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WANTED: a narrowband THz source for
spectroscopy

Problem Solution Requirements

Want to do frequency « Want a source which
domain spectroscopy at will produce

THz frequencies _ 300-1000 micron

No existing narrowband radiation (0.3-1 THz)
source provides good
power in THz range

Short pulse sources -
good for time-domain
spectroscopy

CW - good for imaging if
you have enough power

— ~1 Watt peak power

— ~5 nanosecond
pulses

— Narrowband




Source requires needle cathode and
Smith-Purcell effect

* Needle photo-cathodes
provide high brightness
electron beam

Smith-Purcell (SP)
radiation provides a
compact, tunable
radiation source

Requires a high
brightness beam for
high power output
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« Voltage = 30 - 80 kV

Current = 1-10 mA
Brightness ~ 101" A/m2-steradian

« Wavelength 300 - 1000 um




Examine protein secondary structure

« Large molecules and
structures have
characteristic vibrations
in THz region o oo e\
Reconformation could '
be examined using
nonlinear spectroscopy

Pump-probe nonlinear
spectroscopy possible
using THz/THz or
THz/mid-IR radiation




Additional applications

« Examine protein
folding

» High field EPR

spectroscopy




How this compares to other THz sources

THz Source Comparison to SP-FEL

UCSB FEL Longer pulses (microsecond as opposed
to nanosecond), higher power

Synchrotron Lower spectral brightness, much shorter
sources pulses, broadband

Optically pumped Not tunable
FIR lasers

Optical rectification | Very short pulses, low power, broadband
techniques

Backward Wave Low power, longer wavelengths, very
Oscillators (BWQ) [ similar operating mechanism




Experimental Set Up
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We have achieved current densities high
enough to build tabletop FELs

 Photocurrent was & Laser pulse
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— Up to 100 mA | ; | ~(longer than current pulse)

— Shorter pulse than
laser
— Limited by damage
to needle
* 4th harmonic Nd:YAG
at 266 um with 7 ns,
200 mJ pulse
Quantum efficiency is

increased by 102 by
laser




Needle cathode e-beam has high

brightness
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Recent needle cathode developments

* Bigger needles = more current

« Use 5th harmonic Nd:YAG, 5 ns pulse, maximum 50
ud/pulse




Dimensions of the aluminum grating

« Gratings are fabricated out of aluminum using very
thin saw blades

« Dimensions will be 12.5 mm long (1/2 inch), with 250
um period, 150 um grove width and 200 um depth

* 173 um period, 62 um width and 100 um depth used
for calculations™®

250 um 150 um

>

200 um I

12.5 mm

*Parameters used at Dartmouth, Urata et. al., PRL, 80, 516, (1998)




Smith-Purcell laser produces two types of
radiation

Below threshold current: Above threshold current:

Radiating
wave

Evanescent
wave




Details of laser radiation

» Evanescent wave:

— Phase velocity
parallel to electon Radiating harmonic waves
beam, group velocity
opposite

— Bunches electrons Bound wave

— Produces harmonics e ———
within the SP

spectrum which
radiate




Expected wavelengths

/ Laser fundamental wavelength

1st Smith-Purcell range
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Comparison of gain theories
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Schaechter and Ron, Phys. Rev., A40, 876 (1989)
Kim and Song, Nucl. Inst. Meth., A475, 159 (2001)




Gain and attenuation peak at v =0

Gain
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Net gain peaks before v,=0

/
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Electron energy (keV)

Net gain = gain - attenuation




Refresher on Smith-Purcell parameters

* n = order number, 6= angle from electron beam,
¢ = azimuthal angle




Spontaneous azimuthal power
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Spontaneous power peaks near 90 degrees
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We will conduct the following experiments

« Verify that we observe the laser emission

— Hard to see because it will scatter

— Should be strongest radiation in the chamber
* Observe harmonics of laser radiation

— Do angular intensity scan - verify increase in
intensity at predicted harmonic angles

— Verify wavelengths of emission at different angles
* Observe intensity as a function of beam voltage

— Look for peak intensity at voltage for peak gain

— Look for intensity drop near voltage for v =0




Vanderbilt table top THz source will produce:

— wavelengths of 300-1000 microns (0.3-1 THz)
— peak power ~1 W

— pulse length ~5 ns

Will use the Smith-Purcell effect in conjunction with a
high brightness tungsten needle cathode

Expect to be able to confirm recent theoretical
developments experimentally

Eventually will use device in conjunction with other
sources available at Vanderbilt FEL Center




