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Equation for Beam Particle Distributions

Consider one IP in a collider. Neglecting intra-beam collisions,

transverse Hamiltonian for beam particles can be written as

H(i)(~I, ~φ, t) = ~ν · ~I + Uerr (~r, t) + U
(j)
bb (~r)

∑

n
δ(t − tn)

U
(j)
bb (~r) ∼

∫ 1

|~r − ~r′|
fj(~r′, ~p′, t) d~r′d~p′

where i, j = 1 or 2, and i 6= j. For single-particle distributions,

∂fi

∂t
+ ~ν · ∂fi

∂~φ
=

∂Uerr

∂~r
· ∂fi

∂~p
+

∂U
(j)
bb

∂~r
· ∂fi

∂~p

∑

n
δ(t − tn)

Comments on Beam-Beam Effects of Hadron Beams

Damping time scale is comparable to storage time. The motion

of particles is a Hamiltonian dynamics. With nonlinear pertur-

bations, the distributions may not reach any stationary state

within a fraction of the storage time.

The problem of coherent beam-beam effects can be divided

into near-linear (near-integrable) and nonlinear (non-integrable)

regime based on the validity of linearized (or perturbative)

Vlasov equation.
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Linear Coherent Beam-Beam Effect

Stable Coherent Beam-Beam Oscillation:

In two-beams center-of-mass
coordinate:

XCM =
M1X1 + M2X2

M1 + M2

δX =
M1X1 − M2X2

M1 + M2

σ-mode:

XCM oscillates with betatron tunes if ν1 = ν2.

π-mode, From Linear Theory:

δX oscillates with betatron tunes plus a coherent beam-

beam tune shift.

• For symmetrical (round to flat) beams,

∆ν ∼ 1.21 − 1.33 ξ (Yokoya factor).

• For unsymmetrical beams, when ξ1/ξ2 > 0.55 or

|ν1 − ν2| > ξ, the π-mode would be damped.

=⇒ LINEAR THEORY: Coherent beam-beam effect is not

important in the unsymmetrical or strong-weak cases.

This is not right in the nonlinear regime of
beam-beam interactions of hadron beams!
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Stable Coherent Beam-Beam Oscillation

Consider Linear lattices with one IP. For beam centroids,

Ẍi + ν2
0i Xi = λi Fx δn(t − tc)

i = 1, 2

~F =
∫

ρ1(~r, t)ρ2(~r′, t)
~r − ~r′

|~r − ~r′|2
d~r d~r′

In the two-beams center-of-mass coordinate,


























ẌCM + 1
2

(

ν2
01 + ν2

02

)

XCM + 1
2

(

ν2
01 − ν2

02

)

δX = 0

δẌ + 1
2

(

ν2
01 + ν2

02

)

δX + 1
2

(

ν2
01 − ν2

02

)

XCM = λ Fx

Rigid-Beam Approximation:

Except the centers of the distributions, the shapes of the distri-

butions do not change with time during the beam oscillation. To

the lowest-order of Xi,

Fx ∼










1 +
ξ1

ξ2





 δX +





1 − ξ1

ξ2





 XCM





 + O(high-order-moments)

Neglect time-dependences of high-order moments, for matched

beams

If |ν01 − ν02| > ξ1, ξ2, ∆νi = 1
2
ξi

If ν01 = ν02, ∆νi = 1
2
(ξ1 + ξ2)
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Coherent Beam-Beam Tune Shift From

Linearized Vlasov Equation
— K. Yokoya

Vlasov equation for beam-beam interaction in one dimension:

∂f1

∂t
+ ν01

∂f1

∂φ
= ε

∂f1

∂p

∫ f2(x
′, p′, t)

x − x′ dx′dp′

x =
√

2I cos φ, p =
√

2I sin φ.

