Next Linear Collider
Beam Position Monitors

Steve Smith
SLAC
October 23, 2002
What’s novel, extreme, or challenging?

- Push resolution frontier
 - Novel cavity BPM design for high resolution, stability
 - Push well beyond NLC requirements
- Push bandwidth frontier
 - Stripline BPM with very high bandwidth and resolution
- Pickup-less BPM
 - HOM-Damped RF structures as position monitors
- Low propagation delay BPM
 - Feedback within bunch-train crossing time (250 ns)
NLC Linac BPMs

• “Quad” BPM (QBPM)
 – In every quadrupole (Quantity ~3000)
 – Function: align quads to straight line
 – Measures average position of bunch train
 – Resolution required: 300 nm rms in a single shot

• Structure Position Monitor (SPM)
 – Measure phase and amplitude of HOMs in accelerating cavities
 – Minimize transverse wakefields
 – Align each RF structure to the beam
 – 22 k devices in two linacs

• “Multi-Bunch” BPM (MBBPM)
 – Measure bunch-to-bunch transverse displacement
 – Compensate residual wakefields
 – Measure every bunch, 1.4 ns apart
 – Requires high bandwidth (300 MHz), high resolution (300 nm)
 – Line up entire bunch train by steering, compensating kickers
Other NLC BPMs

• Damping Ring
 – Button pickups
 – Rather conventional, like 3rd generation light sources
 – But higher readout rate (~MHz)

• Interaction Point Intra-Train Deflection Feedback
 – Correct beam-beam mis-steering within time of train crossing
 – Low propagation delay!
NLC “QBPM”

- Mainstream workhorse BPM
- In every quadrupole +
- Requires high resolution 300 nm
- Stability
- Single bunch to 180 bunches
- Stripline vs. cavity pickup?
- Cavity with novel coupler
QBPM Requirements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>300 nm rms</td>
<td>@ 10^{10} e$^-$ single bunch</td>
</tr>
<tr>
<td>Position Stability</td>
<td>1 μm</td>
<td>over 24 hours (!)</td>
</tr>
<tr>
<td>Position Accuracy</td>
<td>200 μm</td>
<td>With respect to the quad magnetic center</td>
</tr>
<tr>
<td>Position Dynamic Range</td>
<td>\pm2 mm</td>
<td></td>
</tr>
<tr>
<td>Charge Dynamic Range</td>
<td>5×10^8 to 1.5×10^{10} e$^-$ per bunch</td>
<td></td>
</tr>
<tr>
<td>Number of bunches</td>
<td>1 - 190</td>
<td>Singlebunch - multibunch</td>
</tr>
<tr>
<td>Bunch spacing</td>
<td>1.4 ns</td>
<td></td>
</tr>
</tbody>
</table>
Use Striplines for Q BPM?

- Electronics in tunnel enclosure
- Signal amplitudes in a ~30 MHz band around 714 MHz are demodulated and digitized
- Critical elements:
 - Front-end hybrid
 - Calibration signals
 - Sampler / digitizer choices:
 - Direct analog sampling chip + slow, high resolution ADC?
 - IF downconversion + fast, high resolution ADC?
 - Digital receiver algorithms for amplitude reconstruction
 - bandpass filter
 - digital downconversion
 - low pass filter
 - Position proportional to ratio of amplitude difference/sum
Can we achieve 300 nm resolution?

• Example: Final Focus Test Beam Position Monitor
 – Achieves single bunch resolution of \(\sim 1.2 \, \mu \text{m} \, \text{rms} @ 9 \times 10^9 \, \text{e}^- \)
 – Algorithm: low pass filter, sample, digitize
 – Bandwidth \(\sim 30 \, \text{MHz} \)
 – Micron resolution is a few dB above thermal noise floor

• NLC Q-BPM
 – Beam pipe radius is factor of two smaller
 – Process signal where it is big, i.e. 714 MHz instead of 32 MHz
 – Noise floor is not an issue
 – Must control systematics
What’s wrong with striplines?

