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Abstract

The cancellation effect has been an important and long-standing controversial issue in the study

of coherent synchrotron radiation (CSR) induced electron bunch dynamics in bends. In this paper,

equations of motion are derived from the canonical formulation of the dynamics for an ultrarela-
tivistic electron bunch under collective interaction on a curved trajectory. Using retarded potentials,
we show that the cancellation occurs in the first order of optics between the local interaction con-
tribution to the horizontal collective radiative force, which often gives the logarithmic dependence
of the horizontal radiative force on the bunch transverse size, and the local interaction contribution
to the kinetic energy via the potential energy change, which influences the particle’s horizontal
dynamics through dispersion. With the cancellation taken into account, the particle’s horizontal
dynamics in a bending system is driven both by the dispersion effect due to the initial kinetic
energy deviation from the design energy together with the initial potential energy, and by the ef-
fective collective forces mainly contributed from the non-local collective radiative interactions. The
local interaction influences the particle dynamics only in the second or higher order terms. Gauge

invariance of our results is also discussed.



1. INTRODUCTION

The existence of the centrifugal space charge force FCCY was first pointed out by Tal-
man [1] when studying a beam of charged particles following a curved path in an external
magnetic field. It was understood that this force was due to the nearby (or local) particle
interaction via curvature induced radiation fields, giving rise to the non-cancellation of the
beam-induced electric and magnetic fields for ultrarelativistic beams. It was shown that
when two particles in a bunch on a circular orbit approach zero distance, this transverse
radiative force between the two particles exhibits a singular behavior. Even though this
singularity can be removed for finite beam size, the resulting logarithmic divergence of the
transverse force can cause rapid variation of the horizontal force in the transverse dimen-
sions, causing a shift in horizontal tune and a significant contribution to chromaticity for a
coasting beam in electron storage rings. These effects of logarithmic divergence in F“5¢F on
the horizontal bunch dynamics were later pointed out by Lee [2] to be canceled by the effect
of the beam induced electric potential, which enters into the horizontal dynamics through
dispersion by changing the kinetic energies of the particles. The residual effect on a coasting
beam in a storage ring, after taking the cancellation into account, to the first order, is about
0./R (0,/R < 1) times the F5CY effect, where o, is the horizontal bunch size, and R is
the equilibrium radius of the ring.

Recently, due to the possibility of producing high peak current electron beams, trans-
porting these electron bunches while preserving high phase space brightness has become a
critical issue. It is then important to understand the effect of the coherent synchrotron ra-
diation (CSR) induced emittance degradation in bends. Even though the cancellation effect
was cleared for coasting beams, it was in dispute again for the CSR induced horizontal effect
for bunched beams. In Ref. [3] it was concluded that the effect of F5“F is no longer canceled
by the potential energy for bunched beams, and there exists a longitudinal force named the
non-inertial space charge force FN5Y [4] in addition to the usual longitudinal space charge
and CSR forces. At the same time, it was pointed out [5] that for bunched beams, there
is always the cancellation between the effect of F“SCF on the horizontal bunch dynamics
and the effect of potential energy. Further analysis [6] shows that the accumulated effect
of FNSF contributes to the change of the potential energy: thus its effect on the horizontal

FCSCF

bunch dynamics nearly cancels with that of . For the steady-state rigid-line bunch



case, it was shown [6] that the residual of the cancellation is much smaller in magnitude
compared to FO5F. Most recently, the generality of the cancellation effect was questioned
[7] and what exactly the cancellation meant was under discussion again [7]-[9].

In this paper, we study the transverse dynamics of a charged particle distribution in the
external and collective electromagnetic (EM) fields. The charged particle distribution is
moving on an arbitrary trajectory with ultrarelativistic speed and is observed in an inertial
laboratory frame. Usually, the charged particle motion is studied using the Lorentz force in
terms of EM fields, where the collective interaction fields for curved trajectories are calcu-
lated using Liénard-Wiechert fields. However, in our study, it is found that an interesting
relationship, which is between the usual centrifugal force—due to the change of direction
of the kinetic momentum—and the radial collective EM force associated with the charged
particle distributions on an curved trajectory, cannot be made obvious if one studies particle
dynamics using Liénard-Wiechert fields. As an alternative, we analyze the charged particle
dynamics via the canonical momentum. We show that the two approaches are equivalent,
yet the latter one, with the choice of the retarded potentials in the Lorentz gauge, can pro-
vide some interesting insight on the interaction process under study. In particular, we aim
to demonstrate the generality of the cancellation effect, which is the cancellation between
(1) the effect on the horizontal particle dynamics due to the local interaction contribution to
the radial collective radiative force and (2) the effect on the horizontal particle dynamics due
to the local interaction contribution to the kinetic energy change via the potential energy
change, which influences the particle’s horizontal dynamics through dispersion.

In order to demonstrate the cancellation, in Sec. 2, the equations of motion for particles
in an electron bunch, which are moving ultrarelativistically on a curvilinear orbit undergoing
collective interaction, are derived from several different points of view. First, the equations of
motion are written in a Cartesian frame, where by using both (1) the Lorentz force approach
in terms of EM fields and (2) the canonical momentum approach in terms of potentials, we
establish the equivalence of the two approaches. Next (view i), the equations of motion
in the Cartesian frame based on Lorentz forces are projected to the curvilinear frame for
a circular orbit with the EM fields expressed in terms of potentials. Then (view ii), using
Lagrangian analysis for charged particle dynamics, the equations of motion are derived for an
arbitrary curvilinear Frenet-Serret coordinate system, which yields the equations of motion

around a circular orbit (view i) as a special case. Furthermore (view iii), it is shown that the



equations of transverse motion obtained from view ii can be directly obtained by projecting
the equations for the canonical momentum in a Cartesian frame to a Frenet-Serret frame.
Lastly (view iv), Hamiltonian analysis is carried out which yields the transverse equation of
motion consistent with previous views.

With the equations of motion in terms of the interaction potentials derived in Sec. 2,
in Sec. 3, we use retarded potentials to demonstrate the cancellation effect. From view i,
the particle’s horizontal dynamics is driven by (a) the kinetic energy deviation from design
energy and (b) the radial Lorentz force due to collective interactions. We will show that the
local interaction contributions to the changes of each of the above two driving factors over
time almost cancel and the residual effect is negligible compared to the remaining effective
terms. However, instead of the aforementioned cancellation between effects in (a) and (b)
it is the canonical energy, i.e., the kinetic and potential energy together, that experiences
the curvature induced dispersion effect. This curvature effect for the canonical energy as
a whole is depicted by the generalized centrifugal force, in contrast to the usual centrifugal
force related to the curvature effects for the kinetic energy only. Moreover, since CSR
changes the canonical energy, it is found out that apart from the dispersion effect related
to the initial canonical energy deviation from the designed kinetic energy, only the effective
forces (majorly contributed from the non-local interactions) are responsible for driving the
horizontal dynamics. It is also shown that the cancellation effect is independent of the
choice of gauge, as would be expected. In Sec. 4, our understanding of the cancellation
effect is summarized, followed by a discussion why the cancellation effect has been a long-
standing controversial issue, including discussion of the counter-example raised in Ref. [7].

A conclusion is given in Sec. 5, where the cancellation effect with shielding is highlighted.

2. GENERAL FORMULAS

In this section, based on the general covariant classical field theory reviewed in Ap-
pendix A, we first formulate in the nominal way the charged particle dynamics in the in-
ertial laboratory frame with a Cartesian coordinate system. The equations of motion in
the Frenet-Serret frame for an curvilinear orbit are then derived by (1) projection of the

Lorentz force equation onto the Frenet-Serret bases for an arbitrary reference trajectory



with the fields written in terms of potentials, (2) Lagrangian analysis for general curvilinear
coordinates, (3) directly projecting the dynamics of canonical momentum in the Cartesian
frame onto Frenet-Serret bases, and (4) Hamiltonian analysis. All these methods generate
the same set of equations of motion for the particle’s transverse dynamics, which set the

stage for the discussion of the cancellation effect in the following section.

2.1. Charged Particle Dynamics in a Cartesian Frame

To set the foundation for the analysis of the cancellation effect, here we review some
classical EM field theory [10]. Our purpose is to show the equivalence of the first set of
dynamics equations in terms of EM fields—Eqgs. (13), (17), and (19)—with the second set of
dynamics equations in terms of potentials—Eqgs. (8), (11) and (12)—respectively. As will be
discussed in Sec. 4, using the first set of equations with the Liénard-Wiechert fields as the
collective fields, one may not see the cancellation effect explicitly. On the other hand, the
cancellation effect can be demonstrated straightforwardly using the second set of equations
in terms of retarded potentials.

For an observer in the inertial laboratory frame using a Cartesian coordinate system, the

spacetime is described by the Minkowski metric tensor

goo = 1, 9uo — Gop — 0, 9i; = _5ij (1)

with g from 1 to 4, and ¢, j from 1 to 3. Here the 4-spacetime-vector is z# = (ct,x), and
Eq. (A5) gives dt = vdr, with v = 1/y/1 - 32 for 8 = |B|, B = v/c and v = dx/dt. The
4-velocity is V* = dz#/dr = ~(c,v), with /V#V, = ¢, and the 4-kinetic-momentum is
p* = mV# = (E/c,p) for E = ymc? and p = ymv. The Lagrangian in this case can be

written as a function of z# and V#, with 7 as the independent variable
IM/(‘TM: V”) - zfree + f/inta (2)

with the free particle Lagrangian

22

"o (3)
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Z/free = —INCy/ V#V,u = ’YLfreey Lfree = _mCQ 1—

and the interaction Lagrangian in terms of the 4-potential A* = (&, A):

zint — _EV;LAM = 7Lint7 <4)

C



wit
Lint = - (Q) ,3 A Zﬁz (5)

Here A; = A -e; and 3; = B -e; with e; (i = 1,2, 3) the Cartesmn basis, and L and Liy

are Lagrangians with £ as the independent variable. The canonical momentum P* conjugate

to x# is
oL
pr— 27 Au 6
v, =p"+ (6)
with its components
E+ed
pP==1C  p_piCal (7)
c c

Thus using Eq. (1), the Euler-Lagrangian equation in Eq. (A4) gives the time derivative for

the canonical momentum (ds = ¢dr)

dP* L, e  0A
dr — oz, V "0z, (8)

where 0/0z, = (0/0zy,—V). Equation (8) shows that in the Minkowski spacetime the

change of the canonical momentum over time is driven by the gradient of the interaction
Lagrangian. For convenience, let us denote V and é/ Ot as operators only acting on potentials

® and A:

dt
with p = ymv, and the zeroth component of Eq. (8) gives the energy relation

d (F + e®) O Lin P DA,
= — = - - 3 12
dt o1 e(t ;@m>’ (12)

with £ = ymc? the kinetic energy, and E + e® the canonical energy.

