# WIMPS and LIPSS

A. Afanasev, O.K. Baker (contact person), K. McFarlane Hampton University for the LIPSS collaboration CASA seminar Feb 2, 2006

### outline

PVLAS results and implications

 overview only

 previous experimental studies

 how did all previous searches miss it?

 LIPSS (light pseudoscalar particle search)

 plans and history

summary

# **PVLAS results**

based upon experimental idea of L. Maiani, R. Petronzio, and E. Zavattini, PLB 175, 359 (1986)

#### Dichroism rotation of polarization plane

Maiani et.al., Phy. Lett. B175 (1986); www.ts.infn.it/experiments/pvlas



- M: inverse coupling
- K<sub>m</sub> :inverse compton wavelength
- k: light wavenumber
- L: magnetic field region length
- N: number of traversals

#### Dichroism rotation of polarization plane

#### hep-ex/0507061 (2005); Phys Rev D47, 3707 (1993)



#### ellipticity dispersion; photon-axion

Maiani et.al., Phy. Lett. B175 (1986); www.ts.infn.it/experiments/pvlas



- M: inverse coupling
- K<sub>m</sub> :inverse compton wavelength
- k: light wavenumber
- L: magnetic field region length
- N: number of traversals

### ellipticity dispersion: photon-axion

hep-ex/0507061 (2005); Phys Rev D47, 3707 (1993)



### **PVLAS** setup



6 T ; 1 meter long dipole magnet 1064 nm ; 0.1 W laser 60 km path length in magnet using 6 meters long optical cavity cryostat rotation 0.3 Hz

#### **PVLAS results**

#### zavattini et al; see www.ts.infn.it/experiments/pvlas



#### PVLAS example data www.ts.infn.it/experiments/pvlas



Frequency (units of magnet rotation frequency)

# PVLAS results may be explained by a region . . .

# $1.7 \times 10^{-6} < g < 1.0 \times 10^{-5} \text{ GeV}^{-1}$ 0.7 < m < 1.7 meV

PVLAS effect is 10<sup>4</sup> stronger than QED (Euler-Heisenberrg) prediction!

# interpretation

light pseudoscalar particle weakly interacting (weakly interacting massive particle)

### pseudoscalar coupling

pseudoscalar particle coupling to photons

$$L_{\varphi\gamma\gamma} = -\frac{1}{4M} \varphi F_{\mu\nu} \widehat{F}^{\mu\nu} = \frac{g\varphi}{4} \vec{E} \cdot \vec{B}$$

- in present case, use laser light and magnetic field
- light polarization in direction of magnetic field
- PVLAS claims to see effect in both dichroism and ellipticity (using same apparatus).
- we want to test this result in a completely independent way

### Axion interpretation?

A. Ringwald; hep-ph/0511184 K. Zioutas et.al., PRL 94, 121301 (2005)



#### possibilities . . .

L. Rosenberg SLAC Summer Institute 2004

#### Peccei and Quinn: CP conserved through a hidden symmetry

This CP violation should, e.g., give a large neutron electric dipole moment  $(\mathcal{T} + CPT = \mathcal{OP})$ ; none is unobserved. (9 orders-of-magnitude discrepancy.)

$$T\left(\begin{array}{c}\mu_{n\uparrow\uparrow}d_{n}\\|n\rangle\\ \mu_{n}\end{array}\right)=\int_{-\mu_{n}\uparrow^{1}}d_{n}\neq|n\rangle$$

Why doesn't the neutron have an electric dipole moment?

AXION

This leads to the "Strong CP Problem": Where did QCD CP violation go?

1977: Peccei and Quinn: Posit a hidden broken U(1) symmetry  $\Rightarrow$ 

- 1) A new Goldstone boson (the axion);
- 2) Remnant axion VEV nulls QCD CP violation.

