tighter.

Storage Ring Design Challenges

- Collective instabilities
 - Smaller magnet gaps mean smaller vacuum chambers
 - Beam interacts with itself through the vacuum chamber
 - Geometric wakes caused by changes in VC cross section should be reduced
 - Resistive wakes caused by proximity of VC walls will increase
- Lifetime
 - Primary concern is Touschek scattering
 - APS lifetime already Touschek-dominated
 - Gets worse as emittance is reduced
 - Gets worse if the momentum acceptance is lower
 - Often happens whenever sextupoles are strong.
 - Short lifetime means frequent top-up, radiation damage.

Triple-Bend Ring Design (APS1nm)

"APS 1nm": 1nm emittance

Symmetric Lattice – Optical Function

- Longer straight section~8m for IDs
 - 4.8m max for APS now
- 0.9 nm effective emittance
 - Combined function dipoles
 - Stronger focusing

From A. Xiao, M. Borland, "APS 1nm Lattice," MAC Review, 11/15/06.

General Parameters of APS 1nm

	APS 1nm	APS
Energy (GeV)	7	7
Effective emittance (nm rad	0.89	3.1
Betatron tune X	57.3	36.2
Betatron tune Y	21.4	19.26
Chromaticity X	-127	-92
Chromaticity Y	-45	-45
Energy spread	1.16×10 ⁻³	0.96×10 ⁻³
Energy loss per turn (MeV)	6.5	5.4
Momentum compaction	1.04×10 ⁻⁴	2.81×10 ⁻⁴

From A. Xiao, M. Borland, "APS 1nm Lattice," MAC Review, 11/15/06.

Magnets are Challenging but not Impossible

Table 2: Combined-function Bending Magnet Strength for APS1nm Lattice

Bend

			APS1nm - Sym.	APS1nm - Low β
Name	L[m]	Angle[rad]	$K1[m^{-2}]$	$K1[m^{-2}]$
B0	2	0.061	-0.277	-0.268
B1	1.132	0.035	-0.372	-0.384

Hard to get sufficient good field region

Table 3: Quadrupole Strength for APS1nm Lattice

Quadrupole

		APS1nm - Sym.	$APS1nm - Low\beta$		
			Normal	Type-A	Type-B
Name	L[m]	$K1[m^{-2}]$	$K1[m^{-2}]$	$K1[m^{-2}]$	$K1[m^{-2}]$
QI1	0.3	-1.185	-1.199	-1.612	-1.023
QI2	0.5	1.413	1.419	1.633	1.463
QDF	0.5	1.698	1.702	1.659	1.675

Magnet design gives 2.35

Table 4: Sextupole Strength for APS1nm Lattice

Sextupole

		APS1nm - Sym.	$APS1nm - Low\beta$		
			Normal	Type-A	Type-B
Name	L[m]	$K2[m^{-3}]$	$K2[m^{-3}]$	$K2[m^{-3}]$	$K2[m^{-3}]$
S1	0.2	56.8	71.0	66.5	47.3
S2	0.2	-101.8	-121.2	-93.3	-65.1
SD	0.2	-85.0	-89.4	-84.4	-99.0
SE	0.2	-98.2	-100.1	-51.4	-90.9
SF	0.2	136.8	132.5	87.9	130.0

Magnet design gives 175

From A. Xiao, M. Borland, "APS 1nm Lattice," MAC Review, 11/15/06.

APS 1nm Optimization

- Dynamic aperture optimized using geneticOptimizer¹
 - Tunes, plus sextupole strength and positions are varied
 - Track many particles with dynamic aperture distribution and maximize the number that survive 50~100 turns
 - Include small errors to drive resonances
- Resulting 500-turn dynamic aperture is larger than ±10mm

Adapted from A. Xiao, M. Borland, "APS 1nm Lattice," MAC Review, 11/15/06.

Performance with Errors

- Ran 50 seeds with full set of errors
 - Multipole errors (same as ILC DR)
 - Rms alignment: 100 μm, 0.1 mrad
 - Rms strength errors: 0.01%
- One-pass trajectory corrected first to get stored beam
- Tune and chromaticity corrected to design value by 2 sets of quadrupoles and sextupoles
- RMS beta beating is ~15% horizontal, ~30% vertical
- Dynamic aperture is sufficient to allow storing beam for lattice correction
 - Should get few % beta beats¹
 and good dynamic/momentum
 aperture.