. 0(@—B-A
V@-g-A)=ve-Yava, JELAL_O0 e 0L
The vector components of Eq. (8) can then be written as
dpP
o = V Lin, (10)
or
d A
AL RN A 1)

The equivalence of the above canonical formulations with the nominal electrodynamics
in terms of EM fields and Lorentz forces can be traced back to Eq. (8). Using Eqgs. (6)-(8),
we obtain the time derivative for the kinetic momentum
dp*
W _ Cpwy (13)

dr c



with the field tensor expressed in terms of the 4-potential A*:

oA oA

N oz, oz,

P

(14)

The matrix form of the field tensor is

0 -E, —E, —F,
E, 0 -B. B

FH = Y, (15)
E, B, 0 -B,

E, -B, B, 0
where the fields E and B are related to the scalar and vector potentials ® and A via

E:—Vq)—la—A B=VxA. (16)
c Ot

Note that Eq. (13) is the straightforward reduction of Eq. (A6) for Minkowski spacetime,
where the connection in Eq. (A8) vanishes. The vector components of Eq. (13) can be

written in terms of the Lorentz force F

dp
Y _F 17
o (17)
with
v
F:e(E+—><B>, (18)
c
and the scalar component of Eq. (13) gives
dE
E:V-erv-E. (19)

With notations in Eq. (9), we can write the Lorentz force in Eq. (18) in terms of potentials

by combining Eqgs. (16) and (18):

e dA . ] dA 0A
F=—"""—eV(@—f-A), with —==—r+(v VA, (20)
and .
d® 9
V-E= e tem (0B A). (21)

Substituting Eqgs. (20) and (21) into Egs. (17) and (19) respectively, one can obtain the
equations for canonical momentum and energy in Egs. (11) and (12). Note that Eqs. (11)

can also be derived from the Hamiltonian (canonical energy)

H:E—i—eCI):c\/(P—eA/C)2+m2c2+e®, (22)
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with P defined in Eq. (7), and the Hamiltonian equations
dx 0H dP _ 0H

dt 9P’ dt  9x’
The energy relation in Eq. (12) is equivalent to

dH _ oH
dt ot

(24)

Since the collective interaction potentials and fields comove with the charge distribution

while the external potentials or fields do not, it is useful to separate the potentials, fields

and Lorentz force into their collective and external counterparts:
P = Qext € (I)col A= Aext € Acol

E = Eext + ECOI, B = Bext € BCOI7

with
1 a Aext
Eext — _V(I)ext = , Bext =V X Aext}
c Ot
19 Acol
Ecol — _v®c01 - 7 Bcol =V X Acol‘
c Ot
The Lorentz force is separated as
F = Fext € FCOI,

with

Fext — 6(Eext + X > BeXt), Fcol — e(ECOl + X X Bcol),
C C

which can also be expressed in terms of potentials using Eq. (20)

Aext Acol
Fext - _ E d VLext FCOI - _ E d VLCOI

c dt int » c dt int?

(25)

(26)

(27)

(28)

(31)

where the interaction Lagrangians are expressed in terms of the vector components in the

Cartesian frame

Lext — _e(q)ext _ ;3 . Aext) — (I)ext Z BerXt

int

Lcol — —6(®C01 . /8 . Acol) @COI Z 5zAc01

int



2.2. View i: Lorentz Force and Centrifugal Force on a Curved Orbit

We now consider a charged particle distribution moving on a curvilinear trajectory, and

study the dynamics of the charged particles under external and collective EM fields. We first

study the dynamics in terms of the Lorentz force due to external and collective interactions,
as well as the centrifugal force due to curvature of the reference trajectory.

Let us denote the reference trajectory predetermined by the external fields to be rg(s)
in the laboratory frame, where s is the path length along this trajectory measured from a

certain fixed initial point

s |drg drg
= — - —ds;. 34
® /so ds ds i (34)

We now consider the Frenet-Serret system [11], which is the curvilinear coordinate system

naturally built in along the reference trajectory. A vector around the reference trajectory
can be represented as

r(s,z,y) =r1o(s) +re, +ye, (35)

where s, x, and y are the longitudinal, horizontal, and vertical coordinates respectively. The
unit vector tangent to the curvilinear trajectory is ey:

d I'()(S)
ds

= €;. (36)

The principal normal e, and binormal e, of the curve are

des/ds

€ = Tde, /ds|

e, =€ X e,. (37)

The unit vectors ey, e, and e, form the bases of the Frenet-Serret system, which are functions

of s:
J~ /1. /n e n\ /,.
LLUS/LLb v R U s
dey/ds [=|x 0 7 e | (38)
dey/ds 0 —7 0 e,

where k(s) and 7(s) are respectively the curvature and torsion of the reference curve in the
three dimensional space (note here 7 is no longer the proper time in Sec. 2.1 and Appendix
A). For a curve in the two dimensional plane, the torsion 7(s) vanishes. From Eq. (35), we

get the velocity components for the Frenet-Serret bases

d
d_:; = vUs€5 + Uz €, + Uy €y (39)



for
vs = (L+kx)s, v, = (T —71Ys), v, =(y+7125), (40)
with § = ds/dt, & = dx/dt,y = dy/dt.
Typically, for a charge distribution moving on a curvilinear reference trajectory, the charge
dynamics given by Eq. (17) is projected to the Frenet-Serret bases. The time derivative of

the momentum projected to a Frenet-Serret basis ey (e is any one of e, e,,e,) is

dp-e) dp . dey
_dp. dex 41
pm g TP (41)

Using Eq. (38) for de,/ds, the equation of motion in Eq. (17) becomes

dp,

= —Shps te F™' e, - F (42)
dpy . ext col

o = $(kps +7py) +€, - F* +e,-F (43)
d

% = —§1p, +e, F™ +e, F, (44)

where Eq. (30) is used for the Lorentz forces. Note that in Eq. (43), the term $xpj is the usual
centrifugal force due to the curvature effect. The conventional approach to Eqs. (42)-(44)
at this point is to use the Liénard-Wiechert fields in Eqgs. (D3), (D4), and (D6) to calculate
F! in Eq. (30) based on the history of the charge distribution along the curved orbit. As
will be discussed in Sec. 4, although this Liénard-Wiechert fields approach is equivalent
to the analysis based on potentials, the latter can be used to explicitly demonstrate the
cancellation effect, while the former can only take care of the cancellation implicitly if both
the longitudinal and transverse collective force (especially the radiative force) are taken into
account. For this reason, we express the fields in terms of potentials as in Ref. [5].

Let us look at the case of a bunch moving on a circular orbit of radius R, which has
k= 1/R and 7 = 0, and write Egs. (42)-(44) in terms of potentials. The reference orbit is
now

ro(s) = Re,(s) (45)

with the Frenet-Serret basis ey (A = s, z,y) related to the Cartesian basis e; (i = 1,2, 3) by

.S s s .S
e = —sin e + cos L e =cos e + sin e, €, = —es. (46)

The momentum components in this cylindrical coordinate system are obtained from Eq. (40)

Py =ymuy, with v =4/1—02/c? (47)
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for

vy =10,

Up = I,

Uy:yv

(48)

where r = R + z is the distance from the test particle to the center of the circular reference

orbit, and § = s/R. Here instead of using the Liénard-Wiechert fields, we write out the

collective fields in terms of potentials using Eq. (28) with cylindrical coordinates:

aq)col aAcol a®001 aAcol aq)col aAcol
Ecol — | _ _ s s _ e, — — Y R 4
( 06 oot )e * ( ar ) * ( dy ot )ey (49)
and
B ACOl Acol Acol B Acol 1 Acol Acol
poot — (94 94 04" L (oA orAs”) e, (50)
ox Oy dy 7“80 00 ox

For the interaction Lagrangian in terms of the vector components in the Frenet-Serret frame

with subscript A = (s, z, )

Eint = _6(® -

> BHAy),
A

as opposed to Eq. (5) for a Cartesian frame, we define V and é/ Ot as

(51)

(52)

(53)
(54)

(55)

(56)

. P —B-A dA
V@-g-A)=ve-Ypva, OBA_Ob g 00
The Lorentz force in Eq. (30) due to the collective fields in Egs. (49) and (50) can then be
written as
aﬁcol e dAcol Acol
Fcol — int  “ s i s
s rofd ¢ dt ef r
aﬁcol 6 dAcol Acol
Fcol — int e z g s
‘ ox c di +ef r
Fcol — a‘cfr?tl EdAZOI
Y Oy ¢ dt
where (3, = ré/c, B = i /c, and for subscript \,n = (s, z,y), one has
dAcol aAcol
d;\ - Z Uﬂ

The equations of motion in Eqgs. (42)-(44) thus become (using k$ = v,s/r and $kp,

Aoyt eALYE) e OLE put oAV
dt r00 ‘ r
Aps + eALD)C) _ poa | LT | s+ eAPe
dt N ox r
Ay + APV o L

dt oy

11

= Umps/r)

(57)
(58)

(59)



The energy relation is not affected by the curvature of the trajectory, and is obtained from

Egs. (19), (21) and (26)

d(E + ) ext OLR

The difference between V (or 9;) acting on Lin in Eq. (5) and Ly in Eq. (51) is discussed
in Appendix B.

