







# Phase Space Manipulations of Electron Beams Between Two Degree-of-Freedoms & Potential Applications

#### Philippe Piot

Department of Physics,
Northern Illinois University &
Advanced Accelerator R&D group,
Fermilab Accelerator Physics Center

#### **Credits**

- Contributor on emittance exchange
  - P. Emma, Wei Gai, Z. Huang, K.-J. Kim, J. Power,
     Yin-e Sun, M. Rihaoui
- Contributor on flat beam generation
  - N Barov, K. Flottmann, D. Edwards, H. Edwards, D. Mihalcea, S. Lidia, Y.-e Sun, N. Vinogradov
- Experimental work is done as part of a collaboration between ANL/U. of Chicago, FNAL, NIU, and Tsinghua University.





#### **Outline**

- Motivations
- Flat beam transform
  - Theoretical background
  - Experimental measurements
    - Historical remarks
    - Potential applications
- Transverse-to-longitudinal emittance exchange
  - Theoretical background
  - Potential applications
  - Plans for proof-of-principle experiment
- Summary





#### Production of flat beams

- Flat beam production relies on:
  - Generation of magnetized beam
  - A linear transformation devised by Ya. Derbenev to apply a torque on the beam

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME 4, 053501 (2001)

#### A low emittance, flat-beam electron source for linear colliders

R. Brinkmann, Y. Derbenev, and K. Flöttmann DESY, D-22603 Hamburg, Germany (Received 9 December 2000; published 18 May 2001)

We present a method to generate a flat (large horizontal to vertical emittance ratio) electron beam suitable for linear colliders. The concept is based on a round-beam if photoinjector with finite sclenoid field at the cathode together with a special beam optics adapter. Computer simulations of this new type of beam source show that the beam quality required for a linear collider may be obtainable without the need for an electron damping ring.

DOI: 10.1103/PhysRevSTAB.4.05350

PACS numbers: 29.17.+w, 41.75.Fr





XY space





#### Production of flat beams

A B-field on the photocathode imposes an averaged (over the beam) canonical angular momentum (CAM):

$$L_0 = \frac{eB}{2mc}\sigma_C^2$$

Outside of the solenoid this CAM is converted into mechanical angular momentum (MAM)

$$L = \frac{eB}{2p_z} \sigma_C^2$$

The MAM can then be removed by a properly design skew quadrupole channel (Derbenev's transform) to yield a flat beam

$$\varepsilon_{\pm} = \sqrt{L^2 + \varepsilon^2} \pm L$$
, and  $\varepsilon_{+} \varepsilon_{-} = \varepsilon^2$ 

Angular momentum Transverse uncorrelated emittance





#### Historical notes

- 1988: Reich et al. partial decorrelation noted downstream of an ECR source using one skew quadrupole
- 1999: Proposal for a flat beam injector Brinkmann, Flottmann and Derbenev
- 2000: D. Edwards et al. total décorrelation and production of flat beam demonstrated at Fermilab
- 2004: Y.-E Sun et al., generation and characterization of angular momentumdominated beams



[D. Edwards et al. LINAC 2000 Y.-E Sun Phd dissertation Univ. Of Chicago (2005)]

2006: P. Piot et al. demonstration of emittance ratio>100





### Applications: flat beam for linear collider? (1)



- Design and numerically optimize an injector capable of providing emittance ratio compatible with linear collider requirements
- Minimize 4D emittance





## Applications: flat beam for linear collider? (2)

- Flat beam transformer at 5 GeV yields: emittance ratio of 320
- However both emittances are too high
- A photoinjector cannot provide the adequate 4-D emittance at 3.2 nC
- Could add on a "cooling" to decrease both emittance by a factor ~10.







# Application to some Advanced Accelerator R&D topics at ILCTA



- Main goal: test ILC critical components
- Hidden agenda: do some advanced accelerator R&D and beam physics studies

(M. Church, S. Nagaitsev, P. Piot, PAC 2007)





User area

# Application to some Advanced Accelerator R&D topics at ILCTA

- A high brightness injector was designed (NIU/FNAL collaboration)
- Can achieve (simulation) the "canonical" 1 nC/ 1 μm (without compression)









# Applications: Image charge undulator

An e- propagating next to a grating emits radiation (so-called Smith-Purcell

radiation)

$$\lambda = \frac{\lambda_w}{2\gamma^2} \left( 1 + \frac{K^2}{2} \right)$$

Kis the "undulator parameter"

(Y. Zhang et al. PAC 2003 p. 941)

$$K = \frac{\lambda_w}{2\pi} \frac{eB}{mc}$$

(usually 
$$K = \frac{\lambda_w}{2\pi} \frac{eE}{mc^2}$$
)

- A 8 GeV beam, with 300x4x100  $\mu$ m at 10 nC passing through a grating with 10  $\mu$ m period K=0.2 (equivalent to a 60 T magneto-static undulator),  $\lambda$ =1 Angstrom, and gain length is 2 cm -- compare to TESLA X-ray FEL ~10 m with ~25 GeV linac
- Scale down to optical regime 250 MeV and implement at ILCTA?
   Collaboration with JLab?





