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Abstract
The cyclotron is much more than a magnet with charged

particles spiralling out as they accelerate from the centre
of the pole gap. I trace the history and development
up to present-day FFAGs, and hopefully convey something
regarding their special beam dynamics characteristics.
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Invention (Lawrence, 1930)

mv2/r = qvB, so mω0 = qB, with r = v/ω0

With B constant in time
and uniform in space, as
particles gain energy from
the rf system, they stay
in synchronism, but spiral
outward in r.
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Development to 1938

Small machines were built, and they worked. It was discovered
empirically that the natural decline of B with r actually helped.
1938: (R.R. Wilson) orbit theories developed, the effect is
understood.

A flat field has no preferred
z; i.e. νz = 0. It also has
no preferred centre for the
orbit of radius r; i.e. νr =
1. But a field which falls
as r increases provides a
restoring force toward the
median plane.
No one thought of B = B(θ); only B = B(r). Why?
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Simple Cyclotron Orbits
Vertical forces result from radial B:

Fz = qv Br

Taylor expand: Fz ≈ qv
∂Br

∂z
z

since ∇× ~B = ~0: mz̈ = qv
∂Bz

∂r
z

This results in SHM of frequency ωz:

ω2
z = − qv

m

∂Bz

∂r

and tune νz = ωz/ω0:

ν2
z = − qv

mω2
0

∂Bz

∂r
= − r

Bz

∂Bz

∂r
≡ −k

(k is “field index”). Similarly, ν2
r = 1 + k. This sets the requirement −1 < k < 0
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Relativity

It turns out that for higher energies, the cyclotron resonance condition remains
simple

mγω0 = qB, with r = βc/ω0

That means
k =

β

γ

dγ

dβ
= β2γ2

In other words, we cannot satisfy −1 < k < 0.

Hans Bethe (1937): ... it seems useless to build cyclotrons of larger proportions
than the existing ones... an accelerating chamber of 37 cm radius will suffice
to produce deuterons of 11 MeV energy which is the highest possible...

Such was Bethe’s influence, that when a paper appeared in 1938, which
appeared to resolve the problem, it was ignored for at least a decade. That
paper was The Paths of Ions in the Cyclotron by L.H. Thomas.

Frank Cole: If you went to graduate school in the 1940s, this inequality [−1 <
k < 0] was the end of the discussion of accelerator theory.
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AVF, or Thomas focusing

The paper was hard to understand, but knowing
today’s accelerator theory, it is easy for us
to see how it works. Separate the magnet
into sector fields and drifts and you can see
immediately that you cannot help but have edge
focusing at every sector edge.

So to build a relativistic cyclotron, you would
allow the field to grow ∝ γ, giving vertical
defocusing, and compensate with focusing
edges. This is an early form of “strong
focusing”. If the focusing was still insufficient,
you could actually have reverse bends. Thus

was invented the Fixed-Field Alternating Gradient machine (FFAG) by Symon
and independently by Ohkawa in Japan (1953).

Ernest Courant (1952): A significant side benefit of inventing strong focusing
was that it finally enabled me to understand what Thomas’ paper was about.
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Spiral focusing

In 1954, Kerst realized that the
sectors need not be symmetric.
By tilting the edges, the one edge
became more focusing and the
other edge less. But by the
strong focusing principle (larger
betatron amplitudes in focusing,
smaller in defocusing), one could
gain nevertheless. This had the
important advantage that reverse
bends would not be needed (reverse
bends made the machine excessively
large). (Figure is from J.R. Richardson
notes.)

The resulting machines no longer
had alternating gradients, but Kerst

and Symon called them FFAGs anyway. The misnomer is still with us.
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Isochronism

Orbit length L is given by speed and orbit period T :

L =
∮

ds =
∮

ρdθ = βcT.

The local curvature ρ = ρ(s) can vary and for reversed-field bends (Ohkawa,
1953) even changes sign. (Along an orbit, ds = ρdθ > 0 so dθ is also negative
in reversed-field bends.) Of course on one orbit, we always have

∮
dθ = 2π.

What is the magnetic field averaged over the orbit?

B =
∮

Bds∮
ds

=
∮

Bρdθ

βcT
.