For the horizontal dynamics, the last term on the right-hand side of Eq. (58) (which is
k$P, in Eq. (71) of Sec. 2.3) shows that e, A% /r, which is a part of the radial collective force
F&! (see Eq. (54)) and is centrifugal in direction, turns on (becoming nonzero) simultaneously
with the usual centrifugal force vsps/r (which is $kp, in Eq. (43)) at the instant when
the bunch enters a circular orbit (x # 0) from a straight path (k = 0), and it turns off
simultaneously with the centrifugal force as well at the instant when the bunch exits to a
straight path again. For this reason, we denote this part of the collective radial force as

the centrifugal force due to space charge interaction, or, the “centrifugal space charge force”
JCSCF.

JCSCF _ eﬁsA(;Ol 7 (61)

r

which arises from B! in Eq. (50) for a circular orbit. Eq. (58) shows clearly that v,p,/r
always works together with e8,A%! /7, meaning the usual centrifugal force—due to the radial
acceleration—always works together with the centrifugal space charge force caused by col-
lective radiative force—also due to the radial acceleration. On the other hand, the fact that
the two seemingly unrelated terms in Eq. (43), one being the usual centrifugal force $kp, and
the other being the collective radial force e, - F®°! actually are strongly correlated—in the
way of cancellation of the local interaction contributions to the two terms (see Sec. 3)—has

caused many puzzles. This point will be further discussed in Sec. 4.

2.3. View ii: Lagrangian Analysis of Charged Particle Dynamics in Curvilinear

Coordinate Systems

We have by now derived the equations of motion around a circular orbit, with fields
written in terms of potentials, and show the terms representing the curvature effects. In
this subsection, we will consider the more general case of a charge distribution moving

on an arbitrary curvilinear reference trajectory, and derive the equations of motion using

12



Lagrangian analysis with Frenet-Serret coordinates. For the particular case of a circular
orbit, the general equations of motion from the Lagrangian agree (as expected) with results

given in Sec. 2.2 obtained by projecting the equations of motion in terms of Lorentz forces

onto the Frenet-Serret bases.
With the Frenet-Serret coordinates defined in Eq. (35), and the velocity components in
Eq. (40), the Lagrangian using Eqs. (3) and (5) with ¢ as the independent variable is now

L = *Cfree + Eint

) l [(1+ k2)$]2 + (2 — Ty$)* + (v + Txé)j 12
= —mc” |1 — 5
¢
1 A, by A, . A
. lq) (A +kz)3A + (@ 7‘cys) + (9 + T28) y] . (62)
The momentums conjugate to the Frenet-Serret coordinates are
oL
P, = i (1+ kx)Ps — 7(yP, — xP,), (63)
oL oL

where P, P,, and P, are the direct projections of the canonical momentum in the Cartesian

frame in Eq. (7) to the Frenet-Serret bases
Py = ymu, + €Agfe, Py, =ymu,+eAy/c, P, =~ymu,+eA,/c, (65)

with v,, v, and v, given in Eq. (40).

The Euler-Lagrangian equations for the Frenet-Serret coordinates s,z and y
dPs/dt = 0L/0s, dP/dt =0L/0x, dP,/dt=0L/0y (66)

now become

d[(l + “x)Ps — T(ny - xPy)] aAﬁint

= $|k'zPy, — 7' (yP, — zP,
o §|'xPy — T (yPy — xPy)] + 95 (67)
with k' = dk/ds and 7" = dr/ds, and
ar, . OLing
o =8 (kPs +TP)) + o (68)
dPy . aAﬁint
—J = —7P .
pn §(—7P;) + By (69)

13



For a reference orbit in the two dimensional plane (7 = 0), with arbitrary curvature x(s),

the above equations become

dP, — ki 1 AL
- P, s 3
dt 1+ k2 + 1+ kx Os (70)
dP, . O Ling
e KSP, + Fa (71)
dP,  OLin
— ) 72
dt oy (72)

For a circular reference orbit with radius R, s = RO, k(s) = 1/R, and r = R+ z, Eqgs. (70)-

(72) reduce to Egs. (57)-(59) after separating the contributions of the external fields and the

collective interaction fields. The energy relation in Eq. (12) or Eq. (60) stays untouched for
the Lagrangian in Eq. (62). Note that in Eqs. (70)-(72), we have

aAﬁint
706

aAﬁint
oz

aAEint
dy

=€z @‘Cin‘m =€ @'Cinta =€y @‘Cin‘m (73)

with Lin and V given in Egs. (51) and (52).

2.4. View iii: Projection of p+eA/c in a Cartesian frame onto Frenet-Serret Bases

We now look at the relation between Eqs. (68) and (69) for Frenet-Serret coordinates
and Eq. (10) for Cartesian coordinates by simply projecting the equation for the canonical
momentum in the Cartesian frame onto the bases of the Frenet-Serret frame.

For ey being e, or e,, and for P, given in Eq. (65), we have

d(P'e)\) . dP de>\
@ @ TP (74)

with de,/dt = sdey/ds as used earlier in Eq. (41). Applying Egs. (10), (38) and (B10) to

Eq. (74), we find for the transverse components

P, . o

el s(kes +7ey) - P4 ey - Vi (75)
dP, -
d—ty = 5(—7_61) -P + ey ) v'Cint (76)

which agrees with Eqgs. (68) and (69). After separating the external and collective coun-
terparts of the Lorentz interaction, as we did in Eq. (58), we obtain Egs. (58)-(59) from

14



Egs. (75)-(76) for general curvature x(s) = 1/R(s), 7 =0, and r = R(s) + z:

d(py + eA%/c) oLl p,+eA® /e
T x — Fext int S 5 .
o I o +§ 7 (77)
d(py + A /o) L
— Fext int ) 78

The longitudinal dynamics equation in Eq. (57) is also reproduced for constant curvature

k =1/R and 7 = 0 by using Eqs. (74) and (B11)

Aps + ALSE) _ pu | OLE poteAVe

dt s 700 r

(79)

2.5. Discussions

Comparing the equations of motion in Egs. (57)-(59) with Eq. (11) for a Cartesian coor-

dinate system, which is rewritten as

d Acol R
(p +;_/_ /C) — Fext e VLfr?'gy

(80)

we can see that the last terms on the right-hand sides of Eqs. (57) and (58) depict the
geometrical effect induced by the curvature of the reference orbit. Let us first consider
—v,ps/7 in the last term of Eq. (57) and vsps/r in the last term of Eq. (58). For example,
when an electron moves in a potential ®*(r, ) with F®' = —eV®**  there is no collective
interaction, and Eq. (58) reduces to

dp; _ . Ps 0P

= e
dt e ox

(81)

where vsp, /1 = ~ymr6? is the usual centrifugal force due to the rotation of the Frenet-Serret
bases, and Eq. (57) reduces to
dps . Ds oD

dt er 67’30'

(82)

The term —uv,p,/r in Eq. (82), which gives the curvature effect, can be combined with the
term proportional to & in dp,/dt (using ps in Eq. (47) with vs in Eq. (40)), and then yields

A aq)ext
— vl — e
ymi — e R (83)

d*ymé
dt

T

where —27m1'"6" is the usual Coriolis force related to the rotation frame. These usual cen-
trifugal and Coriolis forces are considered to be fictitious because they arise when the bases

of the Frenet-Serret frame rotates, while the particle tends to maintain its inertial motion.
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We now focus on the transverse dynamics for a relativistic electron bunch on a curved

orbit (for 7 = 0 and ®** = 0). As discussed in Sec. 2.2, the usual centrifugal force, v,p, /7,
always works together with the centrifugal space charge force. This can be clearly seen from
P - de,/dt in Eq. (74), which yield the generalized centrifugal force FECF related to the
collective interaction potentials in Eq. (77) [8]:

pace _ ot eAR e poteARle
R ° T '
For a bunch moving on a straight path with all the particles having the same speed 8 = j,e;,,

the retarded potentials in Egs. (D10) and (D11) satisfy A = 3,0!, and thus the following

(84)

equality holds exactly:

e E + e®! H
ps + - AP = f———— = Bi—, (85)
C C C
with the canonical energy defined as
H = E + ed*. (86)

As will be shown in Sec. 3, for an ultrarelativistic bunch moving on a curvilinear orbit,
Eq. (85) is still a good approximation (assuming v; ! = /1 — 8,2 < 1)

bt AP = p 87)
indicating that the retarded potentials due to the collective interaction, which are dominated
by the local interaction contributions, travel together with the charged particle distribution
(the external potentials are separated out because they do not have this property). The

canonical energy H in Eq. (87) can be obtained by integrating Eq. (12) or Eq. (60) with
Eext — 07

t Apcol
H(t) = H(ty) — OLest gy (88)
to 3t
Combining Eqgs. (84), (87) and (88), one gets for g, ~ 1
H H 1 1t L
FOCF ~ 7 (to) - a‘Cext dt,, (89)
r T Tt Ot

and Eq. (77) becomes
H(ty) 1 ptoLm dL!

d(py + A% /c) . A
X X ~ Fex = ex dt, int 90
dt e T r rJi Ot * ox ' (90)

which shows that the change of the transverse canonical momentum is driven by the inter-

action Lagrangian induced effective forces, and by the dispersion effect related to the initial
canonical energy (as opposed to the initial kinetic energy in usual treatments when the radial

collective radiation force is not included).
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2.6. View iv: Hamiltonian Analysis

In many applications, Hamiltonian (instead of Lagrangian) analysis is used to study
charged particle dynamics. Starting from the canonical momentums in Eqgs. (63) and (64),
the Hamiltonian with time ¢ as independent variable is obtained as

oL oL oL
H=|_$+_ 2+ 9)—-L
( 25 T ai" "y y)

B \/(775 +7YyP, — 7TPy
B 1+ ke

e 2 e 2 e 2
_ EAS> 4 (72,,: _ EAm) + (Py _ EAy) b mi 4 ed. (91)

Converting the independent variable from £ to the path length s, and for Ay = A - e, with
A = (s,z,y), the Hamiltonian conjugate to s can be obtained from Eq. (91) (see Ref. [11],
[13] and Appendix C):