• Striplines are difficult to fit into limited quad ID
• Accuracy hard to establish
 – Works on small differences of large numbers
• Position accuracy / stability requires precision of many elements
 – Internal elements
 • Stripline position
 • Feedthroughs
 • Termination
 – External elements
 • Cables
 • Connections
 • Processor
QBPMs Should be Cavities!

- Cavity BPM features:
 - Signal is proportional to position
 - Less common-mode subtraction than for strips
 - Simpler geometry
 - Accuracy of center better, more stable
 - Pickup compact in Z dimension

- Cavity Drawbacks:
 - Higher processing frequency
 - Are wakefields tolerable?
Cavity BPM

- Pick a basic design and evaluate characteristics
- Pillbox cavity, for example
- Choose frequency, processing scheme
- Calculate
 - Dimensions
 - Sensitivity
 - Noise figure budget
 - Common-mode rejection
 - Wake fields
Operating Frequency

- Sensitivity increases with frequency
- Size decreases with frequency
- Cable loss increases
- Cost of electronics increases
- Should be multiple of 714 MHz bunch spacing
- Possible operating frequencies:
 - 2856 MHz (cavities are too big!)
 - 5712 MHz (inexpensive commercial parts)
 - 11.424 GHz (share phase cavity with LLRF)
 - 14.280 GHz (integrate position cavities with RF structure)

- Example: 11.424 GHz
Cavity BPM Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dipole frequency</td>
<td>11.4 GHz</td>
<td></td>
</tr>
<tr>
<td>Monopole frequency</td>
<td>7.2 GHz</td>
<td></td>
</tr>
<tr>
<td>Cavity Radius</td>
<td>16 mm</td>
<td></td>
</tr>
<tr>
<td>Wall Q</td>
<td>~4000</td>
<td>Ignoring beam duct, etc</td>
</tr>
<tr>
<td>Cavity coupling</td>
<td>β = 3</td>
<td></td>
</tr>
<tr>
<td>Loaded Q</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Bandwidth</td>
<td>11 MHz</td>
<td></td>
</tr>
<tr>
<td>Beam aperture radius</td>
<td>6 mm</td>
<td></td>
</tr>
<tr>
<td>Sensitivity</td>
<td>7 mV/nC/µm</td>
<td>(too much signal!)</td>
</tr>
<tr>
<td>Bunch charge</td>
<td>0.7 x 10^{10} e⁻</td>
<td>Per bunch</td>
</tr>
<tr>
<td>Signal power @ 1µm</td>
<td>-29 dBm</td>
<td>Peak power</td>
</tr>
<tr>
<td>Decay time</td>
<td>28 ns</td>
<td></td>
</tr>
<tr>
<td>Required resolution</td>
<td>σ = 200 nm</td>
<td></td>
</tr>
<tr>
<td>Required Noise Figure</td>
<td>57 dB</td>
<td>For σ = 100 nm, thermal only</td>
</tr>
<tr>
<td>Wakefield Kick</td>
<td>0.3 volt/pC/mm</td>
<td>Long range</td>
</tr>
<tr>
<td>Structure wakefield kick</td>
<td>~2 volt/pC/mm</td>
<td>Per structure</td>
</tr>
<tr>
<td>Short-range wakefield</td>
<td>~1/200th of structure</td>
<td></td>
</tr>
</tbody>
</table>
How much does monopole mode leak into dipole mode frequency?
This creates an apparent beam centering offset.
But processor looks only at dipole-mode frequency
And uses odd-mode coupler to eliminate even-symmetry mode

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Voltage</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio of monopole mode voltage to dipole mode voltage due to 1 mm beam offset, measured at outer radius of pillbox</td>
<td>4200</td>
<td>72 dB</td>
</tr>
<tr>
<td>Tail of monopole mode at dipole-mode frequency</td>
<td>3.5</td>
<td>11 dB</td>
</tr>
<tr>
<td>Coupler rejection of monopole mode (-30dB)</td>
<td>0.1</td>
<td>-19 dB</td>
</tr>
</tbody>
</table>

So the common-mode leakage is negligible.
(Even if the offset were tens of microns, its just a fixed offset)
BPM Cavity with TM$_{110}$ Couplers

- Dipole frequency: 11.424 GHz
- Dipole mode: TM$_{11}$
- Coupling to waveguide: magnetic
- Beam x-offset couple to “y” port

