Innovative Magnet Development and Application at the National Synchrotron Light Source

Eric B. Blum

presented at

Jefferson Lab

February 20, 2002

Acknowledgements

- George Rakowsky
- Don Lynch
- Sam Krinsky
- Klaus Halbach

Topics

- Intro to NSLS
- Permanent Magnet Assisted Sextupole
- Superconducting Wiggler
- Hybrid In-Vacuum Undulator

NSLS Facility

Linac

- 120 MeV
- 3 2856 MHz Sections:
 - 1-5 m Varian
 - 2-3 m SLAC
- 2856 MHz prebuncher
- Triode Electron Gun:
 - 1.5 A
 - 4.5 nsec pulse
 - 7 pulses, 92 nS apart

Booster

- 120-750 MeV
- 28.35 m Circumference
- 4 Superperiods
 - 2 Combined Function Dipoles (1.2 T)
 - 2 Quadrupoles
 - 1 Sextupole
- 1.91 m Bending Radius
- Nominal Tunes:

$$v_{x} = 2.42$$

$$v_{y} = 1.37$$

- 52.886 MHz RF Frequency
- 15 mA Beam Current
- 0.87 Sec cycle

VUV Storage Ring

Operating Energy	0.808 GeV
Injection Energy	0.750 GeV
Peak Current	1.0 amp
Circumference	51.0 meters
Number of Beam Ports	on Dipoles 18
Number of Insertion De	vices 2
Max. Length of I.D.	~ 2.25 meters
Dipole Field	1.41 Tesla
Lifetime @ 200 mA	590 min
Lattice Structure(Chase Separated Function, Co.	man-Green) Quad Doublets
Number of Superperiod	ds 4
Magnet Complement	
8 Bending (1.5 meters	/ / / / */ / / / / / / / / /
 24 Quadrupole (0.3 mg) 	eters each)
 12 Sextupole (0.2 met 	ers each)

Nom. Tunes (x, y)	3.14, 1.26
RF Frequency	52.886 MHz
Radiated Power	20.4 kW/A
RF Peak Voltage	80 KV
Design RF Power	50 KW
4th Harmonic RF Syst	em
Synchrotron Tune	0.0018
Bunch Length (2σ)	9.7 cm
(36 cm with 4th harm	onic system)
RF Harmonic	9
Typical Number of Bu	nches 7
H Emittance 1.62	x 10 ⁻⁷ m-rad
V Emittance 3.5	x 10 ⁻¹⁰ m-rad
Power per Horizontal	Milliradian
(1	A) 3.2 Watts

X-Ray Storage Ring

Permanent Magnet Enhanced Sextupole

Motivation

- X-Ray Ring low emittance lattice
- Stronger sextupoles required
- Existing sextupoles highly saturated
- Sextupoles designed for 1/2 current required

X-Ray Ring Lattices

Original Lattice

- $\varepsilon_x = 90 \text{ nm-rad}$
- $\varepsilon_{\rm v} = 0.1$ nm-rad
- $v_{x} = 9.14$
- $v_v = 6.20$
- $\eta = 0$ in long straights

Low Emittance Lattice

- $\varepsilon_x = 46 \text{ nm-rad}$
- $\varepsilon_{\rm v} = 0.08$ nm-rad
- $v_x = 9.83$
- $v_v = 5.71$
- η > 0 in long straights

Lattice Plots

High Emittance Lattice

Low Emittance Lattice

Sextupole Effectiveness

- Sextupole contribution $\propto \beta(s)M(s)\eta(s)$
- $= \beta_y(s)$ nearly unchanged at sextupoles
- $= \eta(s)$ smaller in low emittance lattice
- M(s) must be bigger

BUT

At 800 A (maximum sextupole current)
 can only get chromaticity = 0

Alternatives

- Increase current
 - Already running at over twice design current
- Replace sextupoles
 - Expensive
- Modify sextupoles

P M Enhanced Electromagnet

- Proposed by Halbach, Proc. 7th FEL Conf. (1985)
- Excitation of pole comes from electromagnet coil
- Permanent magnet cancels flux in iron

Sextupole

Sextupole Parameters

Aperture Radius	5 cm
Magnetic Length	20 cm
Turns Per Pole	18
Maximum Current	800 A
Pole Tip Field (800 A)	0.65 T

Field in Iron

Without Permanent Magnet

With Permanent Magnet

Field in Midplane

Midplane Field in NSLS Sextupole

Field vs. Current

Superconducting Wiggler

- Replace existing 5 pole, 4.7 T wiggler
- Three operating modes
 - 11 Poles, 3.0 T (+2 half-strength poles at ends)
 - 5 Poles, 4.7 T
 - 1 Pole , 5.5 T
- Extremely low heat leakage
 - 0.35 l/hr liquid helium use
 - No refrigerators, filled from dewar
 - High T_C leads in neck BAD MISTAKE