H = =Py =71(yPy, — zP,)

_ 2 2 2
‘A, + \/(H e@) _ (7% _ EAx) _ (py _ EAy) _ m202] (92)
c ¢ c c

which contains the longitudinal kinetic momentum for the ultrarelativistic particle (85 ~ 1)

— 2 2 2
= () = (e ) () e

c c c

(Ps —eAs/c)” (P, —edy/c)? )

—(1 + kx)

with the total kinetic momentum

VE? —m?ct ~

D | =

E
P —, E=H—ed > mc. (94)
C

Consider the case when the external potential is only present in A, = A®* + A% The

Hamiltonian in Eq. (92) can then be expanded

W= r(yP, — aP,) — éAgxt
(AL — BN L H (Py— e e (Py — edSfc)

—(1 e
(1+ kx) » 2 o + (95)
where the canonical external potential .Ai"t is defined by
A‘;Xt =(1+ /m)AiXt. (96)
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For external magnetic fields

By =By + B\(s)zr+---, and B, = Bi(s)y+---, (97)
wit,

DocC eB
By="—", Ki(s)=— 98
0 €R7 1(8) PoC ’ ( )

for py = vefBome with Gy = \/1 — %5 2, A% is given by [14]
= P lE (L) S B (99

S e |R R? )5 2 '

The transverse equation of motion is thus

dr  OH P, —eA%®/c
& — T T e IO 1
i~ op. TY + + (100)
and
P, _ oM
ds  Ox
e aAixt GOF —e é(q)col o /8 . Acol)
_—TPy+E o + K50 4+ (1 + kx) — e +--+ (101)
with K%CF related to the generalized centrifugal force in Eq. (84)
Acol o @col H
ICGCF — K (ps + §A§01> ~ [6( s 0 )_*_ ]/C7 (102)

where Eqgs. (93) and (94) are used. As will be shown in Sec. 3, for ultrarelativistic beams, the
retarded potentials A% and ®°°! are nearly canceled, and the residual of their cancellation is
negligible compared to the other effective terms; thus KXY only depends on the canonical

energy

bii
KCOCF ~ 103
B (103)

The canonical energy H in the above equation satisfies

dH  OH T ed(®° — 3. A
A il 104
ds ot (1+ R)c ot (104)
which, after integration, becomes
H(s) = H(so) + / (1 + %) Feig, (105)
S0
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which is equivalent to Eq. (88) with F defined in Eq. (119). Combination of Egs. (99)-(101),

(103) and (105) yields the perturbative expansion of the equation for horizontal motion

d*z 1 71
I I e
a2 140 [R? 1(3)] !
1 [H(so) — Ey 1 8( :):) ﬁ,< :c)Feﬂ"
o~ 1+ =) F'd 1+ =)= <+, (106
1+5l ER - T BRI UTR) AT\ g) o o (106)
with FT defined in Eq. (117), and
1 E—F
:1_5 52_63 P f 6: 0‘ ].
T + + or 5 (107)

Note that due to the cancellation of the local interaction contributions in A and !,
and the fact that the effective forces are dominated by non-local interaction (See Sec. 3 and

Appendix E), apart from the initial canonical energy spread H(sq) — Fy, the local charge

interaction has negligible (oc v~2 or %) contributions to the first order optics. However,
one should note that the local charge interaction will still contribute to the second or higher
order optics, because in Eq. (107), E = H — ®° where ®!(s) is the retarded potential

dominated by the local charge interaction depending on the present charge distribution.

3. CANCELLATION EFFECTS ON A PLANE ORBIT

Based on the equations of motion in the previous section, here we demonstrate explicitly
the cancellation of the local interaction effects on the bunch horizontal dynamics. Gauge

invariance of the cancellation effect is also discussed.

3.1. Equation for the Horizontal Motion

The perturbative equation of motion was derived from the Hamiltonian in Sec. 2.6 with
s as the independent variable. Here a similar equation of motion can be obtained following
the Lagrangian analysis with ¢ as the independent variable. For a bunch with design energy

Ey = yomc? circulating on an orbit with design radius R(s), one has
E* =0, B* = Bye, (108)

where By is given in Eq. (98). The external force is then

B .
Fext — €<X % BeXt) — 6_0 (—Teex + :i:es). <109)

C C

19



For particles with energy E = yme? and radius r = R + z, where z is the radial offset from

the design orbit, we get from Eq. (43) (7 = 0)

(110)

d(vmi") - [(ymBsc  yompPyc 1
=7l - Fee
a ( r R )T

where 3, = 7’6’/ ¢, and F! is the horizontal component of the Lorentz force due to bunch

collective interaction. Eq. (110) can be further written as

il -4 E-=2)== 111
Yo C2dt b ( r R Ey (111)
with the driving term
AFE(t
G =20 e (112

where AF is the kinetic energy deviation from the design energy:
E(t) = y(t)yme*,  Ey=ymc®,  AE(t) = [y(t) — yolme’. (113)

Assuming terms o 75 % or 32 are negligible, Eq. (111) becomes

dl+0)z 1 T, 4 G
A S la+ D) =]~ = 114
cdt R (1+ R> Ey (114)

with ¢ in Eq. (107). The equation of horizontal motion, approximated to the first order of
d and z/R, can be obtained from Eq. (114):

d*x T G
_—~ 115
2z T R R, (115)

which shows that the horizontal oscillation around the equilibrium orbit is driven by the
combined effect of the kinetic energy deviation AE(¢) and the horizontal collective force
Flin Eq. (112).

We now take a closer look at the two driving terms in Eq. (112). Let us rewrite Eq. (54)
as

F;Ol — FCSCF + F;H, (116)

where F5Y is given in Eq. (61), and the effective radial force is defined as

éﬁ.ml d.Acol odeol HA ! d A
eff _ int T _ . . . T
= 0w cdt ¢ ( oz P oz ) “edt (117)

We next study the kinetic energy deviation AFE(t) in Eq. (112). From Eq. (60), we have for

Eext =0
dE d®c!
oA, Fcol — _ Feff 11
cdt B ¢ cdt R (118)
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wit,

aﬁcol aq)col aAcol
Feﬁ int _ ) . 1 1
v cot ( cot p cot ) (119)

Integrating Eq. (118) over time yields
t
B+ 0, = [E+ ey, + [ F(¥)edr (120)
to
which is equivalent to Eq. (105), or

AE = AE"™"(t,) + Feff( tedt — e (t) (121)

to

with AF in Eq. (113), and AE™"({,) the initial total (kinetic + potential) energy deviation

from the design energy
AE" (to) = H(to) — Eo = [7/(to)mc” + e (t9)] — yome®. (122)

Substituting Eqs. (116) and (121) into Eq. (112) yields

G =Go+ Gres+ Gy + FI (123)
with

AEtOt

G, = pRE ) (124)
r

@col Acol _ @col
Gres = FO5C —e—— = eﬁsi (125)
T
BQ @ BQ t aﬁco&
v = Fe cdt! == ntdt' 12
G r Jt (r) r J, Ot (126)

As in Sec. 2.6, one can expand Eq. (114) perturbatively and show that £ = H — e®*! (with
e®! dominated by the local interaction contributions) will affect the horizontal optics via

chromaticity or other higher order terms.

3.2. Retarded Potentials and Cancellation

In classical electrodynamics, only EM fields are observable quantities; thus one is free to
choose potentials in any gauge (as reviewed in Eqs. (A10)-(A11)). Here we use the retarded
potentials in the Lorentz gauge to analyze terms in Eqs. (123)-(126). It turns out that
with the retarded potentials, F°T and FT give the effective longitudinal and transverse

force studied earlier [5, 6]. At the same time, the retarded potentials efficiently (1) gather
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the effect of the near-neighbor generated fields on a particle’s kinetic energy change into

—eB20°! /r in Eq. (125), and (2) gather the contributions of the near-neighbor interaction

fields to the radial collective radiative force on a particle into eB,A°' /r in Eq. (125). We
will show that these two local interaction effects on the particle transverse dynamics are
nearly canceled; as a result, in Eq. (123), G, is basically negligible; therefore in addition to
G related to the initial canonical energy, the transverse dynamics is driven by G, and F°f
dominated by the non-local interaction due to the effective forces. The use of other gauges

will be discussed in Sec. 3.3.

3.2.1. Single Particle Liénard-Wiechert Potentials

In the Lorentz gauge, the Lorentz condition requires
A7
0, 0°AF = —J* and J,A" =0. (127)
c

The Liénard-Wiechert potentials generated from a source particle at (x, ') on a test particle
at (x,t) are given in Eq. (D1). The source particle velocity B at retarded time in Eq. (D1)

is projected on the Frenet-Serret bases at the retarded position

,Bl(t/) — ﬂ;/es/ + 5;/63:/ _*_ /Bé/ey/ (128)

and the test particle velocity at the present time is projected on the Frenet-Serret bases at

the present position
B(t) = Bses + Brer + Byey. (129)

The ultrarelativity implies that the source particle velocity at the retarded (or present) time

is ultrarelativistic in the retarded (or present) longitudinal direction:

1 2 , :
6;,26'-%/%1—27,2 —% ~1, v ?’<1, B, (130)
with 82 = 82 + 55, and
1 2
Bszﬂes%l—ﬁ—f:l, i<l B« (131)

with 83 = 52+ 55. Let A6 be the angle between e, at retarded position and e, for the test

particle at present time. Then
ey =cosAfe, +sinAfe,, ey =—sinAfe, +cosAbe,. (132)
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Consider a uniform motion for both the source and the test particle: 8 = 8’ = e, and

A@ = 0. The Liénard-Wiechert potentials in Eq. (D1) satisfy
AOs — 63®0 (133)

and

1
Fin = —e(@0 = - Ao) =~ lfm “n ﬁ)RLt' 134)

The relativistic cancellation of ®; and 3+ A, in Eq. (134) corresponds to the v~ behavior for
the transverse collective force on the test particle due to the relativistic cancellation between
E°! and B!, and the 72 behavior of the longitudinal collective force due to the relativistic
dilation of the longitudinal distance between particles in the test particle’s instantaneous
rest frame.