- Sensitivity: 1.6mV/nC/µm
 (1.6×109V/C/mm)

- Couple to dipole (TM$_{11}$) only
- Does not couple to TM$_{01}$
 - May need to damp TM$_{01}$
 - OR, use stainless steel to lower Q

- Compact
- Low wakefield

Zenghai Li
TM_{110} Mode Coupler

Waveguide

Beam pipe

“Magnetic” coupling

Port to coax

Zenghai Li
COM-Free BPM

TM010 mode does not couple out to pickup antenna.

will be used for C-band Accelerator Alignment
Waveguide Signal With Beam Excitation

Y Waveguide Voltage

Y Waveguide Voltage Spectrum

Impedance Spectrum

Zenghai Li
Cavity Dimensions

Cavity sensitivity (?)
- \(\frac{dF}{db} : -0.78 \ \text{MHz/\mu m} \)
- \(\frac{dF}{da} : +0.022 \ \text{MHz/\mu m} \)
- \(\frac{dF}{dL} : +0.042 \ \text{MHz/\mu m} \)

<table>
<thead>
<tr>
<th>sharp iris</th>
<th>MAFIA</th>
<th>Omega2</th>
<th>Omega2 prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_{\text{cav}}) (mm)</td>
<td>14.2</td>
<td>14.2</td>
<td>14.695</td>
</tr>
<tr>
<td>(F_1) (with guide)</td>
<td>12.17413</td>
<td>11.424</td>
<td></td>
</tr>
<tr>
<td>(F_1) (no guide)</td>
<td>12.30448</td>
<td>11.96617</td>
<td>11.55435</td>
</tr>
<tr>
<td>(\Delta F_1)</td>
<td>0.13035</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zenghai Li
Azimuthal Misalignment

• Monopole modes sensitivity to displaced coupler:
 – $dx'/dx \sim 2$ in power ratio
 – <0.01 monopole mode measured at dipole mode frequency
• We do get X-Y coupling
Radial Misalignment

• Small x-y coupling
• Little fundamental mode

Y WAVEGUIDE VOLTAGE SPECTRUM

X WAVEGUIDE VOLTAGE SPECTRUM

Zenghai Li

Steve Smith October 2002
Excellent Performance (in simulation)

- Relatively easy to fabricate
- Tolerant of errors
- Strong signal
- Good centering
- Small wakefields

⇒ Build prototypes
Develop Cavity BPM Prototype

- Team:
 - Ron Johnson, Zenghai Li, Takashi Naito, Jeff Rifkin, S. Smith
- Frequency: 11.424 GHz
- Axially symmetric X-Y cavity
- TM$_{110}$ mode couplers designed by Z. Li
- Two couplers per mode for prototype cavity
- Integrate fundamental mode phase reference cavity in same block.
- Measure on bench
- In beam
Cavity Antenna Test

Dipole Mode Amplitude vs. Antenna Position

BPM Response Magnitude

Antenna Position (microns)

Steve Smith October 2002
Antenna Test – Phasor Response

Polar Plot of Dipole Mode Response

Re(A) x 10^3

Im(A) x 10^3
Antenna Position

BPM Measurement vs. Antenna Position

Resolution = 0.23 microns rms
Antenna Test – Residual Plot

Position Error vs. Antenna Position

Measurement error (microns) vs. Antenna Position (microns)

Steve Smith October 2002
Prototype Cavity Conclusions

- Excellent position response.
- Linear across null.
- Resolution is 230 nm rms.
- Resolution may be dominated by micrometer stage
Cavity Q-BPM Conclusions

- It is easy to get signal
- Resolution can be much better than required
- Signal is proportional to displacement
- Accurate centering is much easier than for striplines
- Common-mode is not a problem
- Wake fields are OK
- Requires microwave processing
Limits of Cavity BPM