Peccei, Quin (1977); S. Weinberg (1978); F. Wilczek (1978)

### matter/energy budget of universe

Stars and galaxies are only ~0.5%
 Neutrinos are ~0.3–10%
 Rest of ordinary matter (electrons and protons) are ~5%
 Dark Matter ~30%
 Dark Energy ~65%
 Anti-Matter 0%

axion a dark matter candidate



### search strategies to date

#### two broad classes of axion searches

- detect relic (big-bang leftover), or solar, or stellar axions
- produce and then detect axions in terrestrial expt
  - more difficult, in general, since there are two factors of small couplings
  - LIPSS uses this strategy

BFRT collaboration also used this strategy

# relic axions

### microwave cavities

### relic axions



- axions created moments after the big bang.
   thermalized over time
   mass range must be consistent with astrophysical
  - observables

#### **microwave cavity technique** R. Bradley et al, Rev. Mod. Phys. 75, 777(2003)





#### microwave cavity search: example



### microwave cavity search: example







#### microwave cavities

$$P_a = \left(\frac{\alpha}{\pi} \frac{g_{\gamma}}{f_a}\right)^2 V B_0^2 \rho_a C \frac{1}{m_a} \operatorname{Min}(Q_L, Q_a)$$

- V: cavity volume
- m (f) mass (coupling)
- B: magnetic field
- R: galactic halo axion density on Earth
- C: mode dependent constant (0.6)
- Q<sub>L</sub>: cavity's loaded quality factor
- Q<sub>a</sub>: galactic halo axion quality factor (10<sup>6</sup>)

$$\text{SNR} = \frac{P_a}{\overline{P}_N} \sqrt{Bt} = \frac{P_a}{k_B T_S} \sqrt{\frac{t}{B}}$$

P<sub>N</sub>: average thermal noise power
 T<sub>s</sub> cavity temperature plus noise 'temperature'

### data taking - microwave cavities



### microwave cavity experiments find no evidence for relic axions in parameter space indicated



# solar and stellar axions

helioscope search supernova explosions

### CAST – axions from the sun



**CERN** Axion Solar Telescope

Axions from the sun...

...become x-rays inside an LHC dipole magnet





### CAST experiment

decommissioned LHC test magnet

 L = 10 m; B = 9 T

 moving platform

 up to 50 days/year of alignment

 4 magnet bores, for x-ray detection

 solar temperature → keV axions → keV x-rays
 3 x ray detectors
 x ray focussing system to increase S/N ratio

### CAST technology



# CAST finds no evidence to date for solar axions in parameter space indicated



#### **astrophysical bounds** L. Rosenberg, SLAC Summer Institute 2004

#### Example:neutrinos from SN1987A



Ellis and Olive, 1987; Raffelt and Seckel, 1988; Turner, 1988, etc

Supernova in the LMC. Neutrinos are trapped and diffuse out over timescales of around 10 seconds.

#### Kamiokande and IMB together recorded 19 neutrinos from SN1987A.

An axion of mass between 10<sup>-3</sup> and 2 eV would take so much energy out that...

the length of the explosion would be observably forshortened.

Overall summary: Astrophysics (stellar evolution and SN1987A), cosmology, and laboratory experiments leave the invisible CDM axion window  $10^{-6} < m_a < 10^{-3}$  eV (with large uncertainties)

CAST finds no evidence to date for solar axions in parameter space indicated SN1987A does not rule out PVLAS result



#### cryogenic dark matter search in Soudan underground laboratory D.S. Akerib et al, Phys. Rev. Lett 93, 211301-1 (2004)



new limits in large mass range; no evidence for WIMPs

# production and detection

### accelerator/laser experiments

### **SLAC Experiment E137**



#### sensitive to massive (> eV) axions; none seen

#### Photon regeneration (Phys. Rev. D47 3707 (1993 BFRT collaboration)





#### Phys. Rev. D47 3707 (1993)

#### BFRT results: regeneration expt

#### no ps signal seen

FIG. 18. Integrated charge spectrum. The pedestal is at channel 63 and the single photoelectron peak [see inset in (a)] is fitted by a truncated Gaussian centered at channel 108, with standard deviation of 34 channels. The sensitivity is 0.25 pC/channel. (a) Dark current spectrum including the electronic noise. (b) Subtracted spectrum when light was admitted from the first magnet; used for calibration. (c) Subtracted spectrum when no light was allowed into the second magnet.