But Bρ is constant and in fact is βγmc/q. Therefore

B =
2π

T

m

q
γ ≡ Bc γ =

Bc√
1− β2

.
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Isochronism, cont’d

Remember, β is related to the orbit
length: β = L/(cT ) = 2πR/(cT ) ≡
R/R∞. So

B =
Bc√

1− (R/R∞)2
.

Of course, this means the field index is
k = R

B
dB
dR = β

γ
dγ
dβ = β2γ2 6= constant.

Muon FFAGs contact at only one point...
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Tunes in an FFAG

θ

φφ−θ

R

ρ
d/2

sin(θ)

ρ
=

sin(φ)

R

d/2=R sin(φ−θ)

To make it transparent, let us
consider all identical dipoles
and drifts; no reverse bends.
We have drifts d, dipoles
with index k, radius ρ, bend
angle φ, and edge angles
φ− θ:

In addition, imagine that the
edges are inclined by an
extra angle ξ. This is called
the “spiral angle” (hard to
draw).

In this hard-edged case, the “flutter” F 2 ≡ 〈(B −B)2〉/B
2

= R/ρ− 1.

Aside: Notice that the particle trajectory (blue curve) does not coincide with a
contour of constant B (dashed curves). This has large implications for using
existing transport codes to describe FFAGs.
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resort to Mathematica...

ν2
r = 1 + κ, and ν2

z = −κ + F 2(1 + 2 tan2 ξ)
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Tunes

ν2
r = 1 + κ, and ν2

z = −κ + F 2(1 + 2 tan2 ξ)

These expressions were originally derived by Symon, Kerst, Jones, Laslett,
Terwilliger in the original 1956 Phys. Rev. paper about FFAGs.

Note: Since there is now a distinction between local curvature (ρ) and global
(R), the definition of field index is ambiguous. The local index, used in the
dipole transfer matrix, is k = ρ

B
dB
dρ , while the Symon formula uses κ = R

B
dB
dR ≈

k R
ρ . It is in fact this latter quantity which must be equal to β2γ2 for isochronism.

For isochronous machines, we therefore have

νr = γ, and ν2
z = −β2γ2 + F 2

(
1 + 2 tan2 ξ

)
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Two kinds of FFAGs...

So this kind of focusing can be used for either of 2 purposes:

1. Make νz real for isochronous machines (cyclotrons). But then horizontal
resonances must be crossed.

2. Fix both tunes. But then the machine must be a synchro-cyclotron and so
must be pulsed and therefore much lower intensity.

1. FFAG Cyclotrons of this kind were built at TRIUMF and PSI. They provide
the most economical way of achieving beam power in the 1MW range.
Resonance crossing is possible because in this kind of machine traversal
is fast: rf frequency is fixed so can use high-Q cavities to achieve large
voltage per turn.

2. FFAG Synchro-cyclotrons were rapidly overtaken in energy by synchrotrons
and so this application was never fully brought to fruition.
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Example: TRIUMF cyclotron

Energy B R βγ ξ 1 + 2 tan2 ξ F 2

100 MeV 0.335T 175 in. 0.47 0◦ 1.0 0.30
250 MeV 0.383T 251 in. 0.78 47◦ 3.3 0.20
505 MeV 0.466T 311 in. 1.17 72◦ 20.0 0.07
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TRIUMF Details:

Magnet: 4,000 tons

RF volts per turn = 0.4 MV.

Number of turns to 500 MeV = 1250.

RF harmonic = 5: A magnetic field error of 1:12,500 results in a phase slip of
180◦. This means magnetic field tolerance is a few ppm.

Injection energy is 0.3 MeV. That’s a momentum range of a factor of 40.

Peak Intensity achieved: 400 µA. This would be 0.2 MW at full duty cycle.

PSI cyclotron has reached 2 mA at 590 MeV, 1.2 MW. The reason is that they
have higher injection energy, stronger vertical focusing at injection.
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PSI
cyclotron

(for
comparison)

Outer orbit is
4.5m compared
with TRIUMF’s
7.6m.
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Vertical
focusing

in TRIUMF

BTW: B is low because
TRIUMF accelerates H−. This
prohibits Peak field at 500
MeV from exceeding 0.5 T.
This is what makes F 2 low at
high energy. Compare with
PSI (protons), where peak
field is 1.65 T.
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Radial focusing in TRIUMF
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Isochronism (Longitudinal phase space)
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Isochronism (measured)

Take the previous graph, imagine that
there is a mirror image at φ → φ + π, and
rotate it 90◦.