For a relativistic beam on a curved trajectory, Eqgs. (133) and (134) (for a straight path)
can only be satisfied approximately for near-neighbor (|Af| < 1) interaction, since locally
the test and the source particles are approximately in parallel motion. From Egs. (D1),
(128), (130) and (132), the Liénard-Wiechert potentials on the test particle obeys
', cos AG — (., sin Af

(1-8-n)R et
Combining Eq. (135) with p, = 8;F/c and Eq. (131) for a relativistic test particle, one has

AOs:AO'es:

~ . (135)

E—{_e@()

€
Ps + _AOS =~
C C

(136)

This implies that for local interactions described by Eq. (D1), eAq,/c is approximately the
momentum of e®q in the same manner as p, relates to E, and both the local interaction
Liénard-Wiechert potential energy and the test particle kinetic energy move at relativistic
speed. The total canonical energy tries to keep its inertial motion while the Frenet-Serret
frame rotates; thus, instead of the particle experiencing the usual centrifugal force due to
the inertia of its kinetic energy, here the particle experiences the generalized centrifugal force

due to its total canonical energy.

8.2.2.  Cenirifugal Space Charge Force and Cancellation

With the Liénard-Wiechert potentials satisfying Eqs. (135) and (136) for the interaction

between two nearby particles in an ultrarelativistically moving charged distribution, we now
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show that the retarded potentials for the interaction of each particle with the relativistic
bunch satisfies a similar relationship, since as shown in Appendix D, the retarded potentials
are closely related to the single particle Liénard-Wiechert potentials. We can then use
these relations for retarded potentials to estimate the centrifugal space charge force and
demonstrate the cancellation effect.

Consider the retarded potentials in Egs. (D10) and (D11). For convenience we define the

velocity field

J(x,1)
p(x,t)
For each retarded position vector x’', we find its Frenet-Serret coordinates s, ' and ¥/

u(x,t) = (137)

according to Eq. (35):

!

x' =ro(s') + 2'ep (s') + y'ey (s, (138)

with ey, e, and e, the Frenet-Serret bases at the retarded longitudinal position s’ . For
u(x,t) in Eq. (137), let us define B, at a retarded position, which is decomposed to the

Frenet-Serret components at s,

B (x' )= = Bis€s + Bipes + By ey (139)

The vector potential in Eq. (D11) is then written as

p(x', )8, (x',1)

Acol dX,. (140)
|x — x|
The ultrarelativistic condition for 3, (x',#) is
1 2 : :
Bus = By -es =1 — i “; ~1, 2«1, BL <1 (141)

with 82, = 8.2 + B.2,. Using Eqgs. (132), (139) and (140), we get

ux’

! o cos(AB) — Bl sin(AH)]d

Al = Al(x, 1) e, = / Pl 1) | ] X/, (142)
which can be further written as
A~ 0 A A — / P(Xllil)(j; As>dxl (143)
with ! given in Eq. (D10), and AAS! defined as
AA = /d ‘A, pX _X| (144)

24



Af 1(1 ,
for Ay ~ —2sin? <7> — Bl sin AG — 3 (W + Bﬁ) cos Af, (145)

u

where we used Eq. (141) and
1 — cos Af = 2sin*(A0/2). (146)

For near-neighbor (|Af| < 1) interaction, Eqgs. (145) yields

A< 1. (147)

In general, ! is dominated by the short range interaction when 1/|x — x’| > 1. However,
for AA in Eq. (144), when |Af| < 1, this short range singularity due to 1/|x — x| is
suppressed by |A;| < 1. Even though the long-range (JAf| ~ 1) interaction contributions
to AA and ®°°! in Eq. (143) are of the same magnitude, they are both negligible compared

to the short range interaction contributions. As a result, we always have
AL < @© or  AC ~ @l (148)

This equation, together with p, = 5,E/c for the test particle, proves Eq. (87). In the above
discussions, the retarded position of the source particle can be either ahead or behind the
test particle.

Due to the singular integrand of A in Eq. (143), after integration over a finite charge
distribution, F¢5“¥ in Eq. (61) often has logarithmic dependence over particles’ transverse
offset. The possible consequences of such divergent behavior on the tune spread and chro-
maticity in a storage ring were raised by Talman [1], and later was pointed out by Lee [2]
to be largely canceled by the potential energy effect for a coasting beam. Here we show the
general validity of this cancellation effect.

After combining the effect of F°! with the effect of AE(t) in Eq. (112), the horizontal
dynamics is found to be driven by the terms Gg, Gres, G, and F°T in Eq. (123). In particular,
the term G represents the combined effects of the centrifugal space charge force F©S¢F
in Eq. (116) with that of the potential energy e®<!(f) in AE(t) of Eq. (121). With the
potentials in Egs. (D10) and (143), and with 8, ~ 1 in Eq. (131), G, in Eq. (125) becomes

Glros ™ s (149)
T

Comparing G in Eq. (149) with F“5Y in Eq. (61), and using Eq. (148), one gets

|Glres| < |[FYF). (150)
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This result shows that the joint effects of the potential energy e®!(¢) and the centrifugal

FOSCY are almost canceled. The residual of cancellation, G, is negligibly

space charge force
small compared to FO5CF,

In Appendix E, it is shown that the effective terms FT in Eq. (117) and F*T in Eq. (119)
are dominated by non-local interaction contributions, and the residual of the cancellation,

G'res, is negligible compared to the other effective terms in Eq. (123).

3.3. Gauge Transformation

Let @' and A be the retarded potentials in Eqgs. (D10) and (D11), and consider the
gauge transformation

10A

(I),COI _ (I)COI . EE, A’col — Acol + vA (151)

For example, the gauge transformation from the Lorentz gauge to the Coulomb gauge (V -

A = 0) is achieved via [15]
A(x, 1) /dx / dAp(x',t — AR/c) + Ag (152)

with R = |x—x/|, Ag a constant, and p(x,t) the charge distribution function. The simplicity
of the scalar potential in the Coulomb gauge (compared to the retarded potential), i.e., the

instantaneous Coulomb potential,

(153)

x — x|
comes together with the more complicated form of the vector potential compared to the

retarded vector potential:

Ac(x,t) = Agr(x,t) + AA (154)

where Ag(x,t) is the retarded potential in Eq. (D11), and

R R/c ,
A(x,t) /dx —Rp(x/, t)—l—ﬁ/ drp(x',t —T1)|, (155)
with
~ R R
R=x-x', R=|R R=—=, t=t—=—. 156
X X 2 | |7 R’ c ( )
With the new potentials in Eq. (151), the interaction Lagrangian in Eq. (51) becomes
! ! dA.
Lt = —e(@ = B A = L5l + 220 (157)
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Similarly, relations between the effective forces, F in Eq. (119) and F£" in Eq. (117), in

the new gauge and old gauge can be found:

. éﬁfcol ed [OA
pleff — _Zint __ opeff T fPOR 158
v cot v cdt l Ot ] (158)
and
: Ny d At 05\
P = e, YL — LA _ por_ POt (159)
cdt T

where the following equality is used

d de, dA\
&[em-VA] = -VA—l—ex-V%,

(160)

with de,/dt = k$/R = B,/r. In the new gauge, using potentials in Eq. (151), the centrifugal

space charge force in Eq. (61) becomes

, O, A
[/OSCF _ [pCSCF | ef3s0 . (161)
r

The energy relation in the new gauge is obtained by integrating Eq. (118) and using
Eq. (158)
1d oA

‘ t
E+e® Y, = [E + @' / F (Y edt! — | =—— 162
[E+ed ], = [E +e® ]y, + o (t')c c dt ot to’ (162)

which is equivalent to Eq. (120) with @' defined in Eq. (151). This shows that the change
of & to & is actually compensated by the change of Ff to F T thus the resulting

kinetic energy change FE — Fj is gauge invariant. The gauge invariance of the total collective

radial force in Eq. (116) can be seen by using Eqs. (159) and (161)

Fleol = F/CSCF y plefl _ pcol (163)

FOSCF o ['OSCF g compensated by the change of Ff to F°f,

indicating that the change of
Due to the arbitrariness of A, in the new gauge the cancellation between effects of F'©SCF
and e® ' /r no longer holds, or, Eq. (148) is no longer valid for the new gauge. However,
this non-cancellation is compensated by the changes in the effective forces in the new gauge.

Note here that the names of the effective “forces” and the centrifugal space charge “force”
may be misleading, because unlike F°! and AF in Eq. (112) which are gauge invariant, these
“forces” are only different terms in the actual forces and thus they vary when the gauge is
changed. However, with the proper choice of gauge—such as the Lorentz gauge—these

effective “forces” can efficiently separate the local and long-range behavior of the collective

interaction.
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4. WHY THE NCELLATION EFFECT H BEEN NTROVERSIAL IS-
SUE

The canonical formulations with the Lorentz gauge in this paper provide us with the
following understanding (the potentials in the canonical momentum or energy here refer to

that due to collective interactions):

(1) Tt is the canonical momentum, rather than the kinetic momentum, which un-
dergoes the curvature effect due to the rotation of the Frenet bases along the

curved trajectory.

(2) For ultrarelativistic beams, the longitudinal canonical momentum represents the
motion of canonical energy at speed v, ~ ¢. Here the potential energy is domi-
nated by the local interaction contributions, and locally the interaction acts as

if the bunch moves on a straight path.

(3) Other than the curvature effect, the dynamics of the canonical momentum on a
curved trajectory is basically the same as that in a Cartesian frame. Especially,
locally the interaction of a test particle with its neighboring distribution is similar
to the collective interaction of a relativistic bunch on a straight path, where
the transverse collective force scales as v=2 due to the relativistic cancellation
between E®! and B! This relativistic cancellation, however, does not apply
to the long-range interaction where the bunch deviates from the local straight

path.

(4) Due to (1) and (2), the horizontal dynamics depends on the canonical energy
through the curvature effect, where the change of the canonical energy has neg-
ligible (oc v=2 or ?) dependence on the local interaction because locally the
bunch acts as if moving on a straight path. As in (3), this local interaction

property does not apply to the long-range interaction.