Adapted from A. Xiao, M. Borland, "APS 1nm Lattice," MAC Review, 11/15/06.

¹V. Sajaev and L. Emery, EPAC 2002, p 742.

Another Option: APSx3¹

- This is an evolution of the 1nm lattice
- Offers three times as many ID beamlines
- Could provide a three-pole wiggler for beamlines that still want bending-magnet-like source
- Acceptable dynamic/momentum aperture achieved¹

¹V. Sajaev, M. Borland, "APSx3 Lattice Design," MAC Review, 11/15/06.

Short Pulses from a Storage Ring: Zholents' Concept

A. Zholents, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 425, 385 (1999) See also, A. Zholents' talk at 2004 APS Strategic Planning meeting.

Pulsed vs. CW Cavities

- Zholents' concept was based on CW superconducting cavities
 - These have a long development time
 - Big footprint makes choice of location difficult
- A. Nassiri came up with "ultra fast-track" approach using
 - Pulsed-cavity approach^{1,2}
 - 3 or 4 room-temperature cavities in one straight
 - Mostly existing rf hardware
 - Initial operation at 120 Hz, later at 1 kHz
- Cavity design in progress by V. Dolgashev (SLAC) and APS
 - 9-cell S-band cavities have ~0.5 m insertion length
 - Single bunch current limit³ reduced 1~2 mA (10~20%)
 - Multibunch instabilities manageable⁴ with mode de-Qing
- CW approach being pursued in parallel for future upgrade.

⁴L. Emery, private communication.

¹P. Anfinrud, private communication.

²M. Borland, OAG-TN-2005-013, 6/16/06.

³Y-C Chae, private communication.

Expected Performance without Compression Optics¹

4MV + 6MV

About 10x greater intensity possible with compression optics.²

¹M. Borland, OAG-TN-2006-049, 10/13/06.

²K. Harkay et al., PAC 2005, p 668.

Storage Ring Summary

- With APS 1nm lattice:
 - Would decrease the emittance 3-fold
 - 8 m undulators instead of 4.8
 - Would increase the beam current from 100 to 200 mA
 - Brightness will increase 1 order of magnitude
- We can also produce ~ 1 ps pulses for selected beamlines, with 1 to 10% of normal intensity
 - No significant impact on other users
- Would require a 1 year shutdown to replace the ring¹
- \blacksquare We may need to replace the booster as well^{2,3}.

³N. Sereno, "Booster Upgrade Requirements and Possibilities," MAC Review, 11/15/06.

¹J. Noonan, private communication.

²V. Sajaev, M. Borland, "APSx3 Lattice Design," MAC Review, 11/15/06.

Why Pursue a Linac-Based X-ray Source?

For a high-energy source, it is very hard to increase storage ring brightness

For a linac, the scaling is quite favorable

$$\epsilon_x \propto \frac{1}{E}$$

Also, in a linac the energy spread is small and constant, whereas in a ring

$$\frac{\sigma_E}{E} \propto \frac{E}{\sqrt{\rho}}$$

See M. Sands, SLAC-121 for background.

Cornell ERL Parameters¹ Scaled to 7 GeV

	APS		ERL	
	now	High flux	High coherence	Ultrashort pulse
Average current (mA)	100	100	25	1
Repetition rate (MHz)	$0.3 \sim 352$	1300	1300	1
Bunch charge (nC)	0.3~60	0.077	0.019	1
Emittance (nm)	3.1×0.025	0.022×0.022	0.006×0.006	0.37×0.37
Rms bunch length (ps)	$20 \sim 70$	2	2	0.1
Rms momentum spread (%)	0.1	0.02	0.02	0.3

- Promise of very high brightness
 - Extremely low emittance, equal in both planes
 - Very low energy spread
 - Current from 25 to 100 mA
 - Picosecond pulses
- Option for less current with high charge, femtosecond pulses.

¹G. Hoffstaetter, FLS 2006 Workshop, DESY.

An "Infield" Option (Sereno)^{1,2}

Advantages

- No impact on external environment
- Multi-pass linac shorter, cheaper
- Recirculation feature for commissioning
- Disadvantages
 - Complex, crowded beam optics
 - Somewhat higher emittance growth expected³
 - No major expansion of beamlines

¹N. Sereno, "Infield ERL Option," 10/19/06.