# Applications: Dielectric slab as accelerating structures

Wakefield scales as:

$$oldsymbol{W}_{\parallel} \propto rac{oldsymbol{\mathcal{Q}}}{\sigma_z^2}$$

 Dielectric cylindrical-symmetric structures (MgTiO3; ε=16) have been tested in AWA. Axial average gradient of 100 MV/m were measured

- Wakefield accelerators based on a probepump configuration
- Slab-type structure reduce transverse wakefield sensitivity
- With ILCTA parameters we contemplate gradients of the order of GeV/m

(Courtesy of John Power and Wei Gai of Argonne Wakefield Accelerator)











# Experiment at the Fermilab/NICADD photoinjector laboratory (FNPL)

- Photo-emission electron source
- A TESLA cavity operating at 12 MV/m
- Quads, correctors magnets, dipoles and extensive diagnostics (OTR and YaG-based screens, electromagnetic beam position monitors)
- Bunch compression possible with a magnetic chicane
- Soon to be decommissioned







#### The FNPL 1+1/2 rf-gun

- High quantum efficiency photo-cathode (Cesium Telluride)
- A 1.3 Ghz rf-gun
- Three solenoids with independent power supplies







# Scaling of angular momentum (1)

Conversion of canonical angular momentum (CAM) into mechanical angular momentum is as predicted

CAM calculated from:

B-field on cathode (POISSON)

$$\langle L \rangle = e B_0 \sigma_C^2$$
averaged CAM

transverse rms size on photocathode

[Y.E. Sun et al. PRSTAB (2005)]







## Scaling of angular momentum (2)

Other scaling law and MAM conservation rules were verified



[Y.E. Sun et al. PRSTAB (2005)]





# Removal of angular momentum: flat beam generation

- From angular momentum measurement and beam size one can compute the correlation matrix <XY>
- The skew quadrupole settings can the be computed to apply the proper torque



[Y.E. Sun et al. PRSTAB (2005)]







# Demonstration of emittance ratio of 100 (1)



TABLE III. Measured and simulated flat-beam parameters for  $\sigma_c = 0.97$  mm. Both systematic and statistical (in brackets) error bars are included.

| Parameter                                                                                                         | Experiment                    | Simulation | Unit    |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------|------------|---------|
| $\sigma_x^{X7}$                                                                                                   | $0.088 \pm 0.01 \ (\pm 0.01)$ | 0.058      | mm      |
| $\sigma_{v}^{X7}$                                                                                                 | $0.63 \pm 0.01 \ (\pm 0.01)$  | 0.77       | mm      |
| $\sigma_{\scriptscriptstyle Y}^{\scriptscriptstyle X7} \ \sigma_{\scriptscriptstyle X}^{\scriptscriptstyle X8,v}$ | $0.12 \pm 0.01 \ (\pm 0.01)$  | 0.11       | mm      |
| $\sigma_{y}^{X8,h}$                                                                                               | $1.68 \pm 0.09 \ (\pm 0.01)$  | 1.50       | mm      |
| $\varepsilon_n^x$                                                                                                 | $0.41 \pm 0.06 \ (\pm 0.02)$  | 0.27       | $\mu$ m |
| $\sigma_y^{X8,h}$ $\varepsilon_n^x$ $\varepsilon_n^y$                                                             | $41.1 \pm 2.5 \ (\pm 0.54)$   | 53         | $\mu$ m |
| $\varepsilon_n^y/\varepsilon_n^x$                                                                                 | $100.2 \pm 20.2 \ (\pm 5.2)$  | 196        |         |



[P. Piot et al. PRSTAB (2006)]





# Demonstration of emittance ratio of 100 (2)

- Linear scaling of larger emittance on angular momentum was verified
- Discrepancy between simulation & experiment attributed to emittance measurement.





