
Tracking Structures

Etienne Forest
KEK

Tsukuba, Japan
Talk at Jefferson Laboratory

6/13/2003

The Secret of Modern Propaganda
• Its task is the highest creative art of putting complicated events and facts in

a way simple enough to be understood by the man on the street.
• If propaganda is to succeed, it must know what it wants. It must keep a

clear and firm goal in mind, and seek the appropriate means and methods to
reach that goal.

• Propaganda is a means to an end. Its purpose is to lead the people to an
understanding that will allow them to willingly and without internal
resistance devote themselves to the tasks and goals of a superior leadership.

• Good propaganda does not need to lie, indeed it may not lie. It has no
reason to fear the truth. It is a mistake to believe that people cannot take the
truth. They can. It is only a matter of presenting the truth to people in a way
that they will be able to understand. A propaganda that lies proves that it
has a bad cause. It cannot be successful in the long run. A good propaganda
will always come along that serves a good cause. But propaganda is still
necessary if a good cause is to succeed. A good idea does not win simply
because it is good. It must be presented properly if it is to win.

What is the complex idea here?

Write a tracking code primarily for single particle dynamics which will handle
all possible “topologies” : common beamlines, pretzels, recirculators, dog-
bones and beyond– in a way which mimics nature so that objects in real life
have a parallel existence in the silicon world.

This code should admit in theory arbitrarily complex magnets and still
computes uncompromisingly all the various quantities which interests us:
radiation “integrals”, lattice functions and their nonlinear equivalents.
Within its model(s) for the various magnets, it must be capable of
computing ANYTHING correctly.

Question: Can this set of goals be reduced into a simple idea which can guide us or are we
condemned to keep this huge set of requirements in our heads at all time?

Answer: Thanks to existence of polymorphic types (Taylor-real*8), normal form theory
and the existence of pointers in modern languages we know with absolute certainty that
the above requirements can be reduced to a single simple idea from which everything else
follows.

The failure to uncover this idea or, as in the case of the CLASSIC/MAD9 gang, to
appreciate its importance, leads inexorably to failure as I predicted in 1995 and was later
confirmed.
So what is that idea?

The Factory Magnet Object
• Attached to the physical objects are two

single particle propagators: forward and
backward.

• The magnet and its propagators cannot
depend on the beam line in which they
are ultimately placed.

• Our beam line structure (layout) must
permit the full Euclidean group acting
on the local propagators: translations
and rotations.

Conclusion: the alignment properties of the
propagators immersed in the beam line
structure (layout) will be inherited from
the layout. And, conversely, in the
single dynamics case, the layout will
derive its propagators from the factory
magnet object.

Simple Principles
• The two magnet propagators are attached to

the magnet and depend on internal details
irrelevant to our code. We access these
details through physical knobs.

• The beam line structure must accommodate
these magnets and permit misalignments
which cannot depend on the internal details
of the propagators.

At no point in time can we compromise on the above two
points. These are sine qua non conditions. We must be
unchangeable in our principle, hard as steel in our
organization but supple and adaptable in our tactics and
methods to achieve these goals.

Remarkable results:

If we insist during the development of the code to respect fanatically
the two principles outline above, then thanks to the modern tools at
our disposal since the early 1990s, this code will satisfy all the
complex prerequisites listed before.

In particular, the separation of the beam line structure from the
factory magnet object will impose a novel idea on us: a beam line is
NOT a collection of magnet propagators. The concept that a beam
line is a sequential list of magnet propagators has been known to be
wrong since the early 90s and yet the misguided CLASSIC gang
misprogrammed MAD9/CLASSIC when they ought to have known
better. It is mathematically and physically wrong.

The beam line is actually a collection of discrete “s” variables:
on the computer it is represented as a link list which contains
Euclidean patches/misalignments and a pointer to the actual
factory magnet propagators.

This will permit the correct simulation of recirculators, pretzel
and other oddities. It will follow that, in a code equipped with
the correct structures, insuring that magnets in common beam
lines behave as one and the same magnet will be automatic
rather than something imposed by hacker-style programming.
In reality, in the silicon world, they will be the same object as
in the real world.

Subsidiary remarkable results:

Although our set of simple principles does not address the issue of
algorithms (computation of lattice functions, etc…), in fact, this issue is
automatically handled. Or to be more precise, its handling is not
relevant to code design. How can that be? Three words:

1) Automatic Differentiation (Berz’s DA for example)
2) Operator Overloading/Polymorphism (Bengtsson’s original idea, re-

implemented in F95 by myself)
3) Normal Form theory on Taylor series maps and moments

These things, in modern languages, such as C++ in 1990, and now in F95 as
well, insure that WE NEED NOT to worry about “algorithms” for our
favorite objects (β,α,γ, and the rest)

And yet the MAD9/CLASSIC effort worried about these things constantly,
putting an emphasis on field representations and algorithms for the
computations of lattice functions. In the end, CLASSIC is incapable of
doing any recirculators! A totally predictable failure that prompted
Bengtsson and myself to quit the Titanic before it left port!