³V. Sajaev, ASD/APG/2006-20, 8/20/06.

²Evolved from suggestions by Y. Cho, D. Douglas, R. Gerig, M. White.

An "Outfield" ERL Option (G. Decker¹)

Advantages:

- Linac points away from APS² to give straight-ahead short-pulse facility³
- Beam goes first into new, emittancepreserving turn-around arc⁴
 - Potential for many new beamlines
- Avoids wetlands etc. by using narrow corridor for linac and return line

Issues:

- Big, expensive
- North turn-around should be *larger* than shown
- Requires some changes to ring
- No space for long undulators

¹G. Decker,OAG-TN-2006-058, 9/30/06.

²M. Borland, "ERL Upgrade Options and Possible Performance," 9/18/06.

³M. Borland, "Can APS Compete with the Next Generation?", May 2002.

⁴M. Borland, OAG-TN-2006-031, 8/16/06.

Realization of Decker's Outfield ERL Concept¹

Rough APS ERL Linac Configuration¹

~45 cryomodules are needed for a one-pass 7 GeV linac.

¹A.Nassiri, "Overview of Superconducting Linacs," 8/11/06.

Linac Design for 7 GeV ERL

- ¹D. Douglas, JLAB-TN-00-027, 11/13/00.
- ²M. Borland, OAG-TN-2006-041, 9/17/06.

- Inject at 10 MeV
- Start with graded gradient¹ doublet optics
- Optimize using elegant to further reduce maximum beta functions²
- Use Nassiri's configuration
 - 352 cavities
 - 20 MV/m
- Cavity filling factor 0.52
- 92 quadrupoles

Emittance-Preserving Arc Designs for ERLs

- Linac may produce very low emittance, but we have to deliver it to many users through
 - Turn-around arc
 - Injection transport line
 - APS ring itself
- Emittance can be degraded by (among others)
 - ISR: Incoherent synchrotron radiation (randomness of photon emission)
 - CSR: Coherent synchrotron radiation
- Emittance preservation is similar to low-emittance storage ring design
 - Gentle bending and strong focusing
- CSR control requires isochronous design as well¹
 - Rigid bunch shape and judicious phase advance result in CSR cancellation.

¹J. Wu et al, Proc 2001 PAC; G. Bassi et al, NIM A 557 (2005).

Arc Design for Turn-Around 1

- 10 m straights for eventual new beamlines
- Average radius 230m
- Isochronous, achromatic tripletbend cells
- $\Delta v_{x} = 1.25$ per cell
- Excellent emittance preservation
- Four sextupole families for beam loss control

¹M. Borland, "Comparison of ERL Options and Greenfield ERL," MAC Review, 11/15/06.

Outfield ERL Tracking Results without CSR (7 GeV Portion)

Outfield ERL Tracking Results with CSR (77 pC/bunch)

Good Beam Control to End of Linac (17 MeV)

Brightness Comparison for High Coherence Mode

Computed with sddsbrightness (H. Shang, R. Dejus).

Comparison of ERL, APS 1nm, and APS now

Summary Brightness Comparison. M. Borland, E. Gluskin

Coherent Fraction Comparison

Short Bunches in APS from ERL?

- Can ultra-short pulses really be delivered?
- Can use APS as a bunch compression system $(R_{56}=0.3 \text{ m})$

Ideal result without coherent SR

Impact of Coherent Synchrotron Radiation: 800fs Target

Hybrid ERL/SR Mode

- Concept:
 - Run ring with stored beam crowded on one side as in present hybrid mode
 - Pulse ERL gun at 271/N kHz to match ring revolution frequency
 - Inject short, intense pulse into ring for 1 turn
- Average current would be up to 0.27 mA
 - Up to 2 MW beam power, maybe don't need ER
- Challenging R&D for magnets and power supplies:
 - Need faster kickers (<3 us)
 - Need high rate kickers (kick in and out)
 - Need highly stable kickers due to small emittance
 - Kickers must have DC mode for normal ERL operation
- No obvious reasons this won't work
 - Still need more linac in order to chirp the pulse.

Crab Cavities with ERL?