Linearization:

Let fj(x, p, t) = f0j(x, p) + Ψj(x, p, t), j = 1, 2

∂Ψ1

∂t
+ ν01

∂Ψ1

∂φ
= ε







∂Ψ1

∂p

∫ f02(x
′, p′)

x − x′ dx′dp′

+
∂f01

∂p

∫ Ψ2(x
′, p′, t)

x − x′ dx′dp′






Single-mode (dipole) approximation:

Let Ψj(I, φ, t) =
∑

m

∫

Fjm(I, ν) e−iνt eimφ dν

Keep only the m = 1 (dipole) mode,

=⇒ ∆ν = Y (ξ1 + ξ2)/2 when ν01 = ν02

Yokoya factor: Y = 1.21 — 1.33
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Coherent Beam-Beam Tune Shift

From Beam-Beam Simulation
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HERA Accelerator Study 2000

G. Hoffstaetter, et. al.

The experiment studied the beam-beam effect in HERA at a very

large beam-beam tune shift.

ξe,y was increased by increasing βe,y

ξe,y =
reNp

2πγe

β∗
e,y

σ∗
p,y(σ

∗
p,x + σ∗

p,y)

β∗
e,y(m) Ie+ (mA) σ∗

e,y(µm) ξe,x/ξe,y ξp,x/ξp,y (10−4)

1.0 19 35.8 0.041/0.068 2.54/1.40

1.5 18 43.8 0.041/0.102 2.35/1.06

2.0 17 50.6 0.041/0.136 2.18/0.85

3.0 3.5 62.0 0.041/0.204 0.43/0.14

4.0 2.6 72.0 0.041/0.272 0.31/0.09

Some of Other Parameters in HERA 2000 Study

Positron Proton

E (GeV) 27.5 920

Ntot/Ncol 189/174 180/174

I (mA) Ie+ 90

β∗
x/β∗

y(m) 2.5/β∗
e,y 7/0.5

σ∗
x/σ∗

y(µm) 283/σ∗
e,y 164/39.9

εy/εx(nm) 32/1.28 3.82/3.18

νx/νy 0.169/0.246 0.291/0.297
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HERA 2000 STUDY: Experiment and Simulation

Emittance of the e+ Beam and Specific Luminosity vs. β∗
e,y
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COMPARISON OF HERA 2000 STUDY & SIMULATION

Coherent Modes When ~ξe = (0.041, 0.272)

νe,x νe,y ∆νe,x/(2ξe,x) ∆νe,y/(2ξe,y)

Experiment 52.160 52.233 0.110 0.024

Simulation 52.162 52.232 0.085 0.026

Rigid Beam 52.156 52.227 0.159 0.035

Lattice tune 52.169 52.246

“Rigid Beam”: calculated by using the derived formula

based on rigid Gaussian beams.
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Simulation for HERA 2000 Study

Beam Particle Distributions at β∗
e,y = 4.0 m
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Nonlinear Coherent Beam-Beam Effects

(Coherent Beam-Beam Instability)
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Coherent Beam-Beam Instability of Hadron Beams

Stable Coherent Oscillation When ξ < ξc

The origin of phase space is stable for coherent oscillation.

Symmetrical Beams:

• Coherent oscillations are

stable.

Unsymmetrical Beams:

• Landau damping could

suppress coherent motions

but result in a emittance

increase.

Chaotic Coherent Oscillation When ξ > ξc

The origin of phase space is unstable for coherent motion.

• Coherent oscillations are

chaotic.

• Onset of collective beam-

beam instability could

occur with both strong-

strong and strong-weak

beam-beam interactions.
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Coherent Beam-Beam Instability of Lepton Beams

A.W. Chao and R.D. Ruth

ξ < ξc,

• The origin of the phase

space for beam-centroid mo-

tion is a stable fixed point.

• Damped coherent oscillation

due to radiation damping.

ξ > ξc,

• The origin of the phase

space for beam-centroid mo-

tion is an unstable fixed point.

• The competition between

the instability and the damp-

ing could result in stable π or

high-order modes.