Here is a longitudinal trajectory as
measured by time-of-flight (Craddock et
al, 1977 PAC).
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This is what happens when isochronism error has only one “jiggle” i.e. parabolic
(from Keil).
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What about those “FFAG”s proposed for
accelerating muons?

They have fixed field and fixed frequency and so are in fact cyclotrons.

Reminder from Keil’s talk: E = 6 to 20 GeV, ∼300 cells, rf volts per turn ∼
1.5 GV(!). They are cyclotrons whose poor isochronism is overcome by brute rf
force.

It’s also now easier to understand why they cannot be made more nearly
isochronous. At 20 GeV, γ = 190. Isochronism requires νr = γ, so need 760
cells (sectors) for a final phase advance per cell of around 90◦. Instead, they
are only made “contact isochronous”: Isochronous only at one momentum, with
a parabolic dependence of orbit time on momentum.
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Other designs (1983, not built)

For kaon factories, we designed high
energy cyclotrons, but they were never
built. Here are two: 3.5 GeV and 12 GeV
(protons).

Nowadays (now that superconducting rf
has advanced), a 20GeV proton FFAG
cyclotron would be much easier to build
than a Muon FFAG. Multi-MW would be
possible!
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How to design a cyclotron?
Putting dipoles and drifts into a transport code is not going to work. For any
momentum, do not know a priori where the orbit is, so do not know edge angles,
field index in that region. Even bigger problem: the standard dipole model
built into these codes is not compatible with FFAG dipoles (see p. 10). Can
only do it with a field map and the Equations of motion. The most convenient
independent variable is azimuth θ:

p
′
r = Q− rBz +

r

Q
pzBθ

r
′

=
r

Q
pr

p
′
z = rBr −

r

Q
prBθ

z
′

=
r

Q
pz

t
′

=
r

Q
E

where Q ≡
√

p2 − p2
r − p2

z. These are in cyclotron units: B in units of central field mω0/q, t in units of ω−1
0 , lengths in units of

c/ω0, E in units of mc2, p in units of mc.

Runge-Kutta integrating is no sweat; the real sweat is in devising an
interpolation scheme for B consistent with Maxwell’s equations.
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We integrate over one sector of an N -sector machine. But of course the
orbit will not close on itself. To find the closed orbit, we track the first order
differentials of motion as well. Let r → r + x, z → z + y, etc. and keep only first
order. (These are the next element of r, pr, etc. if they are considered as DA
variables.) Then the previous equations give the following for the “first order
equations of motion”.

p
′
x = −

pr

Q
px −

∂

∂r
(rB) x

x
′

=
pr

Q
x +

p2r

Q3
px

p
′
y =

(
r
∂B

∂r
−

pr

Q

∂B

∂θ

)
y

y
′

=
r

Q
py

These are integrated with starting values (px, x) = (1, 0), (0, 1); (py, y) =
(1, 0), (0, 1) and so give the transfer matrices. These are used in an iteration to
find the equilibrium orbit.

Then the transfer matrices are analyzed to find β-functions, tunes, etc.
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In the design stage, we start with an ideal field (ze.o. = pz,e.o. = 0). The shapes
of the sectors are set up to achieve correct isochronism (∆t = 2π/N ) and
vertical tune using the approximate formulas. Magnetic fields are calculated
with a magnet code, and the equations of motion used to find the e.o., tunes
and ∆t. This is repeated at many energies. Often vertical tune is imaginary or
traverses dangerous resonances, and ∆t 6= 2π/N . And the “shimming” begins.

These techniques were already used in the mid-50s. MURA physicists (e.g.
Laslett) discovered many wonderful things: Unstable Fixed-Points, Islands,
Resonances, Chaos, Separatrices, etc. They were at the forefront not only
of accelerator physics, but also computing. Frank Cole writing about the year
1956:

IBM was anxious to learn a lot more ... about scientific programming. They
even sent two of their advanced programmers for several months, but it was
remarkable how far ahead we were. The two IBM programmers laboured for
months to produce an orbit-integration program, then had to leave before it was
verified. When it was run, it didn’t work properly, so Snyder (a MURA physicist)
wrote one over the weekend and it worked Monday morning.
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