Approximate minimum compression of chirped pulse¹

$$\sigma_{t,xray} \approx \frac{E}{V \omega_c} \sqrt{\sigma_{y'}^2 + \sigma_{y'}^2}$$
 <1.2 μ rad for β >5m

$$\sigma_{y'} \approx \sqrt{\frac{\lambda_y}{2L_u}}$$
 <1.2 μ rad for: 1A and L_u =35m
 0.3A and L_u =10m

- For V=6 MV and 3 GHz cavity
 - $_{\rm -}$ ~100 fs rms for 1A and $_{\rm u}$ =35m or 0.3A and $_{\rm u}$ =10m
 - Intensity through slits is $\sim 100 \text{fs/2ps} = 5\%$
- Shouldn't harm beam: rms deflection only 32 μ rad
 - Deflection is very linear, ideal for x-ray compression
- Applicability limited by wavelength/undulator restrictions.

¹M. Borland, Phys. Rev. ST Accel Beams 8 074001 (2005).

Ultrashort Mode with Separate Injector

- Using Cornell's Ultrashort Mode in ERL@APS is fraught with problems
 - 1 mA average current
 - Much higher emittance
 - Serious beam degradation
- This isn't unique to APS
- Bazarov¹ suggests that ultrashort pulses should be delivered with a separate gun to a separate user hall:

Don't need ER for 1nC gun (low average current)!

¹I. Bazarov, private communication.

Most Important R&D Challenges

Gun/injector

- For now we've assumed values predicted by Cornell simulations¹
 - 0.1 μm emittance at 100 pC, but no merger
- Simulations at JAERI show comparable results²
 - 0.1 μm emittance at 10 pC including merger
- High-coherence mode is 0.1 μm emittance at 19 pC
- High voltage on the gun is a problem (750 kV!)

Cathode lifetime

- Need to run 25 to 100 mA for ~48 hours to be comparable to APS today
 - Probably can't do better than 1 hour with present cathodes³
- Time to change cathodes should also be short
 - Two-gun system probably essentially to avoid gaps in service.

³C. Sinclair, NIM A 557.

¹I.Bazarov and C. Sinclair, Phys. Rev. ST Accel. Beams 8 (2005) 034202.

²R.Hajima and R. Nagai, NIM A 557 (2006) 103-105.

Beam Loss Issues^{1,2,3}

- Possible problems from beam loss include
 - Inefficient energy recovery
 - Cryogenic load in linac
 - Radiation damage to equipment
 - Catastrophic damage to equipment from beam strike
 - Radiation hazard to users
- APS shielding⁴ is such that a 44 nA beam loss at one spot creates ~2 rem/hour outside shield wall
- Even 1 PPM loss from 100 mA ERL corresponds to 100 nA
- Is it possible to get around ~1 PPB?
 - APS injectors are typically only ~90% efficient, but
 - Stored beam in 24 bunch mode has single-turn loss of 0.17 PPB.

⁴APS Safety Assessment Document, APS-3.1.2.1.0 and L. Emery, private communication.

¹G. Neil, "Beam Loss and Beam Abort Strategy," FLS 2006 Workshop.

²CY Yao, "Beam Loss Issues of ERL Accelerators," 10/12/06, and references therein.

³M. Borland and A. Xiao, OAG-TN-2006-052, 10/16/06.

Beam Loss Mechanisms^{1,2}

- ERL beam will have a "halo," from e.g.
 - Space charge
 - Scattered drive-laser light
 - Field emission from the gun and linac
 - Intrabeam scattering
 - Non-linear optical elements
- Important R&D topics:
 - Quantitatively understand mechanisms of halo formation through theory, simulation, and experiment
 - Determine if it is workable to collimate halo and at what energy
 - Develop methods for reducing and managing halo, e.g.,
 - surface quality and composition to reduce field emission
 - momentum aperture optimization to control IBS
- If we can get the beam to high energy cleanly, may be able control beam losses in arcs.

¹G. Neil, "Beam Loss and Beam Abort Strategy," FLS 2006 Workshop.

²CY Yao, "Beam Loss Issues of ERL Accelerators," 10/12/06, and references therein.

Cumulative Touschek Loss Rate in APS for Different ERL Modes

Sextupole Optimization Can Control Losses in Ring

Estimated APS ERL Linac Cost/Power Requirements^{1,2,3,4}

- In spite of use of SC technology, power dissipation in the cavities is an issue
 - Power is \sim 40 W/m, but dumped at 2K
 - Require ~1kW of cryoplant power for 1W dumped at 2K!
 - Estimate we'd need a ~16 MW cyroplant for a one-pass linac
- Estimated cost is
 - $\sim 250 \text{ M}$ \$ for the cryoplant
 - $-\sim$ 250 M\$ for the linac itself

¹A.Nassiri, "Overview of Superconducting Linacs," 8/11/06.

