

Do we need better synchrotrons?

A. Magerl

Kristallographie und Strukturphysik

(Crystallography and Structural Physics)

Naturwissenschaftliche Fakultät I

Friedrich-Alexander-Universität Erlangen-Nürnberg

Overview

- today's synchrotron light sources
- a few examples on science

sound-excited crystals
shock waves
Si 888 in backreflection, an 8-beam case
photon storage

the concept of ERLSYN

stage 1: storage ring

stage 2: the ERL upgrade

- •extreme brilliance by small emittance and modern insertion devices (~10¹⁹ photonen s⁻¹ mm⁻² mrad⁻² 0.1% bandwidth)
- •small source size (anisotropic, horizontal ~100 μm, vertical ~10 μm)
- •partially coherent (0.1 %, phase contrast techniques)
- •pulsed (length of the electron bunches, 50 ps)
- •polychromatic (from infra red (cm) to hard x-rays (0,01 Å))
- •polarized (linearly or circularly, magnetism)

synchrotron ligth sources

European Synchrotron Radiation Facility ESRF, Grenoble (1994), energy 6 GeV, circumference 844 m

Storage Ring

Accelerators

Experimental Hall

Swiss Light Source SLS, Villingen Energy 2,4 GeV, circumference 288 m

SPring8 (1997), Japan Energy 8 GeV, circumference 1436 m

Users at the ESRF

A SLS is a central facility offering unique experimental conditions for a large number of users from many different fields

extreme intensity & quality of the x-ray beam

brilliance:

- complex problems
- ·fast throughput
- •small samples
- diluted samples (surfaces)
- high quality
- high precision
- •inelastic scattering
- •magnetism

The Laue diagram number 5 (1912) exposure time 30 min

A Laue diagram at SLS exposure time 10⁻¹⁰ s

Structure of a membrane protein complex: Formate Dehydrogenase-N at 1.6 Å (ESRF Highlights 2001)

Catalytic α -subunit is shown in orange, β -subunit in blue and g-subunit in pink.

Entries in the Protein Data Bank, Brookhaven, USA, of structures measured with synchrotron radiation

W. Minor et al., Structure, 8, R105-R110 (2000)

High beam quality

Michael Cölle, Robert E. Dinnebier and Wolfgang Brütting, 2002, Chem. Comm. 23, 2908-2909

precise informationen: structure refinement from powder diagrams

Evidence for the facial isomer in the blue luminescent δ -phase of tris(8-hydroxyquinoline)aluminum(III) (Alq₃)

Isomere in δ -Alq₃

meridonal

Different degrees of overlap of the π -orbitals of hydroxyquinoline ligands belonging to neighboring Alq₃ molecules are likely to be the origin of the significantly different electro-optical properties. Two isomers in the blue luminescent δ -phase of Alq₃ are possible

The two structures can only be distinguished with a resolution as offered on synchrotron beams

a few examples: sound-excited crystals

triple axis diffraction at the high energy beam line (>100keV) ID15 at the ESRF

The strain field of a sound wave may enlarge a Bragg peak and hence increase the reflected x-ray intensity: tunable optical element.

A longitudinal strain field maintains the beam divergence and provides better characteristics than a transversal distorsion (mosaicity).

time dependent rocking curves at 2.35 MHz sound frequency

conditions:

even harmonic mode of the transducer (5 MHz) wave must have a knot at the ends of crystal

time dependent rocking curves at 8,18 MHz at a crystal resonance

time and space dependent rocking curves at 2 MHz at a crystal resonance

The x-ray intensity can be tuned over a wide range by pure longitudinal sound waves

Shock waves by laser illumination K. D. Liss et al.

laser light causes several processes to occur:
thermal shock wave
ablation
melting and re-crystalisation

geometry and measurement principle:

The propagation velocity of $c_s = 10066$ m/s is higher than the sound velocity for Si along [111] of c = 9640 m/s. The surface wave has a velocity of $c_s = 3390$ m/s.

The individual shock wave components are not resolved with present time resolution.