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Outline

Methods of BBU Suppression

Beam Optical Schemes
• Theory
• Experimental

Phase trombone
Pseudo-Reflector

Q-Damping Schemes
• Active damping circuit
• 3-Stub tuner

Summary and Future Plans
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Analytic Model for Multipass BBU
• For the case of a two-pass ERL with a single cavity, containing a single HOM the 

equation for the BBU threshold current is given by

where Vbeam is the beam voltage at the cavity, k is the wavenumber (ω/c) of the 
HOM, (R/Q)Q is the shunt impedance, Trecirc is the recirculation time and the Mij
are the elements of the recirculation transport matrix

Inject at higher energy

Change HOM frequency

Change recirculation time

Damp HOM quality factor

)sin()(
2

*
recirc

beam
threshold TQQRkM

VI
ω

−=

αααα 2
343214

2
12

* sincossin)(cos MMMMM +++≡

Alter beam optics
Change phase advance
Reflect betatron planes
Rotate betatron planes
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Effect of Reflecting Optics

I. Reflecting Optics will Suppress BBU if…

I. The transfer matrix from an unstable cavity back to itself takes the form

II. The HOMs are oriented at either 0 or 90 degrees
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If α is different from 0 or 90 
degrees, the effectiveness of 
reflecting optics in BBU 
suppression rapidly diminishes.
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Effect of Rotating Optics
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II. Rotating Optics will Suppress BBU if…

I. The transfer matrix from an unstable cavity back to itself takes the form

A rotation is effective regardless of the orientations of the HOMs
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First pass
The offending mode imparts an 
angular deflection, α, to a bunch

Second pass (after rotation)
The resultant displacement will be 
orthogonal to the offending HOM. 
The bunch will be unable to couple 
energy to the mode that caused the 
deflection. 
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Beam Optical Control of BBU

On-axis magnetic field kicks 

electron beam in y direction 

on the first pass via the 

dipole HOM

First Pass Second Pass: Nominal Optics

The y kick results in a y displacement 
on the second pass through the cavity. 
This puts the electrons in a region of 
longitudinal field and they can deposit 
energy into the HOM field

Second Pass: 90° Rotated Optics

The y kick results in an x displacement on 
the second pass through the cavity. The 
bunches are in a region of zero longitudinal 
field and they cannot give energy to the 
HOM field. The feedback between the beam 
and HOM has been broken!
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Transverse magnetic field of dipole HOM
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HOM axial electric field

(90° out of phase with B field)

Courtesy T. Smith (HEPL)
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Skew-Quadrupole Reflector in the FEL
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• 5 skew-quadrupoles were installed in the backleg of the FEL to (locally) 
interchange the x and y phase spaces (D. Douglas)
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Local Reflector
• With the reflector 

activated, we also 
investigated the 
stability of several 
other potentially 
dangerous HOMs
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Local Reflector with a Change in Phase Advance
• Ideally we would like to create a pure 90 degree rotation from the unstable cavity 

back to itself
2106 MHz with Reflector ON and 

Phase Advance Changed
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Can you create a “global ” rotation 
with a “local ” reflector?
Yes. By decreasing the vertical 
phase advance and then activating 
the local reflector, you can create a 
90 degree rotation from the middle of 
Zone 3 back to itself (D. Douglas).

• For our measurements, the vertical 
phase advance was changed. Only 
after the difference orbit measure-
ments have been analyzed, will we 
know what kind of transfer matrix was 
generated with this change in phase 
advance…

Because of the limited time setting up this 
configuration, the transmission was not good.
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What BBU “Looks Like”
PLAY
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Phase Trombone

Recall…
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• By all indications the 2106 MHz HOM is a vertically polarized mode
• We change 4 vertically focusing quadrupoles in the recirculator to vary the vertical 

phase advance
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Phase Trombone (cont’d…)

• We were able to easily change the quadrupole strengths from their nominal 
settings from -200 G to +300 G

• We observe a (1/sin) trend in the threshold current from measurements
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Q-Damping Circuit

Concept: couple power from one of the 
HOM ports, shift it 180 degrees in 
phase, amplify the signal and feed it 
back through the same HOM port. 

Active damping of an HOM located at 
2106 MHz. The effect of the damping 
(right picture) is to decrease the 
loaded Q by a factor of ~ 10. 

Directional Coupler

Network Analyzer

HOM 1

Variable 
Attenuator

Circulator Pre-amplifier

HOM 2

Directional 
Coupler

Variable 
Phase Shifter

10 dB

20 dB
Bandpass

Filter

20 dB

10 dB

BPF

Circulator

Port 2 Port 1

QL = 5.8 x 106 QL = 0.5 x 106

“Tuning Knobs”: the circuit is 
optimized by carefully tuning the phase 
and gain of the feedback loop
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Q-Damping Circuit (cont’d…)

• Damping circuit easily reduced the Q of the 
2106 MHz mode by a factor of 5
(Above a factor of about 10, the system becomes 
sensitive to external disturbances)

• The threshold is increased accordingly:    
from 2 mA to ~10 mA

HOM
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I 1
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3-Stub Tuner
• The optimal setup requires a 3-

stub tuner for each HOM port on 
the cavity

• Had a difficult time and not such 
great data - perhaps because of 
broken HOM cable from Cavity 7
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Summary of Suppression Techniques

Damping
Circuit

3-Stub 
Tuner

Phase 
Trombone

Pseudo-
Reflector

Effect on 
2106 MHz 

HOM
Considerations for Implementation

Stabilized

Stabilized

• Works for only 1 mode per cavity
• Not as effective at raising the threshold as 

beam optical methods
• Long term stability of system
• Does not effect beam optics

• Can stabilize the mode against BBU
• What are the effects on other HOMs?
• Do they prevent reaching the requirements 

needed for a suitable lasing configuration?
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Summary and Future Plans
Summary
• Several methods proved to be effective at raising threshold current
• It was demonstrated that using beam optical schemes, the dangerous HOM 

could stabilized (i.e. it can no longer cause BBU)

Future Plans

Benchmark BBU Simulation Codes
• Measure HOM polarizations
• Perform BBU simulations using  
measured machine optics and compare 
with measurements

Attempt to suppress via beam-based 
feedback (i.e. do not effect optics and 
stabilize the mode) Active Damping Circuit
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