[P. Piot et al. PRSTAB (2006)]





## Applications: low energy Smith-Purcell free-electron laser

- A low energy electron source for time resolved electron microscopy was developed at NIU
- With minor upgrade (Helmoltz coils and skew quadrupoles), the source could generate sheet electron beam with suitable parameters to drive a low energy Smith-Purcell FEL (proposed in the late 80's by Walsh) Typical average power of 1 W is expected
- This could result in a table-top
   Terahertz light source with advantage
   compared to laser –based source
   making use of optical rectification
   [N. Vinogradov et al. PAC 2007]







# Emittance exchange between one transverse and the longitudinal d.o.f

- Basic idea suggested in the early days [Robinson
- Proposed by Cornacchia and Emma (PRSTAB 2002) to increase the incoherent momentum spread in LCLS and thereby alleviate microbunching instabilities (due to CSR or LSC)
- When used with the round-to-flat beam transformation, can fully repartition emittances within the three degree-of-freedom and taylor the partition for specific applications
  - Greenfield FEL
  - MW power FEL ?
  - ILC (?)





### Emittance exchange principle

Uses a deflecting mode cavity flanked by two dispersive sections (dogleg)



$$M_{CAV} = \begin{bmatrix} 1 & L_c & \kappa L_c/2 & 0 \\ 0 & 1 & \kappa & 0 \\ 0 & 0 & 1 & 0 \\ \kappa & \kappa L_c/2 & \kappa^2 L_c/4 & 1 \end{bmatrix}.$$
• The total matrix is 
$$M = M_{DL} M_{CAV} M_{DL} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

$$M = M_{DL} M_{CAV} M_{DL} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$





### Emittance exchange principle

• When the condition  $\kappa = -1/\eta$  is satisfied

$$B = -\frac{1}{\eta} \begin{bmatrix} \frac{(L_c + 2L)/4}{1} & \frac{(2\xi L - 8\eta^2 + \xi L_c)/8}{\xi/2} \end{bmatrix} = C$$

$$A_{1,2} = \frac{L_c}{4}$$

$$D = \frac{L_c}{4\eta^2} \begin{bmatrix} \frac{\xi/2}{1} & \frac{\xi^2/4}{\xi^2/2} \\ 1 & \frac{\xi/2}{2} \end{bmatrix}$$

- For  $L_c$ =0, the total matrix is block diagonal And  $\varepsilon_x$  and  $\varepsilon_z$  are exchanged.
- Generally however we have (See Emma and Cornacchia PRSTAB)

$$\begin{bmatrix} \varepsilon_x^2 \\ \varepsilon_z^2 \end{bmatrix} = \begin{bmatrix} |A|^2 & |B^2| \\ |C^2| & |D^2| \end{bmatrix} \begin{bmatrix} \varepsilon_{x,0}^2 \\ \varepsilon_{z,0}^2 \end{bmatrix} + \lambda^2 \varepsilon_{x,0} \varepsilon_{z,0} I,$$





### Emittance exchange principle

In our case the coupling term is given by

$$\lambda^{2} = \frac{L_{c}^{2}(1 + \alpha_{x}^{2})(\xi^{2} + (\xi \alpha_{z} - 2\beta)^{2})}{64\eta^{2}\beta_{x}\beta_{z}}.$$

- And can be minimized by a proper choice of incoming longitudinal Twiss parameters
- A possible choice for the optimum chirp  $(\alpha_z=-\frac{\langle z\,\delta\rangle}{\varepsilon_z})$  is  $\alpha_{z,m}=\frac{2\beta_z^-}{\xi}$
- And the residual coupling term is

$$\lambda_{m}^{2} = \frac{1}{64} \frac{\xi^{2} L_{c}^{2} \left(1 + \alpha_{x}^{2}\right)}{\beta_{x} \eta^{2} \beta_{z}} = \frac{1}{64} \frac{\xi^{2} L_{c}^{2}}{\eta^{2}} \frac{\varepsilon_{z,0}}{\varepsilon_{x,0}} \left(\frac{\sigma_{x'}}{\sigma_{z}}\right)^{2}$$





# Optimizing the emittance exchange

 The scheme was tested with particle tracking

• The exchange aims at swapping  $\varepsilon_x$  and  $\varepsilon_z$ 

• Here initial emittance values are  $\varepsilon_x$  =3  $\mu$ m, and  $\varepsilon_z$  =10  $\mu$ m.