14

BEAM TUNE SPREAD OF LHC LATTICE WHEN ξ < ξc

BEAM TUNE SPREAD OF LHC LATTICE WHEN ξ > ξc
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Incoherent Resonances vs. Beam-Beam Instability

νx = 0.310, νy = 0.320: ξc ' 0.03

7th-order resonance at ξ ∼ 0.012

4th-order resonance at ξ ∼ 0.03

νx = 0.270, νy = 0.280: ξc ' 0.01

4th-order resonance at ξ ∼ 0.01

νx = 0.232, νy = 0.242: ξc ' 0.04

5th-order resonance at ξ ∼ 0.016

6th-order resonance at ξ ∼ 0.033

νx = 0.385, νy = 0.395: ξc ' 0.02

8th-order resonance at ξ ∼ 0.005

3rd-order resonance at ξ ∼ 0.026
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Maintaining a Gaussian Beam When ξ < ξc

Beam Halo Due to Beam-Beam Instability When ξ > ξc
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Collective Beam-Beam Instability of Hadron Beams

When the beam-beam parameter (ξ) exceeds a threshold

(ξc), a chaotic coherent beam-beam instability occurs with

the following characteristics:

• Chaotic Coherent Oscillation

The phase-space region nearby the closed orbit could be

unstable for beam centroids.

=⇒ Spontaneous Chaotic Coherent Oscillation

• Emittance Growth

An enhanced emittance growth is due to the dynamics

of the counter-rotating beam.

• Formation of Beam Halo

Beam distributions could significantly deviate from a

Gaussian due to beam halo. The formation of the beam

halo is a result of chaotic transport of particles from

beam cores to beam tails.

[Ref.: J. Shi & D. Yao, PRE 62, 1258 (2000)]
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Parameters of HERA Upgrade and HERA 2003
High-Luminosity Study

Parameter Upgrade 2003 Experiment

HERA-e HERA-p HERA-e HERA-p

E(GeV ) 27.5 920 27.5 920

I(mA)/Ntot 0.3069 0.7778 0.2742 0.3917

β∗
x/β∗

y(m) 0.63/0.26 2.45/0.18 0.63/0.26 2.45/0.18

εx(nm) 20 5.1 20 5.61

εy/εx 17% 1 17% 1

σ∗
x/σ∗

y(µm) 112/30 112/30 112/30 117/32

νx/νy 0.14/0.21 0.294/0.298 0.215/0.296 0.294/0.298

ξx 0.034 0.00155 0.01556 0.00138

ξy 0.0515 0.00045 0.02359 0.00040

In 2003 experiment, νx/νy is the tune with collision.

Note: ξe,x/ξp,x > 10, ξe,y/ξp,y > 50

This is a typical case of strong-weak
beam-beam interaction!
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Luminosity in HERA Upgrade with/without

the Chaotic Coherent Beam-Beam Instability

(Two e-p Collisions)



20

HERA Upgrade With Two e-p Collisions
Emittance Growth due to Coherent Beam-Beam Instability

~ξp = (0.00155, 0.00045), ~νp = (31.294, 32.298)

~ξe = (0.03400, 0.05150)
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Tune Spread of e-Beam In HERA Upgrade (2 IP)

~νe = (54.140, 51.210):

~νe = (54.140, 51.210) − 2~ξe = (54.072, 51.107):

~ξp = (0.00155, 0.00045), ~ξe = (0.034, 0.0515)
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Chaotic Coherent Beam-Beam Instability in

HERA Upgrade (2 IPs) When ~νe = (54.14, 51.21)

~ξp = (0.00155, 0.00045), ~νp = (31.294, 32.298)

~ξe = (0.03400, 0.05150)
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Stable Beam-Centroid Motion In HERA
Upgrade (2 IPs) When ~νe = (54.072, 51.107)

~ξp = (0.00155, 0.00045), ~νp = (31.294, 32.298)

~ξe = (0.03400, 0.05150)
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Beam Distributions in HERA After the Onset of
the Chaotic Coherent Beam-Beam Instability

Two e-p Collisions, ~νe = (54.140, 51.210)
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Stable Beam Distributions in HERA Upgrade
Two e-p Collisions, ~νe = (54.072, 51.107)
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Tune Spread of e-Beam in HERA Upgrade (1 IP)

~νe = (0.14, 0.21)