²A.Nassiri, "ERL Cost Update," 8/24/06.

³A.Nassiri, private communication.

⁴A. Nassiri, "ERL RF Systems," MAC Review, 11/15/06.

Linac R&D Topics

- Linac superconducting cavity design and fabrication¹
 - Required gradients (20 MV/m) and Q's (10¹⁰) are achievable
 - Higher gradients would reduce length, but increase cryogenic power
 - Higher Q's would reduce cryogenic power
 - R&D on this topic important in controlling cost and complexity
- Cryogenics
 - With present technology, ~16 MW cryogenic plant required¹
 - Better cryoplant design may be possible and might pay off²
- Rf frequency choice
 - Higher frequency gives lower power consumption
 - Lower frequency (generally) better for beam dynamics
 - Worse for CSR and Touschek scattering
- Multi-pass vs single-pass linac.

²M. White, private communication.

¹A. Nassiri, "ERL RF Systems", MAC Review, 11/15/06.

Two-Pass Acceleration Scheme for ERL¹

- Linac/cryoplant much cheaper, but overall cost impact unknown
- Much less accommodating to intense short-pulse schemes
- Need to look at BBU thresholds.

¹N. Sereno, G. Decker, OAG-TN-2007-003, 1/15/07.

Other Issues

- Path length tuning
 - For ER to work, the returning bunches must enter the linac 180 degrees out of phase with new bunches
 - Exit transport line from the APS to the linac is a convenient location to adjust this
 - Need to understand survey tolerances and adjustment range
- ID impact has to be looked at
 - IDs will change beam energy
 - Energy loss from IDs is about 20% of nominal energy loss
 - If uncompensated, will change path length and ER
 - Need to develop a compensation scheme to allow users to change gaps at will
 - IDs will increase emittance and energy spread
 - Needs to be evaluated, but probably small.

Positional Stability

- Based on present APS performance (1 μ m), we could stabilize ERL beam to ~20% of beamsize
 - We don't see to be far from required $\sim 10\%$ stability
- 1.3 GHz repetition rate of ERL beam will help
 - 1.3 GHz is much faster than power supply ripple, rf variation, and vibration
 - Good signal for BPMs
 - Existing APS BPMs work at 352 MHz, so may want to build 1.408 GHz linac
- Ability to do correlation analysis (beam and equipment) with high rate data needed
- Present APS feedback system (1.6 kHz data rate) probably too slow
- R&D into quieter power supplies should also be pursued
 - Otherwise, might need feedback at rates above chopper frequencies (20 kHz).

¹A. Lumpkin.

Feedback Scheme for ERL to Compensate Gun Jitter

¹R. Lill, private communication.

Summary

- An APS Upgrade is being seriously investigated
- Storage ring upgrades are possible, but
 - Require long "dark time" (1 year or more)
 - Don't deliver revolutionary improvements
- ERL@APS promises revolutionary improvement in brightness and coherence
 - Simulation model "delivers" high quality beam to users
 - Enables major expansion of number of beamlines
 - Nearly identical performance to same-size greenfield ERL
- ERL needs heavy R&D to solve potential problems, e.g.,
 - Injector emittance requirements
 - Average current and cathode lifetime
 - Control of beam losses
 - Linac cost optimization
 - Short pulse production
- Initial results and world-wide R&D effort give reasons for optimism.

Acknowledgments

APS participants in upgrade discussions and computations:

M. Borland, J. Carwardine, Y. Chae, G. Decker, R. Dejus, L. Emery, R. Flood, R. Gerig, E. Gluskin, K. Harkay, M. Jaski, Y. Li, E. Moog, A. Nassiri, V. Sajaev, N. Sereno, H. Shang, R. Soliday, Y. Sun, N. Vinokurov, Y. Wang, M. White, A. Xiao, C. Yao

- Thanks for helpful discussion to:
 - I. Bazarov, G. Hoffstaetter (Cornell)
 - D. Douglas, G. Krafft, L. Merminga (JLAB)

Google "APS Upgrade" for MAC Review talks.