The G⁰ Experiment: Backangle Running

Riad Suleiman

Virginia Tech November 02, 2006

OUTLINE

- The Structure of the Proton and the Goal of the G⁰ Experiment
- Parity Violation in Electron-Nucleon Interaction
- The G⁰ Experiment
- The Backangle Running
- Controlling the Helicity-Correlated Beam Properties
- Parity Quality of G⁰ Beam
- Results

Inside the Nucleon: The Building Blocks of Matter

Meson: quark + antiquark

UI

Baryon: quark + quark + quark

 $\left.\begin{array}{ccc} \text{proton:} & u \ u \ d \\ \text{neutron:} & u \ d \ d \end{array}\right\} \quad \text{valence quarks}$

Quarks in More Detail

- Mass: range from ~10x electron mass (up quark) to that of a Tungsten atom (top quark) *
- No internal structure (< 10⁻¹⁹ m)
- Electric charge: +2/3 (u,c,t) and -1/3 (d,s,b)

Proton: $\frac{2}{3} + \frac{2}{3} + (-\frac{1}{3}) = +1$

• No free quarks:

* The mass of an electron is $0.5 \text{ MeV/c}^2 = 9.1 \text{x} 10^{-31} \text{ kg}$

Quark	Charge (e)	Mass (MeV/c ²)
Up	+2/3	1.5 – 4
Down	-1/3	4 – 8
Strange	-1/3	80 – 130
Charm	+2/3	1150 – 1350
Bottom	-1/3	4100 - 4400
Тор	+2/3	171400 ± 2100

Strange Quarks In Particular

- Sea of quark and antiquark pairs
 - Made up of Up, Down, and Strange quarks
 - Up & Down quarks in sea difficult to distinguish from valence Up and Down quarks
 - Strange quark provides a unique window

The Goal of the G⁰ Experiment

To determine the contribution of the strange quark to the electric and magnetic properties of the proton and neutron.

Quarks move around so the proton has a charge distributed over its size.

Moving charges \rightarrow electric current \rightarrow magnetic field

Quarks and gluons both have spin, leading to a magnetic moment and magnetization distribution.

- Form Factors: The most fundamental dynamical quantity for describing the inner properties of a composite particle.
 - Electric (G_E): provides detailed information about the spatial distribution of charges in the particle.
 - Magnetic (G_M) : "" " magnetization in the particle.
 - Axial (G_A): " " " spin in the particle.

Electron and Nucleon Interactions

- Why an electron probe?
 - No internal structure
 - Electromagnetic interaction well understood
 - Electrons penetrate deep inside a nucleus

- Electromagnetic Force (binds electrons to nuclei)
 - Carrier particle: photon
 - Parity-conserving

- Weak Force (radioactive decay)
 - Carrier particles: W⁺, W⁻ and Z bosons (particles with integer spin)
 - Z⁰ interaction is parity-violating

What is Parity-Violation?

left

Parity-conservation: strength of particle interaction is same for mirror image

Sun on right

Sun exerts the same pull on the earth.

Parity-violation: strength of particle interaction is different for mirror image

The bean family twine to form a right-handed spiral. Left-handed spirals do not exist.

Parity Violation

Electromagnetic force is parity-conserving. Electrons' helicity will not affect the number of electrons scattered.

Weak force is parity-violating. Electrons' helicity will affect the number of electrons scattered.

The relative difference in these counting rates tells us how big the weak interaction piece is.

Electron and Proton Interactions Revisited

Amplitude of electron-proton interaction

$$M = M^{\gamma} + M^Z$$

Cross sections:

$$\left|M^{2}\right| = \left|M_{\gamma}^{2}\right| + 2\operatorname{Re}\left[\left(M_{\gamma}\right)^{*}\left(M_{z}\right)\right] + \left|M_{z}^{2}\right|$$

-

-

$$\sigma_{R} \propto \left| M_{\gamma} + M_{z} \right|_{R}^{2} \qquad \sigma_{L} \propto \left| M_{\gamma} + M_{z} \right|_{L}^{2}$$

Asymmetry:

$$A = \frac{\sigma_{R} - \sigma_{L}}{\sigma_{R} + \sigma_{L}} = \frac{\left|M_{\gamma} + M_{z}\right|_{R}^{2} - \left|M_{\gamma} + M_{z}\right|_{L}^{2}}{\left|M_{\gamma} + M_{z}\right|_{R}^{2} + \left|M_{\gamma} + M_{z}\right|_{L}^{2}} = 2\frac{M_{\gamma}^{*}M_{z}}{\left|M_{\gamma}\right|^{2}}$$