### searches to date: summary

the combination of accelerator searches, astrophysical, and cosmological arguments leaves open a search window

 $10^{-6} < m_a < 10^{-3} eV$ 

massive axion discovery still solves the strong CP problem, but not the dark matter problem. >>>> search for light axions (< eV)</p>



#### searches to date: summary

the combination of accelerator searches, astrophysical, and cosmological arguments leaves open a search window

#### $10^{-6} < m_a < 10^{-3} eV$

massive axion discovery still solves the strong CP problem, but not the dark matter problem. >>>> search for light axions (< eV)</p>



#### searches to date: theoretical issues

neutron and electron edm conflict?
 no conflict with atomic contribution (E<sup>2</sup>).
 higher order (nonlinear) qed effect?
 noncommutative field theory?

. . .

# possibilities at JLAB

### Light PseudoScalar Particle Search (LIPSS)

### possibilities at JLAB FEL

polarization plane rotation, ellipticity reproduce PVLAS with different apparatus

#### regeneration

- FEL photons regeneration
- Primakoff photons regeneration

photon collisions

wide angle axion production at wiggler center

polarization plane rotation

four wave mixing in vacuum

 $2 \rightarrow 2$  or  $3 \rightarrow 1$ 

#### microwave cavity

- primordial axions
- solar production and lab regeneration (a la CAST)

### 'light shining through a wall'



couple polarized laser
 light with magnetic
 field

 Sikivie (1983); Ansel'm (1985); Van Bibber et al (1987)

$$P_{\gamma \to \varphi} \approx \frac{1}{4} (gBL)^2 \begin{cases} \sin\left(\frac{m_{\varphi}^2 L}{4\omega}\right)^2 \\ \frac{m_{\varphi}^2 L}{4\omega} \end{cases}$$

ps – photon (or photon-ps) conversion probability

#### JLAB FEL setup I: regeneration experiment



### LIPSS plans



### back-of-the-envelope

### • $P = g^2 B^2 L^2 / 4$ Prob for photon-axion prod

g = coupling constant (1/M)
 B = magnetic field
 L = magnet length

### $\blacksquare Y = n P_1 P_2 \varepsilon (\Delta \Omega / \Omega) (N_r + 2) / 2 \quad \text{yield (\#/s)}$

n = photon flux (#/s)
 P1 (P2) = production (regeneration) probability
 ε = detection efficiency
 ΔΩ/Ω = solid angle
 N<sub>r</sub> = number of reflections

### JLAB facility spectroscopic range



### experimental requirements

B-field parallel to photon polarization

photon-axion coherence

 $m_a^2 < 4\pi\omega/L$ 

large magnetic field

shield detector from field; vacuum vessel

#### rate estimate, as example . . .

$$P = \frac{g^2 B^2 L^2}{4} = 10^{-11}$$

 $N = 1.0 \text{ mJ/pulse} \times 75 \text{MHz}$  $= 6 \times 10^{23} \text{ } \gamma' \text{s/s}$ 

$$Y \sim n \bullet P^2 \bullet \frac{\Delta \Omega}{\Omega} \bullet \varepsilon$$
$$\geq 1 \,\mathrm{Hz}$$

axion-photon conversion probability, *P* 

JLAB FEL photon rate, *n* 

photon regeneration rate estimate, Y 2 T; 1 m magnet  $\epsilon \sim 0.5; \Delta\Omega/\Omega \sim 0.5$ 