Ip = 1.0 Idesign

Ip = 0.7 Idesign

Ip = 0.5 Idesign
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HERA 2003 STUDY: Tune Spread of e+ Beam (1 IP)

The e+ beam is at nominal working point :

The e+ beam crosses 2νx + 2νy=1 :
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HERA 2003 High-Luminosity Study With One IP

Emittance Growth due to Coherent Beam-Beam Instability

HERA 2003 Experimental Result:
In case a, the proton beam emittance increases

∼30% while in case b, no emittance increase was
observed.
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Collective Beam-Beam Instability

in Strong-Weak Case of Beam-Beam Interactions

• Traditionally, coherent (collective) beam-beam effects are

considered to be not important in a strong-weak (or highly

un-symmetrical) situation of beam-beam interactions.

• Computer simulation, however, showed that beam-beam in-

teractions in HERA could induce a chaotic coherent beam-

beam instability and result in a significant emittance growth

in both weak and strong beams.

• Recently, such the collective beam-beam instability has been

observed in HERA.

• For high-intensity beams, the collective beam-beam effect is

therefore important in both situations of strong-strong and

strong-weak beam-beam interactions.
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Methods of Numerical Simulation for

Nonlinear Beam-Beam Effects



32

Near-Linear (Near-Integrable) Regime

of Coherent Beam-Beam Effects

• Quasi-stationary states of Vlasov equation may exist,

especially when ξ −→ 0.

• Methods of perturbation could be employed.

• The system is forgiving on methods of numerical simu-

lation.

• In principle, beams are stable in the consideration of

beam-beam interactions and emittance growth is not

important (or significant) after initial beam filementa-

tions.
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Nonlinear (Nonintegrable) Regime

of Beam-Beam Interactions

• Stationary state of Vlasov equation may not be reachable.

=⇒ We have to work with transient states of a nonlinear

PDE — a very tough problem mathematically.

• Methods of perturbation such as various canonical pertur-

bation expansions, the truncation of moment expansions,

or the linearized Vlasov equation are no longer valid. The

use of those approximation methods could distort the dy-

namics.

=⇒ Only validated method we currently know is a cor-

rect numerical simulation.

• Fine Hamiltonian structure in phase space is important.

=⇒ For a correct beam-beam simulation:

Need to calculate a “smooth” and “undistorted”

beam-beam force;

In order to sample enough detail of phase-space

structure for the time scale of interest, a large number

of macro-particles are necessary.

• Be careful in using classical diffusion models for emit-

tance growth or beam-particle loss. They are only valid

mathematically in a fully chaotic region, otherwise the

stickiness of resonances results in non-δ(τ ) correlations

—– the problem of long-term tails.
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Methods of Beam-Beam Simulation

1. Soft Gaussian approximation: Assume Gaussian beams with

varying width and center.

— Fast [O(Np)]; but not right in the nonlinear regime of

beam-beam interactions in which the distribution could de-

viate from the Gaussian; may be o.k. for incoherent beam-

beam effects.

2. Direct multi-particle tracking: the beam-beam force is cal-

culated with particles-to-particle individually.

— Precise if Np is large, but very slow [O(N 2
p)],

typical: Np ≤ 104 =⇒ wrong physics in the nonlinear regime.

3. Particle-In-Cell (PIC): evaluate beam-beam force on a mesh.

— Precise, but very slow for separated beams.

Variations:

a. Calculate Beam-Beam Potential Without Boundary

b. Calculate The Potential With Approximated Boundary

c. Directly Calculate Beam-Beam Force on the Mesh

d. With Weighted Functions

4. Hybrid Fast Multipole Method (HFMM)

— Fast, better for separated beams.

5. Canonical perturbations for solving Vlasov equation

— Only valid for ξ −→ 0.
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Field Computation With PIC Method

1. Solve Beam-Beam Potential on the Mesh

Poisson eq. for potential Φ(x, y) with charge density ρ(x, y),






∂2

∂x2
+

∂2

∂y2





 Φ(x, y) = −2πρ(x, y)

With Green’s function,

Φ(x, y) =
∫

G(x − x′, y − y′)ρ(x, y)dx′dy′

For open boundary,

G(x, y) = −1

2
ln (x2 + y2)

• FFT is usually used

for solving Φ(x, y) on

the mesh.