Parity-Violating Electron Scattering

$$A = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} = \left[\frac{-G_F Q^2}{4\pi\alpha\sqrt{2}}\right] \frac{A_E + A_M + A_A}{2\sigma_u}$$
1 equation
3 unknowns
$$A_E = \varepsilon(\theta) G_E^2(Q^2) G_E^{\gamma}(Q^2)$$

$$A_M = \tau(Q^2) G_M^2(Q^2) G_M^{\gamma}(Q^2)$$

$$A_A = -(1 - 4\sin^2\theta_W) \varepsilon' G_A^e(Q^2) G_M^{\gamma}(Q^2)$$

$$2\sigma_u = \varepsilon \left(G_E^{\gamma}\right)^2 + \tau \left(G_M^{\gamma}\right)^2$$
Requires 3 measurements at a given Q²:
Forward angle e + p (elastic)
Backward angle e + p (elastic)
Backward angle e + d (quasi-elastic)

Probes same hadronic flavor structure, with different couplings:

$$G_{E/M}^{\gamma} = \frac{2}{3} G_{E/M}^{u} - \frac{1}{3} G_{E/M}^{d} - \frac{1}{3} G_{E/M}^{s}$$
$$G_{E/M}^{Z} = \left(1 - \frac{8}{3} \sin^{2} \theta_{W}\right) G_{E/M}^{u} - \left(1 - \frac{4}{3} \sin^{2} \theta_{W}\right) G_{E/M}^{d} - \left(1 - \frac{4}{3} \sin^{2} \theta_{W}\right) G_{E/M}^{d}$$

Strange Quark Form Factors

Neglecting trivial breaking due to Coulomb force, one expects the neutron to be an isospin rotation of the proton:

$$G_{E/M}^{p,u} = G_{E/M}^{n,d}, \qquad G_{E/M}^{p,d} = G_{E/M}^{n,u}, \qquad G_{E/M}^{p,s} = G_{E/M}^{n,s}$$

$$G_{E/M}^{\gamma,p} = \frac{2}{3}G_{E/M}^{u} - \frac{1}{3}G_{E/M}^{d} - \frac{1}{3}G_{E/M}^{s} \longrightarrow G_{E/M}^{\gamma,n} = \frac{2}{3}G_{E/M}^{d} - \frac{1}{3}G_{E/M}^{u} - \frac{1}{3}G_{E/M}^{s}$$

$$A = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} = A_0 + \eta_E \ \mathbf{G}_E^s + \eta_M \ \mathbf{G}_M^s + \eta_A \ \mathbf{G}_A^{eN}$$

"Rosenbluth" type of Separation

$$A = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} = A_0 + \eta_E G_E^s + \eta_M G_M^s + \eta_A G_A^{eN}$$

Vary both the targets (LH_2 , LD_2 , ⁴He) and the kinematics

World data at $Q^2 \sim 0.1 (GeV/c)^2$

Ехр	Target	E _{beam}	Θ _e	A _o	η_{E}	η_{M}	η_A
		(GeV)	(deg)	(ppm)	(ppm)	(ppm)	(ppm)
SAMPLE	LD ₂	0.2	150	-7	1.6	0.8	1.8
SAMPLE	LH ₂	0.2	150	-6	2.1	3.5	1.6
HAPPEx	⁴He	3	6	7	20.0	0	0
PVA4	LH ₂	0.6	35	-2	10.1	1.0	0.3
G ⁰	LH ₂	3	6	-2	12.0	1.2	0.1

The G⁰ Experiment

• Forward and backward angle parity-violating e-p elastic and ed (quasi-elastic) in JLab Hall C G_E^s , G_M^s and G_A^e separa

Superconducting toroidal magnet

 Scattered particles detected in segmented scintillator arrays in spectrometer focal plane (FPD)

 Custom electronics count and process scattered particles
 (proton at forward angle and ------electrons at backward angle) G_E^s , G_M^s and G_A^e separated over range $Q^2 \sim 0.1 - 1.0$ (GeV/c)²

- Forward angle run completed
- Backward angle → March 06 February 07

What does G⁰ mean?

