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Abstract

Simulations indicate that the dynamic aperture of proposed ILC
Damping Rings is dictated primarily by the nonlinear properties of
their wiggler transfer maps. Wiggler transfer maps in turn depend
sensitively on fringe-field and high-multipole effects. Therefore it is
important to have detailed magnetic field data including knowledge
of high spatial derivatives. This talk describes how such information
can be extracted reliably from 3-dimensional field data on a grid as
provided, for example, by various 3-dimensional field codes
available from Vector Fields. The key ingredient is the use of surface
data and the smoothing property of the inverse Laplacian operator.



Objective

To obtain an accurate representation of the wiggler field that is
analytic and satisfies Maxwell equations exactly. We want a
vector potential that is analytic and VxVx A=0 .

Use B-V data to find an accurate series representation of
interior vector potential through order N in (X,y) deviation from
design orbit.

Ax(xa ya Z) = ZaIX(Z)PI (X: y) \

L=27 for N=6

Use a Hamiltonian expressed as a series of homogeneous
polynomials

+q¢) . = S _ _
K :—J“’tc—ﬂq’)—m ~GA) ~QA, =D (DK, (% p,y. p,.7.p,) < S=923for N=6
s=1

We compute the design orbit and the transfer map about the
design orbit to some order. We obtain a factorized symplectic
map for single-particle orbits through the wiggler:

M = Rze:f3:e:f4:e:f5:e:f6



Fitting Wiggler Data

=Data on regular Cartesian grid
4.8cm in X, dx=0.4cm
2.6cminy, dy=0.2cm
480cm in z, dz=0.2cm

»Field components Bx, By, Bz in one
guadrant given to a precision of 0.05G.

fringe region
»Place an imaginary elliptic cylinder between
pole faces, extending beyond the ends of the
magnet far enough that the field at the ends is y
effectively zero.
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»Fit data onto elliptic cylindrical surface
using bicubic interpolation to obtain the
normal component on the surface.

=»Compute the interior vector potential
and all its desired derivatives from I —

surface data.



Elliptic Coordinates

Defined by relations:

X = f cosh Ucos Vv

y = f sinh usin v

where f=a (distance from origin to focus).

.‘ﬁb

Letting z=x+1y, w=u+iv we have

z = 3(w)= f cosh w
Jacobian: v
J(u,v) =|F(2)| =|f sinhz|= f (sinh’ u+sin’ v) L
Laplacian:
2 2 0 u
S az+ 82 +62
J(u,v){ou® ov 0z
-T - - .




 Fitting done in a source-free region, so we can use a scalar
potential satisfying (V2 =k (u,v,k)=0 where

w(X,Y,2)= T dke"p(x,y,k)

—00

= Search for product solutions in elliptic coordinates ¥ oc U (U)V (V)

e Then we find that V and U satisfy the Mathieu Equations

2
f:llv\g +[A—-2qgcos(2v) ]V =0
2
Ccilug —[A—2qcosh(2u)JU =0,
with k*f*

= Periodicity in v forces j(q) to have certain characteristic values
A=a,(q) and i=b,(q) -



The solutions for V are

ce.(v,q) <+— eveninv
sem(v,q) «— odd inv

Mathieu functions

The associated solutions for U are

Modified Mathiew ~ C€ m (U, Q) = Ce (iU, q),
functions Se (u,q)=—ise  (iu,q).

For P(x,y,k) we make the Ansatz

k*f?
4

where q=-

w(X,Y,k)= EKM]%“ (u,k)se,(v,k)+ (G”—(k)jCen (u,k)ce, (v, k)}.

Se/ (u,, k)

n=0

Ce/ (u,,k)



Boundary-Value Solution

e Normal component of field on bounding surface defines a
Neumann problem with interior field determined by angular
Mathieu expansion on the boundary:

B,(v,k) = 0,7 = 3 F. (K)se, (v, k) + G, (K)oe, ()

 Angular Mathieu coefficients F,(k).G,(k) on boundary are
iIntegrated against a kernel that falls off rapidly with large Kk,
minimizing the contribution of high-frequency noise.

e On-axis gradients are found that specify the field and its
derivatives.

e Power series representation in (X,y)

H ZZ( 1)'(m—1)!{x}( +y3) [Re(x+iy)"CLEM (2) - Im(x +iy)"CEM (2) ]

=22+ m)!