(5) As the result of (1)-(4), there are negligible local interaction contributions to the
changes of the two driving terms in Eq. (112) over time, or, the local interaction

contributions to the change of each of the two driving terms in Eq. (112) over
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time are canceled. Eq. (120) gives

AE(t) _ AE(to) _ _e[@COI(t) i Q)COI(to)] n l tFeﬂ(t')Cdtl, (164)

T T T Jto

and from Eqs. (61) and (116), one has
_ elB(APNE) — Bi(to) AS° (to)]

F2(t) — F°(to)
A

+ [F7(t) — F(to)]. (165)

Using Eqgs. (131) and (148) for both ¢ and #o, one gets from Eqgs. (164) and (165)

{AET@) +F£01(t)| . {AE;a(tO) —i—F;Ol(to)
~ % / CFT () edt! + [FET(E) — FE(1)]. (166)

This shows that the change of the driving terms together AE(t)/r + F(t) over
time depends only on the effective forces which are majorly contributed from

non-local interactions.

Since the centrifugal space charge force was first introduced in 1986 by Talman [1], its
effect on the transverse bunch dynamics and the cancellation of this effect with the effect
of the potential energy has been a long-standing controversial issue [2]-[9]. This is because
the potential energy change causes the change of the kinetic energy F, which further causes
the change of the usual centrifugal force xsp, = B2E/r in Eq. (43), while F5CY is the
logarithmically divergent part of the radial collective radiative force in e, - F°°' of Eq. (43).
The two terms are often considered as unrelated physical quantities; therefore in many papers
one effect is studied without considering the other. For example, the effect of potential
energy change on the transverse dynamics was studied for the case of the transverse offset
of particles in bends [4, 6], and for the converging beam (using instantaneous Coulomb
potential) before the last bend in a chicane [16]. Here our point is that this potential energy

FOSCF and

change induced kinetic energy change is strongly coupled with the change of
in fact, the local interaction contributions to the changes of the two physical quantities are
canceled, as illustrated in Eqs. (164)-(166). For example, in a bunch compression chicane, the
bunch initially carries with it certain kinetic and potential energy spread. There may be no
correlation between these two initial energy spreads. As the bunch dynamics evolves in the

chicane, in addition to the long range effective forces, the kinetic energy of a particle varies

due to its potential energy change, and meanwhile the horizontal collective radiative force
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(Talman’s force) on the particle also changes due to the change of the charge distribution.
Our result shows that the total change of AE/r + F°! has negligible dependence on the
local charge interaction at the present time.

In Ref. [7], counter-examples are raised to dispute the cancellation effect using instanta-
neous Coulomb potential. One should emphasize the consistency of using the same gauge
for the calculation of both the effective CSR “forces” and potentials. The cancellation ef-
fect was previously proved for various systems using retarded potentials [2, 5, 6], since the
Lorentz gauge turns out to be the most efficient gauge to separate the local interaction

effects (in FC5F and in e® /r) from the non-local interaction effects (in F° and in F°f)

and to display the cancellation of the local interaction effects on transverse dynamics. If
one uses potentials in the Coulomb gauge, such as the instantaneous Coulomb potential, one
should make sure that the effective “forces” are changed accordingly using Coulomb gauge
potentials (Sec. 3.3).

Another reason for the controversy may arise due to the use of Liénard-Wiechert fields,
which was the foundation for some analyses of the CSR interaction forces [7, 17]. Even
though the Liénard-Wiechert field approach is equivalent to the analysis in this paper (see
Appendix D), and the cancellation effect is implicitly carried out once the equations of
motion are integrated including both the radial and longitudinal collective forces, in this
approach the energy relation (Eq. (121)) with the scalar potential and the scalar potential
relation with FO5¢F (Eqs. (61) and (148)) are not obvious. As we notice, unlike in a Carte-
sian frame where the fields are gradients of potentials, in the Frenet-Serret frame the term
ef;, A% /r shows up in the radial collective force in Eq. (54)—without gradient or derivative
acting on the potential A%®. At the same time, due to radial acceleration, the particles
experience the centrifugal force vyps/r ~ E/r in Eq. (58), where F is the kinetic energy
in Eq. (121) obtained after the integration of Eq. (118) over time, which yielded e®<!/r—
again without gradient or derivative acting on the potential ®°!. Both e, A% /r and e®*! /7
terms are results of rotation of the Frenet-Serret bases; thus they are strongly correlated.
Consequently, analysis using potentials is more advantageous in explicitly revealing the rela-
tionship between potentials, i.e., the cancellation effect, compared to analysis based on the

Liénard-Wiechert fields.
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5. CONCLUSION

In this paper, we address the controversial issue of the cancellation effect in the dynamics

of an ultrarelativistic beam on a curved trajectory. Equations of motion using Frenet-Serret

coordinates in frames along the curvilinear orbit are obtained via both the Lagrangian and
the Hamiltonian approaches, which are shown to be equivalent to the direct projection of the
equations for the canonical momentum in the Cartesian frame to the Frenet-Serret frame.
It is illustrated through these analyses that instead of the usual centrifugal force due to
the inertia of a particle’s kinetic energy, the particle experiences the general centrifugal
force due to the inertia of the particle’s canonical energy. It turns out that the retarded
potentials (or the Liénard-Wiechert potentials) in the Lorentz gauge are the natural choice
to describe the cancellation hetween effects due to the local interaction contributions to the
change of the kinetic energy and to the change of the centrifugal space charge forces. After
the cancellation, the local interaction influences the particle dynamics only via the second
or higher order terms. Note that boundary condition is not included in this paper. In
general, fields under arbitrary boundary conditions can be considered as the superposition
of (1) fields generated by the bunch in free space and (2) fields satisfying the homogeneous
Maxwell equations with boundary conditions representing the reflection of the free space
fields by the boundary. The free space case is treated in this paper, and the cancellation of
local effects has been shown using retarded potentials. However, the reflection of free space
fields by the boundaries, which relates to non-local (via reflection) interactions, needs to be

carefully solved using specific boundary conditions for the fields.
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PPENDIX A: REVIEW OF CL ICAL THEORY ON CHARGED PARTICLE
DYNAMICS

Consider a test charged particle moving in an EM field. The covariance form of the action
integral is [10]
S = Sfree + Sint (A]-)

with the free particle action and Lagrangian

s dart
Sfree = / ’ ﬁfree dS, 'Cfree<$7 U) = —mc \/ guu(l‘)U”UV7 UM = % (AQ)

and the interaction action and Lagrangian

S9 e
S = / Linds  Lin(a,U) = = gu(2) A ()U". (A3)

In the above equations s is a parameter which is a monotonically increasing function of
the proper time 7 of the particle, g,,(x) is the metric tensor of spacetime in which the
particle motion is under concern, m is the charged particle’s rest mass and e the charge of
the charged particle, and the 4-potential A* = (®, A) includes potentials both due to the
particle’s interaction with external fields and due to the collective interaction in a charged
particle distribution. The least action principle requires the particle’s classical trajectory

x#(s) from s1 to s, to satisfy the Euler-Lagrangian equation:

o T 5 = 0, with £ = Leee + Lint. (Ad)

After applying Eqs. (A2) and (A3), and using

\ 9 UPUYds = cdr (A5)

with ¢ the speed of light, Eq. (A4) becomes

d?zn dz* dz¥ e _ dr”
rm — = —F" A
md7'2 +m wodr dr c Vdr (A6)
with the field tensor
0A 0A
N — LN — v H
Fl/ - g Fl“” F.U‘V - (9.7;“ (‘9.7/,1/ ? (A7)

and the Christoffel second symbol (or connection)

Fn/w — gn)\ (ag)\# + ag)\u . ag#u) ‘ (A8)

oz ozt oz
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The EM theory is invariant with gauge transformation
Al = AP 4 9N (A9)

for an arbitrary scalar function A(z). This can be seen from the interaction action in

Eq. (A3). After the gauge transformation in Eq. (A9), the new interaction action becomes

Si,nt = _S LTZ guu(-r)[Au(fL‘) + O“A]dx”
= = [ @) 4 (@) da” = A1) = Also)] (A10)

where A(s) = Alz(s)]. This shows that the gauge transformation does not change the path

dependence of action from s; to sg; therefore the classical trajectory which minimizes the
action will remain the same. The gauge invariance can be also seen from the field tensor

invariance under the gauge transformation in Eq. (A9)

_ o4, 04, _

!

—= All
N, L ) ( )

ns

which leads to the invariance of classical trajectory of the charged particle determined by

Eq. (A6).