When this experiment was proposed 12 years ago, people were interested in this combination of form factors, Charge (magnetization) form so it was named G⁰ factor of the proton associated with Z^0 interaction $\frac{1}{2} - \sin^2 \theta_W = G_{E/M}^{p,\gamma} - G_{E/M}^{p,Z}$

Charge (magnetization) form factor of the proton associated with γ exchange

G⁰ Forward Angle Results

$$G_{E}^{s} + \eta G_{M}^{s} = \frac{4\pi\alpha\sqrt{2}}{G_{F}Q^{2}} \frac{\varepsilon G_{E}^{p^{2}} + \tau G_{M}^{p^{2}}}{\varepsilon G_{E}^{p}(1 + R_{V}^{(0)})} (A_{phys} - A_{NVS})$$

G⁰ Backward Angle

- •Electron detection: $\theta = 108^{\circ}$
- \cdot Both LH₂ and LD₂ targets
- •Add Cryostat Exit Detectors (CED) to define electron trajectory
- •Aerogel Cherenkov detector for π/e separation ($p_{\pi} < 380$ MeV/c)

E _e (MeV)	Q ² (GeV/c) ²	
362	0.23	
686	0.62	

Common Q² with HAPPEX-III and PVA4 (both at forward angles)

Experiment Schematic

G⁰ in Hall C : The key elements

Halo Detectors

Superconducting Magnet (SMS)

FPD Detectors

Spokesman

G^o beam monitoring

> CED+Cherenkov Detectors

G⁰ Backangle Run

- <u>March 15 May 1 (687 MeV):</u>
 - 200 hours LH_2, 50 hours LD_2 (at 10 $\mu A)$
 - 80 hours "parity quality" data w/ LH_2 at 60 μA
- <u>May 15 May 18 (362 MeV):</u>
 - first look at LD₂ at low beam current

High singles rates in the Cherenkov Detector PM tubes from neutrons. Change borosilicate window PM tubes to quartz window PM tubes.

- outstanding beam delivery
- July 19 Sept 1 (362 MeV): Production data w/ LH₂ at 60 μA
- Sept 22 Nov 1 (687 MeV): Production data w/ LH₂ at 60 μA
- Nov 1 Dec 22 (687 MeV): Production data w/ LD_2 at 60 μ A
- Jan 5 Feb 18 (362 MeV): Production data w/ LD₂ at 60 μA

Great Beam at very low energy, THANKS!

Basic Principles of Parity-Violation Experiments

- How do we carry out parity-violation experiment?
 - We scatter longitudinally polarized electrons off unpolarized protons within a hydrogen target
 - We reverse the helicity of the electron beam and measure the relative difference in detected signal:

- Here's the catch:
 - The experimental asymmetry is very small (1-50 ppm). *
 - The challenge is controlling the false asymmetries.
- Four drops of ink in a 55-gallon barrel of water would produce an "ink concentration" of 1 ppm.

The Polarized Electron Source

Right-handed electron

Left-handed electron

New Fiber-Based Laser

- Uses 1560 nm seed laser and amplifier commonly used in the telecommunications industry
- Electrical gain-switching avoids phase lock problems experienced with earlier optically mode locked systems
- Second harmonic generation device yields some 780 nm light from the 1560 nm light
- > 780 nm is at polarization peak (P ~ 85%) for super-lattice GaAs

J. Hansknecht and M. Poelker (Phys. Rev. ST-AB 9, 063501)

Helicity Pattern

Frequency of PC helicity flip is 30 Hz 1 mps = 33.33 ms

2*(1/60 Hz) = 33.33 ms

700 hours / 33.33 ms ~ 75,000,000 times

The Imperfect World

$$A_{meas} = \frac{Y_{meas}^{+} - Y_{meas}^{-}}{Y_{meas}^{+} + Y_{meas}^{-}}$$

If Y^+ or Y^- changes because of anything other than the spin physics of the interaction, it is a false asymmetries:

No beam property other than the beam helicity should change when the beam helicity reverses sign.

But beam properties do change:

- Charge
- Position and Angle on target
- Energy

Anything that changes with helicity reversal is said to be

How Do You Define Changes in Beam Charge and Position?

 Charge asymmetry: When the average current of the electron beam corresponding to one helicity state is different from the other state

$$A_{I} = \frac{I_{+} - I_{-}}{I_{+} + I_{-}}$$

We measure charge asymmetry of order 1-50 ppm

 Position difference: When the average position of the electron beam corresponding to one helicity state is different from the other state

$$\Delta_x = x_+ - x_-$$
$$\Delta_y = y_+ - y_-$$

We measure position differences of order 1-40 nm *

* 1 nm is one-billionth of a meter. The width of human hair is 50,000 nanometers.

