FEL06 highlights Berlin, August 27-September1

organized by BESSY and Rossendorf

http://www.bessy.de/fel2006/proceedings/

most of the talks is there slides and audio!

Sessions

- The Angstrom Challenge
- Seeded FELs
- Energy Recovery FELs
- The Challenge of fs-Pulses and Synchronization
- FEL Oscillators and Long Wavelength FELs
- FEL Theory
- FEL Technology I
- FEL Technology II
- X-ray Optics and Detectors
- New Science at the FELs

1 day trip to Rossendorf and Dresden

A. Gover get the prize in 2005, gave a talk (lecture) this year

FEL prize

J. Rossbach and E. Saldin get FEL prize this year for contributions to the SASE FEL (Saldin started to work on ~ 25 years ago)

First lasing

- Lasing at 13 nm of the SASE FEL at FLASH (DESY)
- First Lasing at SCSS (RIKEN Spring-8)
- First Lasing at 198 nm Single-pass High Gain FEL at the NSLS SDL (BNL)
- Rossendorf second FEL at ~ 60 um

FLASH lasing at 13 nm

First Lasing at SCSS Prototype Accelerator.

- The first lasing: 49 nm
- E-beam energy: 250 MeV
- Bunch charge: 0.25 nC
- Bunch length: (< 1 pse)
- Peak Current (> 300 A)

 At moment spectrum width 0.5 nm is dominated by e-beam energy fluctuation ~ 0.2%.

SDL lasing(s)

- Intro: Source Development Lab (SDL)
- Our First Lasing of FELs Below 200 nm @ NSLS SDL
 - 1. SASE @193 nm
 - 2. 4th harmonic HGHG: 795 nm → 199 nm
 - 3. First E-SASE lasing

ELBE Layout

- Start Bremsstrahlung experiments: 2002
- Channeling radiation (X-ray's): 2003
- * IR-Radiation : FEL 1 first lasing 7.05.2004
- * FEL 2 first lasing 21.08.2006
- Neutron and Positrons planned for 2007

The Angstrom Challenge

- Status of the Linac Coherent Light Source (D. Dowell)
- Results and Lessons from FLASH (B. Faatz)
- The European XFEL Project (R. Brinkmann)
- Optical Klystron Enhancement to SASE X-Ray FELs (Y. T. Ding for LCLS)
- Status of Japanese XFEL Project and SCSS Test Accelerator (Shintake)

The Angstrom Challenge

LCLS Design Parameters

Fundamental FEL Wavelength	1.5	15	Å
Electron Beam Energy	13.6	4.3	GeV
Normalized Slice Emittance (rms)	1.2	1.2	mm-mrad
Peak Current	3.4	3.4	kA
Energy Spread (slice rms)	0.01	0.03	%
Bunch/Pulse Length (FWHM)	≤ 200	≤ 200	fs
Saturation Length	87	25	m
FEL Fundamental Power @ Saturation	8	17	GW
FEL Photons per Pulse	1	29	10 ¹²
Peak Brightness @ Undulator Exit	0.8	0.06	10 ³³ *

^{*} photons/sec/mm²/mrad²/ 0.1%-BW

Technical Challenges for Angstrom FEL's

- Gun emittance
 - Cathode emittance, uniformity, and quantum efficiency
 - RF field quality
 - gun solenoid field uniformity and alignment
- Drive laser reliability, stability and 3D shaping (UV diagnostics)
- Emittance preservation
 - Optical aberrations and CSR
 - Wakefields
- Beam Instabilities (CSR, Longitudinal space charge)
 - Laser-Heater
- Bunch length diagnostics and control
- Alignment
 - gun to solenoid etc.
 - undulator
- Magnetic Measurements
 - Beamline components
 - New measurement facility for undulators
- RF power stability
- Vibrations
- Temperature stability and control

RF Gun Fabrication and Cold RF Testing Finished & Preparing for High-Power Tests

Summary

- LCLS construction has begun:
 - Laser building at Sector 20 finished
 - Drive laser delivered, installed & operating
 - RF gun fabricated and high-power testing in Sept.
 - Beamline through BC1 installation begun
 - Final Focus Test Beam (FFTB) removed for LCLS construction
 - Undulators arriving from ANL and being magnetically shimmed in new Magnetic Measurement Facility (MMF)
- LCLS design addresses many of the varied technical challenges of Angstrom FELs
- Commissioning of Injector through BC1 to begin in early 2007
- On schedule for first light in 2008 and beam for users in 2009.