APPENDIX B: RELATION BETWEEN V (OR 5t) ACTING ON Ljy AND Ly

In Sec. 2.1, the dynamics of the charged particle distribution is analyzed in a Cartesian
frame, with basis vector e; (i = 1,2,3), and the interaction Lagrangian L, in terms of

vector components in the Cartesian frame is (Eq. (5))
Ly =—e(®—B-A)=—e(P — Z&Ai). (B1)

On the other hand, in Sec. 2.2-2.5, the dynamics is analyzed using coordinates in the Frenet-
Serret frame associated with the curvilinear reference orbit, with basis vector ey (A = s, z, 2},
and the interaction Lagrangian L;,; in terms of vector components in the Frenet-Serret frame
is (Eq. (51))

Ly =—e(®—B-A)=—e(® - BA). (B2)

)
The two sets of bases satisfy the orthogonal condition

€, -e; = 5ij7 ey - ey = Oy, (Bg)
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and they are related by

e, = Z(ei - €y) €. (B4)

i

Combining Egs. (B3) and (B4), we get

D (ei-ex) (e -ex) = o (B5)

i

The components 3; and A; in Eq. (B1) are related to 3, and A, in Eq. (B2) by

Bi=> Balei-en), Ai=> Ay(e -ey). (B6)

Af

From Eq. (B5), we have for L;, in Eq. (B1) and L;,; in Eq. (B2)
Lint = Eint- (B7)
Next, using Eqs. (B5) and (B6), we have

Zﬁz’VAi = ZZBA(ei'eA)VZAX(ei ey)
= 2}\: 5)\VA)\ - Zﬁ)\Ax Z(ez . e,\)(ei . Ve)\/). (Bg)

AN i
Since the Frenet-Serret bases are only functions of s as in Eq. (38), Eq. (B8) gives for

transverse Frenet-Serret bases e, (n = z,y)

(e V)&= 3 Biley - VA) = 0,0 — 3 (0, 4,) (BY)

A

or, with the definition of V in Egs. (9) and (52), we have

~ éﬁin A aAﬁin
€ vLint — 9z t: €y - vLint — ay : . <B10)

For a circular orbit, one can use Eq. (B8) to show that the gradient in the longitudinal

direction obeys X
o aEint eﬁxAs B BsAm

El y Lin - - B11
€ Vil rof r (BL1)
Due to 9, e, = 0, with 9, defined in Eqgs. (9) and (52), one can also show
aALint aAEint
= . B12
ot ot (B12)
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PPENDIX C: HAMILTONIAN DERIVED FROM THE KLEIN-GORDON
EQUATION

In Sec. 2.6, the Hamiltonian ‘H conjugate to s is derived from the Lagrangian. Here we
show that it can also be derived from the Klein-Gordon equation in relativistic quantum
mechanics. The relativistic energy-momentum relation for a free particle of mass m and
4-momentum P* is

PP, = m?c’. (C1)
Using the minimal coupling principle for the interaction of the particle with EM fields
e
Pt — P — —AF (C2)
C
and the operator representation of the canonical momentum (for g,, in Eq. (1))
. 0
P* — ih—, (C3)
Oz,
one gets the Klein-Gordon equation for the wave function ¥(s, x,y,t) for the Frenet-Serret
coordinates with curvature & (torsion 7 = 0):

[ Y ) L

C C

where Ay = A - e, for A = (s,z,2), or

o e\ 0 e 2 0 e 2 0 e ?
h————-® ] — | —th——-A,] —|—thm——-4,] —|—-th—————— -4 G
[(th()t ¢ ) ( Zh@x ¢ I) ( Zhay c y) ( Zh(l + kx)ds ¢ 5)
—(me)*¥ = 0. (Cb)
Rearranging the operators gives
.0 e 17
de \ 0 e 2 0 e 2
. 2 4 U C | Y € I T A . 2 9 _
(1+ kx) [(zhcath)) ( max cAm> ( zhay CAy> m°c?| ¥ = 0. (C6)
Defining H = ihd/0s, we get from Eq. (C6)
o 2 2 2 1/2
H=—-(1+ /ix)% — (1 + kx) [(H e(I)) — (Pm — EAx> — (Py — EAy> — (mc)Q] )
c c c c
(C7)

which agrees with Eq. (92) for 7 = 0.
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APPENDIX D: LIENARD-WIECHERT POTENTIALS AND FIELDS

Let us consider the collective interaction of a charged particle distribution around a
curvilinear reference orbit. The Liénard-Wiechert potentials generated from a source particle

at (x/,t') on a test particle at (x, 1) is

e e
) y=|—— A y=|—7+—— D1
o) = [, 0= [, .
where the subscript “ret” refers to the retarded time t', and
R R
= — ! = = — / = _ . D2
R=x-x'y, R=|R|, n L t'=t . (D2)

Using Eq. (16), the Liénard-Wiechert fields on the test particle are obtained from the po-
tentials in Eq. (D1)

n— 3 LtJrelnX(n_ﬂ)XB]ret (D3)

Eo(x,t;8) = e l’Y?(l—B‘n)gR? c (1—8-n)3R
BO(Xv t; S) - [n X EO]ret- (D4)

Using the single particle Liénard-Wiechert potential (®g, Ag) in Eq. (D1) and the Liénard-
Wiechert fields Ey and By in Eq. (D4) as the Green’s functions, we can find the potentials
and fields on a particle due to its interaction with the whole charge distribution. Let a
particle be labeled by its initial offset s from the bunch centroid, and let n(s) be the bunch
initial distribution. The trajectory of a particle labeled s is x¢(s,t), and the velocity is
vo(s,t). The potentials on the test particle at (x,t) due to its interaction with the whole

charge distribution is then

@w:/%@¢gm@$g Nﬂ:/m@m@m@ﬁ, (D5)
and the total EM fields on the particle is

B = [ Bo(x,t:5)n(s)ds’, B = [ Bo(x,t;s)n(s))ds, (D6)

where (®g, Ap) in Eq. (D5) and Ej and By in Eq. (D4) are evaluated at retarded time
t'(x, t;8') satisfying
t'=1t—|x'o(s,t) — x|/c. (D7)

The charge distribution p(x,t) and the current density J(x,t) are related to n(s) by
M&w:e/m@ax—m@n»@g uxw:e/wwjm@w@—xdawmy (D8)
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With the change of variable from s’ to x’
x' =x0(8,t — |x — x| /c), (D9)

the potentials in Eq. (D5) becomes the retarded potentials

p(x,t)
Pl (x, t) = d D10
o) = [ 25T, (D10)
and
Al(x D11
|X _X| (D11)
where t' is the retarded time
t'(x,t) =1t - |x' —x]|/c. (D12)

Therefore the retarded potentials in Eqs. (D10) and (D11) are equivalent to the potentials
in Eq. (D5) with the Liénard-Wiechert potentials in Eq. (D1) as the Green’s function.

The equivalence of the Liénard-Wiechert field approach and the analyses in this paper
lies in Egs. (54) and (118), or

~

0
(Ecol +v X Bcol) ‘e, = _e_(q)col . ;6 . Acol) o

e dAcol e5514c01
v T + s

D13

oz c dt ro (D13)
ddeo! é

. Ecol —- _ -~ @COI . . Acol ) D14

v T e (0% - 5 A (D14)

Substituting the Liénard-Wiechert fields in Eqs. (D3) and (D4) into the left-hand sides
of Egs. (D13) and (D14) gives the results in Ref. [7] and [17]. On the other hand, if
one substitutes the Liénard-Wiechert potentials in Eq. (D1) into the right-hand sides of
Egs. (D13) and (D14), one gets the cancellation effect demonstrated in this paper (the
relation of Liénard-Wiechert field and potentials in Eq. (D14) was discussed in Ref. [19]).

APPENDIX E: EFFECTIVE TERMS ON A CIRCULAR ORBIT

Let us start from the interaction Lagrangian for collective interactions

ﬁcol — e(q)col _,8 Acol /p X tl> /3 J(X t>d ! (El)

int |X _ X/l
with ¢ dependence of the integrand hidden in the retarded time ¢’ given in Eq. (D12). We

now write £ into two parts,

ﬁcol — [ﬁcol] [ﬁcol] (EQ)

int int int
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for

co N(O)p(X’, t,)
L’mtl /H X, ;') MO (x,t;x') = —6ﬁ, (E3)
co N(l)p(X’, t,)
L’mtl /H X, ;') W (x,t;x) = —6W, (E4)
with
Af
NO® = (1 - cos Af) = 2sin® 5 (E5)

and using Eqgs. (129)-(132) and (139),

NW = (cosAG—B-8)

1 1 1 ! ! ! : !
~ § (; ’}/u + UJJ 25&051”0’) COS AH — (Bm/gus/ — /Bsﬁum/) Sin AH — Byﬁuy/ (EG)

For the bunch self-interaction on a straight path (ey-e; = 0 or A = 0), one has for Eq. (E3)
O (x,t;x") =0, (ET)

and using Eq. (E6)

p(x', t')

11 1
1 . ~ _ JR— + - /6 ﬁ
11 )(Xv 1 X,) - (,}/2 ,Y ui’ 2/695/6;95’ 2 y :»y’) |X' - X|7

2 u
which gives a negligibly small effect of local space charge interaction for high energy beams.

(E8)

For near-neighbor interaction on a curvilinear orbit, when z = 2’ and y = ¢, and when
s — s or |Af] — 0, IO (x, ;x") and TIM(x,¢;x’) in Eqs. (E3) and (E4) becomes
AG?p(x' 1) URG

2|x" — x|

O (x, t;x') ~ — 0 (E9)

and

p(x', ")

X' — x|

1/(1 1
H(l) (X, t, Xl) |Aﬂ;>0 - (¥ —+ 7,2 + BL + UJJ QBm/B;m/ - 26@/6&3}’) (E]_O)

2
Here Eq. (E9) shows that the near-neighbor interaction does not contribute to [ﬁf&l]

Eq. (E3), whereas due to the non-perfect relativistic longitudinal flow of the bunch, the

near-neighbor interaction at |A#| — 0 has a small (oc v and 8%) contribution to [Efr?tl] ,

similar to the straight path case discussed in Eq. (E8).