A, = ZZ (_1)2(2%:,;?;?,_ D! O +y7) FRe(x +iy)"CEI(2) + Im(x + iy)"CEl(2) |



e The vertical field then takes the form:
1
B, =C,(2)+3C,(2)(x* - y?) —ngz](Z)(X2 +3y7%)

+écl[‘”(z)(x4 +6X7Y° + Sy“)—%cgz](z)ﬁx4 +6X°y* =5y

+C.(2)(5x* =30x°y* +5y)+0O(x, y)
5

e With similar expressions for the other components of B and
the components of A .



Dipole Field Test

»Simple field configuration in which scalar
potential, field, elliptical moments, and on-
axis gradients can be determined

analytically.
»Tested for two different aspect ratios: 4:3
and 5:1.
Pole location: d=4.7008cm
l Pole strength: g=0.3Tcm?
+9 X o .
Semimajor axis: 1.543cm/4.0cm
)
RS G A T Semiminor axis: 1.175cm/0.8cm
- T - Z
e - L Boundary to pole: 3.526cm/3.9cm
g ! Focal length: f=1.0cm/3.919cm
Bounding ellipse: u=1.0/0.2027
160cm

Direct solution for interior scalar potential
accurate to 3*10-10: set by convergence/roundoff
Computation of on-axis gradients C1, C3, C5
accurate to 2*10-10 before final Fourier transform
accurate to 2.6*10-9 after final Fourier transform



By (kG)

Fit to the Proposed ILC Wiggler Field Using Elliptical Cylinder

Fit to vertical field By

at x=0.4cm, y=0.2cm.
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Fit to the Proposed ILC Wiggler Field Using Elliptical Cylinder

Fit to Longitudinal Field Bziz) Using Elliptical Cylinder at (x,y)=(0.4,0.2) cm
T T T T T T

about Bz was
used to create
this plot. 04}
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Residuals of fit to Cornell field data: field peaks near 17kG

Residual of fit to vertical field on plane y=0mm

‘fieldmidplane’ u ($1+240):2:($5*1000)

Difference in By (Gauss)




Difference in By (kG)
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Maximum
deviation
0.6 mm
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Reference orbit through proposed ILC wiggler at 5 GeV
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5 GeV Reference Orbit Through CESR-c Modified Wiggler
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Mechanical
momentum

Phase space trajectory of 5 GeV on-axis reference particle

px/p0

Phase Space Trajectory of 5 GeV On-Axis Reference Particle
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Ray trace for proposed ILC wiggler

Ray Trace for Proposed ILC Wiggler

0.01 i i i |
: " * x fort13 413
fort14 u1:3
Result of numerical
integration for several
_ 0.005 X * N, % " . .
5 GeV rays with normal
entry.
E 0r- X+ st * 43 + % _
=
-0.005 + X s X ¥ A L 4
-0.01 - X X 1 L X
0.015 -0 -0.005 0 0.005 0.01
X (m)

Initial grid of spacing 5mm in the xy plane.
+ initial values, x final values.

Defocusing in x, focusing in y

0.015



REFERENCE ORBIT DATA

At entrance: At exit:

x (m) = 0.000000000000000E+000 x (m) = -4.534523825505101E-005
can. momentum p_x = 0.000000000000000E+000 can. momentum p_x = 1.245592900543683E-007
mech. momentum p_x = 0.000000000000000E+000 mech. momentum p_x = 1.245592900543683E-007
y (m) = 0.000000000000000E+000 y (m) = 0.000000000000000E+000
mech. momentum p_y = 0.000000000000000E+000 mech. momentum p_y = 0.000000000000000E+000
angle phi_x (rad) = 0.000000000000000E+000 angle phi_x (rad) = 1.245592900543687E-007

time (s) = 0.000000000000000E+000 time of flight (s) = 1.60112413288E-008

p_t/(pOc) = -1.0000000052213336 p_t/(pOc) =-1.0000000052213336

Bending angle (rad) = 1.245592900543687E-007

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

matrix for map is :

1.05726E+00 4.92276E+0Q 0.00000E+00 0.00000E+00 0.00000E+00 -5.43908E-05
2.73599E-02 1.07323E+00| 0.00000E+00 0.00000E+00 0.00000E+00 -4.82684E-06
0.00000E+00 0.00000E+00 [9.68425E-01 4.74837E+00 0.00000E+00 0.00000E+00
0.00000E+00 0.00000E+6Q 1.14609E-02 9.76409E-01] 0.00000E+00 0.00000E+00
3.61510E-06 -3.46126E-05 0-Q0000E+00 0.00000E+00 +..00000E+00 9.87868E-05
0.00000E+00 0.00000E+00 0.006Q0E+00 0.00000E+00 0.00QQOE+00 1.00000E+00

nonzero elements in generating polynomia

f( 28)=f( 30 00 00 )=-0.86042425633623D-03
f( 29)=f( 21 00 00 )= 0.56419178301165D-01
f( 33)=f( 20 00 01 )=-0.76045220664105D-03
f( 34)=f( 12 00 00 )=-0.25635788141484D+00

focusing

defocusing
.. .. Currently through f(923) — degree 6.