### rates (using current FEL)

| B <sub>r</sub> (Tesla) | L <sub>r</sub> (meters) | g (eV-1)                 | rate (Hz) |  |
|------------------------|-------------------------|--------------------------|-----------|--|
| 1.0                    | 1.0                     | 10 <sup>-15</sup>        | .005      |  |
| 1.0                    | 1.0                     | 5 x 10 <sup>-15</sup>    | 3.0       |  |
| 1.5                    | 0.8                     | <b>10</b> <sup>-15</sup> | .01       |  |
| 1.5                    | 0.8                     | 5 x 10 <sup>-15</sup>    | 4.2       |  |

uses: dipole magnet at end of straight section: 1.0 m long and 0.31 Tesla 100 kW (1 eV) FEL laser light q.e. ~ 0.3; detector accep ~ 0.9

# experimental issues

single photon counting in IR axion-photon coherence



#### Rockwell Scientific Hawaii 1RG – for example

| FPA Parameter                   | Rockwell FPAs                                             |  |  |  |  |
|---------------------------------|-----------------------------------------------------------|--|--|--|--|
| Detector technology             | MBE HgCdTe or Si PIN                                      |  |  |  |  |
| Detector input circuit          | SFD                                                       |  |  |  |  |
| Readout mode                    | Ripple                                                    |  |  |  |  |
| Pixel readout rate              | 100 kHz to 5 MHz (continuously adjustable)                |  |  |  |  |
| Total pixels                    | 1024 x 1024                                               |  |  |  |  |
| Pixel Pitch                     | 18 µm                                                     |  |  |  |  |
| Fill factor                     | <u>≥</u> 98%                                              |  |  |  |  |
| Output ports                    | Signal: 1, 4, 32 selectable<br>Guide Window and Reference |  |  |  |  |
| Spectral range                  | 0.3 - 5.3 µm                                              |  |  |  |  |
| Operating temperature           | <u>≥</u> 30K                                              |  |  |  |  |
| Quantum Efficiency (array mean) | <u>≥</u> 65%                                              |  |  |  |  |
| Charge storage capacity         | <u>&gt;</u> 100,000 e-                                    |  |  |  |  |
| Pixel Operability               | <u>&gt;</u> 95%                                           |  |  |  |  |
| Dark Current (array mean)       | <u>&lt;</u> 0.1 e-/sec (77K, 2.5 μm)                      |  |  |  |  |
| Read noise (array mean)         | <u>&lt;</u> 15 e- CDS @ 100 kHz                           |  |  |  |  |
| Power Dissipation               | <u>&lt;</u> 4 mW @ 100 kHz                                |  |  |  |  |



dark current and read noise quantum efficiency spectral range

#### begin with this? (on hand) SBIG ST-237A

| Camera   | Pixel<br>Array | Number<br>of Pixels | Pixe<br>I<br>Size | CCD<br>Size mm | CCD<br>Area<br>mm2 | Diag FOV<br>11" Fastar<br>(544mm<br>FL) | Dark<br>Current<br>at 0 C. | Read<br>Noise | Full Well<br>Capacity | Peak<br>QE | Compute<br>r<br>Interface | Full<br>Frame<br>Transfer |
|----------|----------------|---------------------|-------------------|----------------|--------------------|-----------------------------------------|----------------------------|---------------|-----------------------|------------|---------------------------|---------------------------|
| ST-402ME | 765 x<br>510   | 390,000             | 9u                | 4.6 x 6.9      | 32                 | 52 arcmin                               | 1e-/p/s                    | 17e-          | 100,000<br>e-         | 83%        | USB 2.0                   | 0.8 sec                   |
| ST-237A  | 657 x<br>495   | 325,000             | 7.4u              | 3.7 x 4.9      | 18                 | 38 arcmin                               | 5e-/p/s                    | 15e-          | 20,000e-              | 75%        | Parallel                  | 15 sec                    |