Our discussion of the derivatives of ££% will focus only on the case of a circular orbit. For

a test particle in a bunch on a circular orbit (k = constant), £{% in Eq. (E1) is contributed
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from interactions of the test particle with source charge distributions both on the circle

(Smin < 8 < smax) and outside the circle:

Efr(l)tl = [ﬁlcr(l)tl]cwcle + [ﬁggtl]s%smm [Efr?tl]s ">smax - (Ell)

We will only study the first term in Eq. (E11), which encompasses the contribution of the
near-neighbor interaction to £ For this term, both the observation and the retarded

int*

position are around the circular orbit,

x=(R+z)e, +ye,, x =(R+z)ey+yey (E12)

where the bases are given by Eq. (46) for s = Rf and s’ = R’. One then has

[ﬁCOl]arcle — [ﬁcol](o) [ﬁcol](l) (El?))

int, int, mr(‘]e int lcircles

where by denoting As' = s’ — s and

Smax—S§ 0 ! 00
/ dx’' :/ dAs'/ (1+ %)dm"/ dz', (E14)
circle Smin—$ —00 —00
we have
Ll t) = [ a0 185 y), (©15)
L5 Dl 1) = [ a0 1 A 5 (©16)

Here 11 and IIY) are given by Eqs. (E3) and (E4), in which p(x',#') automatically goes to
zero when 2’ and 3’ get outside of the distribution, and for A§ = —As'/R

' AW
X' — x| = \l (1 + %) (1 + %) <2Rsin 7) + (' — 22+ (v — y)% (E17)
Let us rewrite the function p and the velocity field §] in Eqs. (E3) and (E4) as

p(x' ) = o[s' — s.(t"), 2,y , 1] (E18)

Blv(x ) = Bluls —sc(t), 2y ] (E19)

with the subscript X' = (s', 2, 4/'), and s.(t') the longitudinal position of the bunch centroid

at retarded time #'. The derivatives of p and 5! will be useful for the following discussions:

U,

dp
cot

89

/BSC Cat/7

(E20)
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dp Q do \ —0lx' — x|
ox ( Bsc c@t’ ) ox ’ (E21)

oo aﬁ;
cot cOot
= (BsBus s + BB ) coS A + (= B3804 + BaByg ) SINAO + B, 5,0, (E22)

; 05;» _ 05;» 05&»
Bu)\’t cd _Bsc ot 3 (E23)
LN o
or ox

= (6561:3’,30 + 5965;30’ ) cos Ab + (_556;95’,95 + 59661:3’ ) sin Af + 5?161“/ ) (E24)

/6, — aﬁzlu\' _ /8 aﬁzlu\' aBzIL/\’ _alxl B X|
T T Oy % 9! cot! ox

where $. = ds.(t')/dt' is the longitudinal velocity of the bunch centroid at retarded time for

(E25)

an ultrarelativistic bunch, and s, = §./¢ ~ 1.

E.1. L£:%/cdt in G,

int

The near-neighbor interaction contribution to 9L/t in G, of Eq. (126) can be studied

int

by analyzing

(1)
dee! oL focs
m 1 1 E26
l Cat ]c1rcle [ Cat circle i L Cat cm:le ( )
where by using Egs. (E15)-(E16),
(D
aﬁcotl 0 8£C°1 1
in _ a0 [ ZEm| dx'T1{) E27
[Cat ]Clrcle circle x b c@t 1 cirele circle X5 ( )
with
dp
0) N©O L
(o _ oY ot
I, = o = ¢ e —Cx| ) (E28)
ON) 1 Op
1) p+ N
1 _ o ot ot
I, = el ¢ —— coL (E29)

Here the terms dp/cdt, ON'Y /cot and 8f.,,/cOt can be found in Egs. (E20), (E22) and
(E23). Let ¢4 be the characteristic width in the bunch (such as the width of the micro-
structure in a bunch). Assuming the characteristic time for bunch shape variation is longer

than ¢;/c, then the two terms in Eq. (E20) satisfy

0
< -
HBS’

(E30)
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with || f(x)]] represents the amplitude of the function f(x). One further assumes that the
bunch centroid moving with the design longitudinal velocity 5,. >~ B =~ 1, and the longitu-

dinal distance of a particle with the bunch centroid being 2 = s — F,oct, therefore

=5 = s.(t') = ¢ — Byt = 2+ As' + Bo|x — x| (E31)

5 0
Due to N ~ A#?/2 <« 1 at |Af| < 1, significant contribution to [acggg/cat](,>l in
Circle
Eq. (E27) only comes from non-local interaction |As’| > o, when we have in II{ the
approximation |x' — x| ~ |As'|. Let A(2',%') be the normalized bunch longitudinal density

distribution for As’ > o
/ d:):'/ dy'o(s' — s(t), 2’y , 1) = NeX(Z',t — |AS'|/c), (E32)

then for (s — smin)/R > (¢,/R)Y? and vo(c,/R)'/? > 1, we find from Egs. (E27), (E30)-(E32)

A col A col (0)
[F:H]Circle = - laﬁlnt] = - [aﬁlnt]
circle

cot cot circle
2 z(s 2 1/3
with ’ 3
Ax(s) = % (E34)

The contributions to the effective longitudinal force from s’ > s are negligible compared to
those from s’ < s in Eq. (E33). Note that F°T in Eq. (E33) reduces to the steady-state
longitudinal CSR force [12, 18] when Az(s) > o, (0, is the rms bunch length) and when
the longitudinal distribution is independent of time A(z,t) = Ao(2).

E.2. 9L8%/0z in G,

int

The near-neighbor interaction in 9L /dzof Eq. (117) for a test particle on a circular

orbit is studied by

; 2 el 1(0) 2 meot (D)
oLl oL oL
nt — int + int , (E35)
(9:[: circle 830 circle 830 circle
where by using Egs. (E15)-(E16),
A (0) A (1)
oL oLl
int — dX, H;O)a int — dX’ 1—[3(L,1)7 (E36)
0z cirele circle oz cirele circle
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wit,

one® NO Top  9x' —x|/0x
o — _ g — x|/or E
‘ oz |x — X| lax |x! — x| ] ’ (E37)
N
o) P NO Tap 9| —x|/0x
s = — _e_ Oz _ A il Uiy I E
‘ ox 6|X' — x| |x' — x| |0z |x! — x| (E38)
Using Egs. (E21) and (E30), and S, ~ 1, Eq. (E37) becomes
NO Top p olx' — x|
Y ~ — £ . E
‘ €|x’ —x||0s |x' —x] Oz (E39)

As in Appendix E.1, due to N ~ A#?/2 < 1 at |Af| < 1, a significant contribution to

[ Lol cat] , only comes from non-local interaction |As’| > o, when we have in ITI{¥) the
approxunamon |x' — x| ~ |A¢'|. Thus
dp p p H
2~ |E ~ ||— E40
‘ Js ‘ Ss > |x — x| As (F40)

In addition, for a thin bunch case when o,/0, /R < oy,

Sln& _rTor
2R| sinA@/2|

0lx" — x|

" (E41)

sin —

AH
2

With the above approximations and Eqgs. (131) and (141) for a relativistic flow, as well as
(5 — Smin)/R > (¢s/R)'? and 7o(s,/R)"/? > 1, we have

col col
Feff o a£1nt aﬁmt
[ T ]circle —
circle circle

or ire ox
INe?2 [Az(s) 24R2AZ)1/3
2 dAzg)\ z— Azt — (ARA) (E42)
R Jo 0z c

where A(z,t) and Az(s) are given in Eqgs. (E32) and (E34) respectively. For the longitudinal
distribution independent of time A(z,t) = A\o(z), Eq. (E42) is reduced to

2Ne?

5 eircte = [Ao(z — Az(s)) — Ao(2)]; (E43)

and for Az(s) > oy, one gets the steady-state solution [5]

2Ne*X\(z)

Feff:_
’ R

(E44)

It can be shown that contributions to the effective radial force from s’ > s are negligible

compared to those from s’ < s in Eq. (E42).
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E.3. Gres

Here we estimate Gyes in Eq. (125) on a circular orbit. With Eqgs. (131) and (141),
A(S:ol o @col e

o ATV e NOD)

E45
R R Jeirce |X' — X| ’ ( )

with A© in Eq. (E5). Due to N® < 1 for |[Af| < 1, the local interaction has negligible

contribution to G, and one finds

[Gres]circle =~ (E46)

Cc

—2Ne? /Az(s) dAz
0

RGBRET —(Az)l/?’/\ (z—Az,t_

(24R*Az)! 3)

where A(z,t) and Az(s) are given in Egs. (E32) and (E34) respectively. Eq. (E46) reduces
to the steady state results [6] when A(z,t) = Ao(2z) and Az(s) > o,. It can be shown that
contributions to G from s’ > s are negligible compared to those from s’ < s in Eq. (E46).

The ratio of integrands of Gies, FT and F°T in Eqs. (E46), (E42) and (E33) is

T

A/ RN ox 7 RNY?ON
— | — P — —. B4
R <Az> 0z <Az> 0z ( 7)

For |Az/R| ~ ¢;/R < 1 and ||0A\/0z|| ~ A/ss, we have the ratio of the amplitudes

1Gresll < 1] < NI (F48)

E.4. dA®!/dt in G,

Using the Liénard-Wiechert potentials in Eq. (D1) from a source particle on a test particle,

' sin AQ + 51, cos A
(1-8-n)R ’

ret

AOx = AO c€p = [ (E49)

and using Eq. (D5), the total potential A% on the test particle due to its interaction with

the whole charge distribution is
Al = / Aos(x, £;8")n(s)ds'. (E50)

For near-neighbor interaction in an ultrarelativistic bunch satisfying Eq. (141), when both
the test and source particles are on a straight path (A@ = 0) or on a circular orbit (|A0| — 0),
Egs. (E50) and (135) yield

Apz(x,1) < Ags(x, 1), (E51)
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therefore the near-neighbor interactions have negligible contributions to A in Eq. (E50)
compared to their contributions to A, This can also be seen by comparing A! in Eq. (143)

with the retarded potential equivalent to Eq. (E50)

Acol — Acol .e, = /dxlp(xl, tl> (/B’IILS’ S|1n AH —;_ B’Il,bﬁ/ COS AH)
¢ * x —x/

~ /d /P, #) sin A9 (E52)

IX—X’I

with the use of Eq. (141).

We now look at the transient behavior of A°! on a test particle. Let us assume the test
particle is ahead of the source particle. As the test particle enters from a straight path to a
circular orbit, the potential Ag,(x,?) on the test particle generated from the source particle
on the straight path will start to change due to the change of e, (while ey remains parallel
to the straight path), causing a sudden change of dAS!/dt. As a result, even though the
near-neighbor interaction contribution to A% is negligible compared that to A% in F<5¢Y,
the non-local interaction from the trailing particles will have non-negligible contributions to
dA%/dt in the transient regime. Transient behavior due to interactions of a test particle
with both trailing and preceding source particles for entering or exiting a circular orbit can
be considered in the same manner. It should be noted that dA%/cdt shows up in F°T of
Eq. (117), and thus in the equation of motion Eq. (114), as the total time derivative. As a
result, when one integrates the equation of motion over time, the evolution of the transverse

phase space distribution will only depend on AL
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