Alternative Wiggler Field Fitting Techniques

 The model form used for the wiggler field fitting by Cornell is written as:

flt ZB (X y’S’ ns xn’ sn9¢sn9 n)

where each term is written in one of three forms. For the present wiggler,
each term is of the form:

B, =—C % sin(k, X)sinh(k, y) cos(K,z + ¢, )
y

. 2 2 2
B, = C cos(k,x)cosh(k, y)cos(k,s + ¢,) with k; =k +k;

B,=-C Il:—s cos(k,x)sinh(k, y)sin(k s + ;)

y

« The set of parameters {Co:Ku:Kes 8 :N=1....N} is allowed to vary
continuously, in such a way as to minimize the merit function:

M = Z‘Bfit ~Baa :

data_ pts

N
+W, > [C|
n=1
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Comparison of Gradient C_1 Computed from BMAD fit vs Boundary-Value fit
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Comparison of C_3 Computed from BMAD fit vs Boundary-Value fit
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Comparison of Gradient C_3"2 Computed from BMAD fit vs Boundary-Value fit
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Comparison of Gradient C_5 Computed from BMAD fit vs Boundary-Value fit
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Advantages of Surface Fitting

Uses functions with known (orthonormal) completeness
properties and known (optimal) convergence properties.

Maxwell equations are exactly satisfied. (Other procedures.)

Error is globally controlled. The error must take its extrema on
the boundary, where we have done a controlled fit.

Careful benchmarking against analytic results for arrays of
magnetic monopoles.

Insensitivity to errors due to inverse Laplace kernel smoothing.
Improves accuracy in higher derivatives. Insensitivity to noise

Improves with increased distance from the surface: advantage
over circular cylinder fitting.



Theory of Smoothing

Note that the gradient = integration of angular Mathieu coefficients
against a sequence of weight functions determined by boundary

geometry.
{i 0" (0B (k)

CErg I T dkeikzkr+m
’ Se;n+1(ub9k)

1
I(7) =
(2) 222

oc T dke"W,"" (k)F, (k) + T dke" W™ (K)F, (K) + ...

—00 —0o0

F2n+1(k)

n=0

*Clean angular Mathieu coefficients cut off around k=2/cm. We expect noise to
introduce high-frequency contributions to the spectrum of angular Mathieu coefficients

F_(K).

*Kernels (weights) die off quickly for large k, providing an effective cutoff that serves

as a low-pass filter to eliminate high-frequency components.

Insensitivity to noise is improved by choosing geometry such that kernels approach

zero quickly.
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Re[F_5(k)]
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Weight Functions for an Elliptic Cylinder Boundary

Integration Kernals Corresponding to Lowest 8 Nonvanishing Moments for G (2)

sKernels W 25
corresponding to the
lowest 5 moments are
plotted.

=Note that these
weight functions
(kernels) cut off near
k=4/cm, with cutoff
increasing with order
of kernel.

Karnal

=Nontrivial
dependence on k.
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Karnals for moments 1,3,5,7 (lower lines); Circular kernel {upper lina)
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Comparison with Circular Case

There 1s one kernel for each gradient in the circular case. The kernels for C;(z)
appear below. The circular kernel takes the form k2 /| '(kR) with R=1.

The first 4 elliptic kernels are shown for the case y,_, =1, x . =4.

Integration Kemels for the Gradient G,(zj: Upper Curve is the Circular Case
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How Does Geometry Affect Smoothing Properties?

We expect accuracy to improve with enclosed cross-sectional area oc f*sinh(2u,)
Interested in the following limiting behavior.

=Simple Scaling — Fix aspect ratio ~ Yma/Xma =tanh(Uy) Boundary scales linearly with f.
How do the kernels behave for large focal distance 7

(No clean asymptotic form yet.)
»Elongation — Fix semiminor axis Ym.x What happens as the semimajor axis grows?

\/E 4n+4
@ o k2r+2|+1 MBéfﬂf”(k) f Y max [ Xmaxj e—kxmax
Xrnax y

max

*Circular — Fix focal length f. As u, increases, this degenerates to the circular case.

k2r+2|+1 ’i_;ekR Béf—r:il—l)(k)
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