SCSS and Japanese XFEL

	Prototype	X-ray FEL	
Beam Energy <i>E</i>	0.25	8.0	GeV
X-ray Wavelength λ	60	0.1	nm
Beam Emittance επ	2	1.0	πmm.mrad
Bunch Length ∆₂	150	75	μ m
FWMH	0.5	0.25	psec
Transverse Beam Size σx,y	100	25	μ m
Peak Current Ip	1	4	kA
Charge per bunch q	0.5	1	nC
Undulator Parameter λu	15	18	mm
K	1.3	1.3	
Length L	9	80	m
FEL Saturation Length Lsat	10	80	m

SCSS and Japanese XFEL

CeB₆ Cathode & Heater Assembly

- CeB₆ Cathode 3 mm Diameter
- Emittance 0.4 π.mm.mrad (thermal emittance, theoretical)
- Beam Current 3 Amp. at 1450 deg.C (using graphite heater)
- Current Density > 40 A/cm²

Injector development (DESY Zeuthen & FLASH)

On-going programme:

- increase the gradient on the cathode from 40 MV/m to 60 MV/m
- further improve the transverse and longitudinal laser profile (collab. Max-Born Institute, Berlin)
- PITZ gun now part of FLASH injector

Results From Cavity Acceptance Tests

accelerating gradient Eaco [MV/m]

800°C + EP + baking 1400°C + BCP

Comparison of the accelerating gradients at Q=1010 in the first performance test after the full preparation sequences using etching with postpurification at 1400°C (blue) and electro-polishing with 800°C annealing (red).

24.0 +/- 4.8 MV/m 28.4 +/- 3.6 MV/m

EPAC2006 prize: → Lutz Lilje, DESY

'Excitation curves' of the best cavities treated with 800°C furnace treatment and electro-polishing. The XFEL baseline gradient of 23.6 MV/m is exceeded by a significant margin.

Accelerator technology - collaborative effort

Industrial study module assembly (M6)

2 more cryostats (TTF3/INFN) ordered Superferric magnet (CIEMAT)

BPM (Saclay)

Integrated HOM absorber

Length quantized n-λ/2 (possibility of ERL)

Tuner w/piezo (Saclay)

PART.

Industrialization in preparation

LLRF development (collab. Warsaw/Lodz)

TTF3-type coupler

Industrialization launched (Orsay)

Seeded FELs

- Very good talks and a lot of activity in the field (however, a lot of resources as well)
- BESSY, FERMI@ELETTRA, 4GLS, RIKEN-Sping8 and others...
- very sophisticated simulations of beam dynamic as well as FEL interaction
- BNL (SDL) experiments

The Challenge of fs-Pulses and synchronization

- For LLRF (machine operation) and for diagnostics
- Talk from MIT is a very good overview and very impressive results

Phase Noise (Timing Jitter) Measurements

$$\Delta t_{rms} = \frac{\sqrt{2\int_{f_1}^{f_2} L(f)df}}{2\pi f_0}$$

 $\Delta t_{rms}[10kHz,22MHz] = 10 fs$

Kaertner et al, PAC 2005. Winter et al, FEL 2005.

- Noise floor limited by photo detection
- Theoretical noise limit <1 fs

Summary and Outlook

- Optical master oscillator: Ultrashort pulse trains from mode-locked lasers have excellent phase/timing noise properties. (~10 fs → <1 fs)
- Timing-stabilized fiber links: initial demonstration in the accelerator environment. Optical cross-correlation system in progress for low-jitter, drift-free operation. (short-term ~10 fs → long-term <1 fs)
- Optical-to-RF synchronization: Balanced optical-RF phase detectors are proposed for femtosecond and potentially sub-femtosecond optical-to-RF synchronization. (~3 fs → long-term <1 fs)
- Optical-to-optical synchronization: Balanced optical cross-correlation.
 Long term stable sub-femtosecond precision is already achieved. (<1 fs)

(Sub-)femtosecond timing synchronization and stabilization for 4th generation light sources can be accomplished.

Energy recovery FELs

- Performance Achievements and Challenges for FELs Based on ERLs (G. A. Krafft, JLab)
- Future Light Sources: Integration of Lasers, FELs and Accelerators at 4GLS (J. A. Clarke, Daresbury)
- FEL Oscillation with a High Extraction Efficiency at JAEA ERL FEL (N. Nishimori, JAEA/FEL)
- On the Design Implications of Incorporating an FEL in an ERL (G. Neil, JLab)
- Optical Design of the Energy Recovery Linac FEL at Peking University (Z. C. Liu, PKU/IHIP, Beijing)
- Status of the Novosibirsk High Power Terahertz FEL (N. Vinokurov, BINP)

BINP FEL

The state of the s	CONTRACTOR OF THE PARTY OF THE
◆Bunch repetition rate, MHz	up to 22.5
◆Charge per bunch, nC	1.5
♦ Start bunch length, ns	1.5
◆Final bunch length, ns	0.12
◆Final energy, MeV	2

- run 20 mA routinely
- can run up to 40 mA!

BINP FEL