### 'light shining through a wall'

www.desy.de/~ringwald





#### ps-photon coherence - LIPSS



#### ω = 1.2 eV(1064 μ) (same as PVLAS)

#### **PVLAS and BFRT: photon-axion coherence**



#### **PVLAS and BFRT: photon-axion coherence**



uncertainty relation – ultralow count rates Heitler (1954); Rev. Mod. Phys 75, 777 (2003)

### QM uncertainty relation

 $- \Delta n \Delta \phi > 1$ 

n number of quanta detected

 $\blacksquare \phi$  phase of detected radiation

limit on the measurement precision of the number of quanta n in a wave, and the phase of the radiation \u03c6.

### ideas . . .

■ use focussing lens at end of regeneration magnet

 – focus on small pixel area → better S/N
 ■ use new rf structure in upstairs lab with two
powerful magnets

purchase 2 ea ~ 0.5 m long, ~ 2 T magnets

use B field of electron beam

- can get ~100 T close to electron beam

- probably too small an effect

L . . .



### GW magnets

gap: 7.9 cm magnetic length: 0.42 m design field intergral: 5.92 KGauss. current 223.24 A

have 4 extra magnets and their stands in Magnet Test and 2 mounted to stands in the FEL UV Line.

a rarely used power supply for the 2G dump spectrometer is available in the FEL for quick response at slightly lower max current. 220 A maximum.

max field at 0.8 Tesla  $\rightarrow$  1.5 Tesla with shims the GWs are 0.6 or so meters long

#### with current setup, IR light . . .



#### UV FEL – the way to go!!

### visible and UV light -> use phototube

- fast (can time relative to rf structure of beam)
   reduce noise
- good quantum efficiency
- experience
- can use longer magnets
  - axion-photon coherence
  - probability  $\sim L^2$

more space on vault floor

#### photon regeneration from pseudoscalars at x-ray lasers

Rabadan, Ringwald, Sigurdson hep-ph/0511103





### axion interpretation?

A. Ringwald; hep-ph/0511184 K. Zioutas et.al., PRL 94, 121301 (2005)



### initial 'engineering' run

### 100 kW IR FEL $-1.06 \mu$ and $1.64 \mu$ IR light 2 GW magnets for regeneration -1.5 T, 1.0 meter long, acceptance $\sim 0.8$ SBIG Astronomical Instruments ST-237A **CCD** camera -~10% q.e., low dark current (cps), on hand begin within next couple of months (?)

### how we got to this point

- A. Afanasev alerted okb > 2 years ago of importance of measurement
- okb made initial approaches to FEL people (Boyce, Shinn, etc), axion experts (Rosenberg); very low level
- initial meetings began at Hampton ~ year ago; VFWM discussed; HU laser experiment discussed.
- PVLAS result: Afanasev again emphasized importance of measurement. K. McFarlane and other HU particle experimentalists joined discussions
- initial meeting of interested Hampton and JLAB scientists (Williams, Boyce, etc); more serious now
- series of meetings at JLAB; talks at TAWG and JLAB

### initial meetings participants

- A. Afanasev particle/nuclear theorist
- G. Biallas FEL experimentalist
- J. Boyce FEL experimentalist
- O.K. Baker particle/nuclear experimentalist
- H. Brown graduate student
- S. Ma graduate student
- K. McFarlane particle experimentalist
- J.T. Seo optics experimentalist
- T. Shin particle experimentalist
- S. Shukui FEL experimentalist
- V. Vassilakopoulos particle experimentalist
- G. Williams optics experimentalist
- Q. Yiang optics experimentalist

### summary

axion search not just a shot in the dark now!!

- PVLAS result can be tested; new data point from LIPSS
- can perform regeneration experiment to test PVLAS result at JLAB FEL
  - can reach interesting region of parameter space with IR FEL
  - can perform definitive experiment with UV FEL
- this is particle physics at the FEL
  - constraints on a new mass scale in particle physics
     PeV scale!!