Examples of Structures

Two Rings or One double Ring

Switching beam lines

Layout Structure and Fibre

Start

1

2

4

3

End

Start_Ground

Last
Lastpos=3

Legend
Special nodes of type fibre

Actual nodes of type fibre representing "magnet" number ii

Pointer to next node
Pointer to previous node

Null Pointer at the start and the end of the list

Linked cut in tracking a ring (S or one-sphere topology)1

Linked replacing 1in the case of S

End_Ground

ELEMENT

CHART

MAGNET _CHART

MAGNET_N

FIBRE: Element in a Lattice
ELEMENT: General Abstract
Element on the "bench"

MAGNET_CHART

 FORWARD PROPAGAT OR

MAGNET_I: Single particle
Propagator for Magnet I

MAGNET _1

…

MAGNET_I

…

BACKWARDS PROPAGAT OR

POINT ER:: DIR
POINT ER:: P0C,BET A0

PATCH

Inheritance

Patch

α
d

h

Magnet 1

Magnet 2

Magnet 3

A

B

C

Frames

ALPHA

ENT(1,3)

ENT(3,3)

L

EXI(3,3)

EXI(1,3)

A(3)

B(3)

Ο(3)

MID(3,3)

MID(1,3)

Misaligned Element

D_IN

D_OUT

Sh_DEF_KIND.f90

Si_DEF_ELEMENT

FPPFull Polymorphic Package

Se_FRAMESd_EUCLIDEAN

MAIN
PROGRAM

FPP

Sl_FAMILY

Sm_TRACKING

Fitting

User Routines

Lattice
function

Window
routines

Sf_STATUS

Sb_EXTEND_POLY

PTC STRUCTURE

Sj_ELEMENTS

Sn_MAD_LIKE

Fitted B-Field
Element

Sg_0_fitted.f90

Sg_1_TEMPLATE_KIND.f90
Sg_2_TEMPLATE_KIND.f90

Sk_LINK_LIST

Sc_1_POL_TEMPLATE
Sc_2_POL_TEMPLATE

Sa_ROTATION_MIS

So_FITTING

Polymorphic Tracking Code

tpsalie_analysis.f90

newlielib.f90Lielib.f90

tpsalie.90

Tpsa.f90

definition.f90

dabnew.f90
newda.f90Berz's TPSA Package:

polynomials are represented
by integer pointers.

New TPSA Package

Analysis Routines

Both TPSA Taylor series are merged here.
A new type called taylor combines taylorlow
and the integer pointer of Berz's TPSA. The
complex taylor type and the polymorphic
types are also defined there.

define_newda.f90 Defines a new
type called taylorlow

Basic Operations of the TPSA packages
 involving Taylor series are overloaded here,
for example +,-,/, etc... as well as other things such
as derivatives. Here we really overload dab.f and
newda.f90

Here operations on maps are overloaded. A new type
damap is introduced (as well as other useful types).
Map operations are overloaded, for example,
concatenation and inverse.

Finally, at the top, this package overloads various
useful parameterizations of a map: Dragt-Finn,
inverse Dragt-Finn, vector fields, vector fields
in resonance basis, and, of course, normal forms.

Code that overloads the Taylor packages
(including that of Berz) as well as the
analysis routines of Lielib

real_polymorph.f90

complex_taylor.90
Allows complex TPSA

 Polymorphic types: Can change at run
time

Complex_polymorph.f90

Complex type is overloaded. The complex type
is made of 2 taylors: T YPE complextaylor

type (taylor) r
type (taylor) i
END T YPE complextaylor

File_handler

Scratch_size

b_da_arrays_all.f90 OR b_da_arrays_fix.f90

a_scratch_size.f90
New Dynamical allocation of Berz's
Package

Fully Polymorphic Package

Algorithms????

∆φ

Ai
-1

Ai+1

R(∆φi i+1)M i i+1

M i i+1=Ai+1 °R(∆φ i i+1) °Ai
-1

A-1= 3/4 1/4
-1 3

y=x+norm%a_t

i=1
p=>psr%start

write(16,*) i,p%mag%name, (y(1).sub.'10')**2+(y(1).sub.'01')**2
write(6,*) i,p%mag%name, (y(1).sub.'10')**2+(y(1).sub.'01')**2

do i=1,psr%n
call TRACK(PSR,y,i,i+1,DEFAULT)

p=>psr%start
write(16,*) i+1,p%mag%name,(y(1).sub.'10')**2+(y(1).sub.'01')**2

enddo

Algorithms are nowhere to be found in PTC!