• The field is then

computed with numer-

ical derivatives.

Comment:

• Fast — Computation cost ∼ NpNm ln Nm.

• But the mesh has to be big to minimize errors

from boundary. Many empty cells are wasted.
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Field Computation With PIC Method

2. PIC With Reduced Region of Mesh

— Y. Cai, A. Chao, S. Tzenov, T. Tejima

3. Direct Calculation of Beam-Beam Field on the Mesh

The field is calculated with

~K(~r) =
∫

d~r′ρ(~r′) ~Gk(~r − ~r′)

where Green’s function is

~Gk(~r − ~r′) =
(~r − ~r′)

(x − x′)2 + (y − y′)2

Comment:

• Accurate — Exact boundary condition

No errors due to numerical derivatives.

• Only a small number of empty cells when using adaptive mesh.

• Slow when a large mesh has to be used (mis-matched beams)

— Computation cost ∼ NpN
2
m.
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Weighted Macro-Particles (WMPT)

—– M. Vogt, J.A. Ellison, T. Sen, R.L. Warnock

For any function in phase space A(~z),

〈A〉t =
∫

A(~z)f(~z, t)d4z

where f(~z, t) is the beam distribution in phase space. Because

of the symplecticity,

〈A〉t =
∫

A(~z(t))f(~z(0), 0)d4z(0)

On grid points with weighted function wi,

〈A〉t =
∑

i
A(~zi(t))f(~zi(0), 0)wi

Advantage: better sampling beam tails.

Hybrid Fast Multipole Method (HFMM)

—– W. Herr, M.P. Zorzano, and F. Jones

The field is calculated on a mesh:

• Macro-particles inside the grid are assigned to grid

points;

• Multipole expansions of the field are computed on

every grid points.

Computing cost: Between O(Nm) and O(Nm log Nm).

A better way to treat long-range beam-beam interactions.
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The Correct Way of Beam-Beam Simulation

All computational parameters in a numerical model should be

tested for the computational convergence for the system in the

worst possible situation (maximal beam-beam parameter, worst

working point, ...).

—– A code should never be made as a “one-size-fits-all”.

Importance of Computational Convergence

Traditionally, the “beauty” of the initial field has been used to

show how “good” a simulation is,
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PIC

PIC

Fx(x,0)

Fy(0,y)

px / ex = 0.578

py / ey = 0.557

ey / ex

This is far from enough especially in the nonlinear regime of

beam-beam interactions.
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Comparison Between Different Numbers
of Macro-Particles

(a) 104 particles; (b) 105 particles;

(c) 5 × 105 particles; (d) 106 particles.

εx =
∫ 1

2
(x2 + p2

x)f(~r, ~p, t)d~rd~p
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Comparison Between Different Numbers of Macro-Particles
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Final Comments
• In pushing the frontier of luminosity, hadron colliders could

be more likely operated in the nonlinear regime of beam-

beam interactions. An understanding of beam-beam effects

in that regime is necessary.

• To study the beam-beam effects, especially in the nonlinear

regime, we have to respect the Hamiltonian nature of hadron

beams, and we have to recognize that the traditional mode

analysis based on the linearized Vlasov equation, which is

a very useful tool in lepton colliders, is invalid for hadron

beams mathematically.

• In the nonlinear regime of beam-beam interactions, the tra-

ditional boundary between strong-strong and strong-weak

beam-beam interactions is blurred and the beam-beam ef-

fect has to be studied (or at least checked) self-consistently

in all situations. In this regime, only validated method for

the study of nonlinear beam-beam effect is numerical simu-

lation.

• What We Can Do Computationally

Understanding of Short-term beam-beam effects:

Fast emittance growth (within ∼ 106 tunes)

Onset of beam-beam instabilities

...

• What We Don’t Have Confident Computationally

Understanding of Long-term beam-beam effects:

Slow emittance growth, slow particle loss, and

Slow diffusion due to nonlinearities

Beam lift time ?