Wiggler Characteristics

Period	17.16 cm
Number of Poles	13
Maximum Field	5.5 T
Horizontal Beam Aperture	5.95 cm
Vertical Beam Aperture	1.95 cm
■ Good Field Region	±5 mm

Allowed Field Errors

■ D	DO	le ('B.	dz
			·	

■ Skew Dipole (?B_xdz)

Quadrupole

Skew Quadrupole

Sextupole

Skew Sextupole

 \blacksquare ?? $B_y d^2 z$

\bigcap	D		D	A1	ĒΙ	\bigcap	N		RA	١
U		L		ĀZ		U	11			

1.00 G-m

1.00 G-m

110.00 G

150.00 G

29.00 KG/m

10.00 KG/m

2.00 G-m²

RAMPING

5.00 G-m

1.00 G-m

110.00 G

150.00 G

29.00 KG/m

10.00 KG/m

5.00 G-m²

Wiggler Operating Modes

Wavelength Shifter

Synchrotron Radiation Spectrum

Why 33 KeV?

Digital Subtraction Angiography

Excised pig heart with iodine contrast agent injected into coronary arteries

Imaging

Wiggler Construction

- Extremely low carbon Remko B iron
 - Minimizes residual magnetization
- NbTi Wire
 - 1:1 Nb:Ti ratio
- Coils divided radially into two sections:
 - Minimizes current in high field region near pole
 - Inner coil wire: 1 mm dia., 285 A/mm
 - Outer coil wire: 0.7 mm dia., 485 A/mm
 - Maximum current 295 A
- Stored Energy 170 KJ

Cryostat

- Warm bore-cold iron
- 4.5 K He bath
- Insulated bore tube
- Heaters to keep beam pipe above freezing
- 20K shield cooled by He boil-off
- 80K liquid nitrogen cooled shield
- High T_C leads in LN₂ pot

Electrical Characteristics

- Ramping rate (1.1 T to max)
- Voltage during ramp

1.14 T/min 16.5 V

- Passive quench protection
 - Diode-resistor networks across coils in cryostat
 - Power can safely stay on during quench

Status

- Wiggler constructed by Oxford Instruments, field mapped
- Delivered to BNL, Spring 1998
- Vacuum leak discovered, returned to Oxford
- Repaired at Oxford
- Delivered to BNL, Fall 1999
- High T_C lead exploded when powered
- Returned to Oxford
 - They believe lead may have been damaged in transit
 - Bad mechanical design, high stress on brittle lead
- Delivery expected Spring 2002

Small Gap Undulators

Radiation wavelength
$$\lambda_o = (\lambda_u/2\gamma^2)(1+K^2/2)$$

 $K = 0.934 B_u[T] \lambda_u[cm]$
peak field $B_u \propto exp[-\pi G / \lambda_u]$

High photon energy ⇒
Short radiation wavelength ⇒
Short undulator period ⇒
Small gap

Hybrid Undulator

Pure Permanent Magnet Undulator

Prototype Small Gap Undulator

In-Vacuum Undulator

BROOKHAVEN NATIONAL LABORATORY

Mini-Gap Undulator

Undulator Location

Reduces $\beta_{v, min}$ from 32 to 16 cm Reduces minimum gap from 3.3 to 2 mm

Mini-Quadrupole

Undulator + Quadrupoles

Small Gap Undulator Parameters

	PSGU	IVUN	MGU	(mini-β)
Period λ_u	16 mm	11 mm	12.5 mm	
Magnet Gap	6 mm	3.3 mm	3.3 mm	(2.0 mm)
Peak Field B _u	0.62 T	0.68 T	1.0 T	(1.66 T)
K _{max}	0.93	0.70	1.17	(1.94)
Fund. Energy	3.2 Kev	5.4 KeV	3.5 KeV	(1.76 KeV)
Beam Energy	2.8 GeV	2.8 GeV	2.8 GeV	

MGU Spectrum

MGU Field Measurement

MGU-13 Mapping

MGU First Integral

MGU-13: 1st Integral of By

After adjusting taper by 0.14 mm; Gap = 3.3 mm

MGU Second Integral

MGU-13: 2nd Integral of By

After adjusting taper by 0.14 mm; Gap = 3.3 mm

Summary

- Permanent magnet assisted sextupole
 - Adding permanent magnet material can increase pole tip field by reducing saturation in iron
 - Simple method of upgrading existing magnets
- Superconducting Wiggler
 - Potentially versatile design
 - Problem with HT_c leads
- Mini-gap Undulator
 - Latest NSLS short period, in-vacuum undulator
 - Highly tunable source of hard x-rays from relatively low energy storage ring