Where Do Helicity-Correlated Beam Properties Come From? GaAs Crystal

- Residual linear polarization in the laser beam
 - In GaAs crystal, there is a preferred axis
 - QE is higher for light polarized along that axis
 - Induces helicity-correlated charge asymmetry
- Steering
 - PC alternately pulsed to + and high voltages to change from right to left circularly polarized light and vice-versa
 - PC behaves alternately as converging and diverging lens
 - If beam is off-center, it can be steered
 - Induces helicity-correlated position differences
- Phase Gradient (Intrinsic birefringence gradient) in the Pockels cell
 - Linear polarization varies across the laser spot
 - Induces helicity-correlated position differences
- Beam loading in rf Cavities
 - Induces helicity-correlated energy difference

Experimental Techniques to Reduce Helicity-Correlated Beam Properties

- 1. Careful Setup Procedures for the Pockels Cell:
- Check laser spot in front of PC (1mm diameter)
- Align PC to give high degree of circular polarization (> 99.9%)
 - Adjust PC roll, pitch, and yaw
 - Adjust PC high voltages
- Minimize position differences
 - Steering Scan: translate PC in x and y to find the center of the cell
 - Phase Gradient (Birefringence)
 Scan: translate PC in x and y with
 Linear Polarizer downstream

2. More work on the laser table:

- Check for electronic cross talk (PC OFF): must measure 0 for both charge asymmetry and position differences
- Use the rotating half wave plate (RHWP) (rotates the residual linear polarization) to minimize charge asymmetry and position differences

 PC High Voltage (PITA) Scan: Adjust HV to reduce charge asymmetry

- Further reduction in charge asymmetry by using the IA (intensity attenuator):
 Charge Feedback
- Use the insertable half-wave plate (IHWP): reverses the sign of the physics asymmetry.
 Electronic cross talk and PC steering do not change sign thus cancel by using IHWP

3. Taking care of the Electron Beam:

• Use special accelerator techniques to achieve "Adiabatic Damping"

- Use the Helicity Magnets in the 5 MeV region to reduce position differences: Position Feedback
- Change the beam energy slightly such that the polarization rotation in the machine is different by 180 degrees (not done at JLab yet)

Beam Parity-Quality at 687 MeV

Beam Parameter	Achieved (IN-OUT)	"Specs"
Charge asymmetry	-0.4 ± 0.25 ppm	2 ppm
x position difference	24 ± 5 nm	40 nm
y position difference	20 ± 5 nm	40 nm
x angle difference	-1 ± 2 nrad	4 nrad
y angle difference	-4 ± 2 nrad	4 nrad
Energy difference	2 ± 1 eV	34 eV
Beam halo (outside 6 mm)	< 0.3 × 10 ⁻⁶	10-6

Beam Parity-Quality at 362 MeV

Beam Param.	Achieved in G ^o (IN-OUT)	Specs
Charge asym.	0.03 ± 0.12 ppm	2 ppm
x position diff.	-12 ± 4 nm	40 nm
y position diff.	1 ± 4 nm	40 nm

Physics Asymmetry : LH₂ at 687 MeV

THE END

Looking at Small Dimensions

The smallest detail we are able to see when we look is about as small as the size of the wavelength of light we use.

* In a TV, each electron has an energy of about 20,000 eV.

Wavelength of visible light $\lambda \approx 5 \ x \ 10^{\text{-7}} \ m$

	Size (m)	Optical microscope
Living organism	10 ⁻⁶	works
Atom	10 ⁻¹⁰	does not work
Nucleus	10 ⁻¹⁴	does not work
proton	10 ⁻¹⁶	does not work

Conclusion: To look in detail into the interior of atoms and nuclei, a particle is needed whose wavelength is comparable to nuclear dimensions

nuclear dimensions.

$$E = pc = \frac{h}{\lambda}c$$

	Energy (eV) *	λ (m)	
Electrons	10,000	10 ⁻¹⁰	Size of atom
Electrons	100,000,000	10 ⁻¹⁴	Size of nucleus
Electrons	10,000,000,00	10 ⁻¹⁶	Size of proton

What is a Pockels Cell (PC)?

- Voltage-controlled
 birefringent crystal
- Applied voltage → electric field → 2 orthogonal rays of light with different velocities
 → retards phase of 1 component → changes polarization of emerging beam
- Converts linearly polarized light into circularly polarized light (acts as a ¼ wave plate)

Pockels Cell Installation September 12, 2006

- What did we accomplish?
 - Characterized Intensity Asymmetry (IA) Cell: $\lambda/4$, 16°
 - Measured dependence of intensity asymmetry on voltage : 22.27 ppm/V
 - Aligned Pockels Cell (PC)
 - Degree of linear polarization = 3.62%
 - Degree of circular polarization = 99.93%
 - Minimized x and y position differences.

Pockels Cell Installation September 12, 2006

Electron Beam Studies September 14, 2006

IHWP = OUT RHWP = 0° -10 ppm/V

Detectors