#### Applications: Greenfield FEL

- Greenfield FEL (λ=1 A) require tranverse emittance of 0.1 mm
- This can be achieved with an the two transformations discussed
  - Flat beam

$$\gamma \varepsilon_x \otimes \gamma \varepsilon_y : (10^{-6})^2 \rightarrow 10^{-5} \otimes 10^{-7}$$

εx-εz exchange

$$\gamma \varepsilon_x \otimes \gamma \varepsilon_y \otimes \gamma \varepsilon_z : (10^{-6}, 10^{-6}, 10^{-7}) \rightarrow (10^{-5}, 10^{-7}, 10^{-7}) \rightarrow (10^{-7}, 10^{-7}, 10^{-5})$$





[Emma, Huan Kim and Piot. PRSTAB (2006)]





#### Applications: MW ERL (1)

Might have application in ERL to enable higher final energy spread



- After the FEL, the transverse beam parameter are matched such that they provide the desired bunch length and correlated energy spread after the emittance exchanger
- The beam is then decelerated





#### Applications: MW ERL (2)

The final transverse matrix is

$$\begin{bmatrix} \frac{1}{4} \frac{\varepsilon_{z,f} \left(\beta_{z,f}^{2} L^{2} + \eta^{4}\right)}{\beta_{z,f} \eta^{2}} & \frac{1}{2} \frac{\varepsilon_{z,f} \left(\beta_{z,f}^{2} L^{2} - \eta^{4}\right)}{\beta_{z,f} \eta^{2} L} \\ \frac{1}{2} \frac{\varepsilon_{z,f} \left(\beta_{z,f}^{2} L^{2} - \eta^{4}\right)}{\beta_{z,f} \eta^{2} L} & \frac{\varepsilon_{z,f} \left(\beta_{z,f}^{2} L^{2} + \eta^{4}\right)}{\beta_{z,f} \eta^{2} L^{2}} \end{bmatrix}$$

#### Issues:

- After the exchanger transverse emittance is huge and so is the transverse beta function (but this can be controlled)
- No clear advantage compared to usual longitudinal phase space manipulation (at least not obvious from this first look)
- Real question is does one prefer a large longitudinal or transverse emittance?
- One advantages might be BBU mitigation?





#### ILC revisited (work in progress)

- Flat beam (see before) seems not able to provide the proper emittance values for ILC (ε<sub>x</sub>, ε<sub>z</sub>) → (0.02,8) μm
- ILC target (0.02 x 8)<sup>1/2</sup>~0.4 μm for 3.2 nC is not reachable a conventional electron source
- These bunches are produced by a 5 GeV, 6 km damping ring Considering the 6-D emittance after the damping ring we have  $(\varepsilon_x, \varepsilon_y, \varepsilon_z)=(8, 0.02, 3000) \ \mu m$
- A possibility:  $(5, 5, 8) \rightarrow (1250, 0.02, 8) \rightarrow (8, 0.02, 1250) \mu m$
- The problem is to produce the "low" initial **longitudinal emittance** (self generating scheme are hopeless with GaAs cathode)





# Plans for POF experiment at AWA (1)

- Argonne wakefield accelerator
  - 15 MeV maximumenergy
  - Few pC to 100 nC bunches
  - Many diagnostics

 Managed/Operated by Wei Gai and John Power (HEP/ANL)









# Plans for POF experiment at AWA (2)

- Emittance exchange include extensive diagnostics currently being developed
- We included both the flat beam transform and transverse-tolongitudinal exchanger







# Second order effects problems...

 Bunch length at AWA larger than cases studied in litterature

 Second order effects spoil the final emittance

$$arepsilon_x \simeq \left| M \Sigma_0 \widetilde{M} + \sum_j \left[ egin{array}{c} T_{1jj} \ T_{2jj} \end{array} 
ight] \left[ T_{1jj}, T_{2jj} 
ight] \langle x_j^4 
angle 
ight|^{1/2},$$

 Photocathode drive laser will need to be shortened











#### Start-to-end simulation of the POP at AWA

- Round beam simulation (M. Rihaoui, NIU)
- Simulation of exchanger including space charge (Yin-e Sun et al., PAC 07)





Flat beam optimization

 $(17, 17, 5) \rightarrow (34, 0.2, 5)$  with a ratio  $e_x/e_y = \bar{2}10$ .





# Summary

- Phase space tailoring are emerging techniques
- Flat beam generation has been demonstrated and is now implement in the standard design of ILCTA. It will open opportunities to test concept such as image-charge undulator and dielectric wakefield
- Emittance exchange between the transverse and longitudinal phase spaces together with the flat beam technique provides control of emittance partitioning within the three degree-of-freedoms.
- Possible application might include longitudinal phase space management in FEL-driver ERL's