• How far can you push cavity BPM technology?
• Way beyond NLC machine requirements!
 – QBPM designed for low Q, low coupling
• Signal to thermal noise limit for resolution-optimized cavity
 – $\sigma = 0.1$ nm for 11 GHz pillbox cavity and 10^{10} e- in a single bunch.
• Is a nanometer resolution BPM useful?
• Ground isn’t stable at this level
• Active stabilization needed.
 – But is available, and demands beam tests!
 • Passive isolation
 • Geophone feedback
 • Optical anchor (interferometer)
Nanometer Resolution BPMs

- Push cavity BPM technology to its limits
- Push existing C-band cavities to 1nm at ATF (KEK)
- Harder at 5.7 GHz than 11.4 GHz!
• NLC alignment tolerances and diagnostic requirements derive from wakefield emittance dilution.
• Transverse wakefields cause head-tail displacement
• Can we measure this directly, rather than by position of the mean charge of the bunch?
• Observation at ASSET:
 – BPM Cavity power vs. beam position has minimum which depends on bunch tilt
 – Tilt signal is in quadrature with position signal
Response of BPM to Tilted Bunch Centered in Cavity

Treat as pair of macroparticles:

\[V(t) = \frac{a}{2} \left(\frac{q}{2} \delta \sin(\omega(t - \frac{\sigma_t}{2})) - \frac{q}{2} \delta \sin(\omega(t + \frac{\sigma_t}{2})) \right) = \frac{a \delta q}{2} \cos \omega t \sin \frac{\omega \sigma_t}{2} \]
Tilted bunch

- Point charge offset by δ
- Centered, extended bunch tilted at slope δ/σ_t
- Tilt signal is in *quadrature* to displacement
- The amplitude due to a tilt of δ/σ is down by a factor of:

 $V_t/V_y = \frac{\omega \sigma_t}{4} = \frac{\pi \sigma_t}{2T}$

\[V_y(t) = a q \delta \sin(\omega t) \]

\[V_i(t) = \frac{a \delta q}{2} \cos \omega t \sin \frac{\omega \sigma_t}{2} \]
Example

- Bunch length \(\sigma_t = 200 \mu m/c = 0.67 \) ps
- Tilt tolerance \(d = 200 \) nm
- Cavity Frequency \(F = 11.424 \) GHz
- Ratio of tilt to position sensitivity \(\frac{1}{2} \pi f \sigma_t = 0.012 \)
- A bunch tilt of 200 nm / 200 \(\mu m \) yields as much signal as a beam offset of 0.012 * 200 nm = 2.4 nm
- Need BPM resolution of ~ 2 nm to measure this tilt
- Challenging!
 - Getting resolution
 - Separating tilt from position
- Use higher cavity frequency?
Position-Tilt Discrimination

- Phase-sensitive detection
- Position jitter or dithering measures phase of position signal
- Quadrature part of signal is tilt + background
 - One phase of residual common mode
 - RF interference/leakage
- The higher the frequency the better!
- Tiltmeter also sensitive to beam tilt / cavity tilt
Tiltmeter R&D Plans

- Test with C-Band cavity BPMs at ATF (KEK)
 - First test done, cavity tilt dominates
 - Put more cavities on goniometers
NLC RF Structure

- Use dipole modes in accelerating cavities to measure beam position.
- Align each RF structure to the beam
- Minimize transverse wakefields
Transverse Modes in Structure

Transverse modes contain position information
Modes associated with z position along structure.
Tunable receiver can measure position along structure.

RDDS1 dipole mode frequency distributions: dn/df is the mode density and kdn/df is the density weighted by the mode kick factors (k).
• Damped, Detuned RF structures (DDS)
 – Damped: 4 HOM manifolds conduct transverse modes to load
 – Detuned: HOM mode frequency depends on z-position in structure
 – Two of the manifolds, have coax couplers which sample a fraction of the HOM power
• BPM measures amplitude and phase of transverse modes at load.
• Tune over 14 – 16 GHz to see position from one end to the other.
• Use to align structures to beam.
SPM Receiver

- Tunable across dipole band
 - Frequency selects z-coordinate of position measurement
- Receiver is phase-sensitive:
 - Reduces noise
 - Provides sign of offset.
- Beam phase reference provided by nearby cavity BPM
 - Needs phase accuracy of only $\pm 90^\circ$ in order to extract the sign of the beam direction.
 - Noise performance improves slightly with better phase reference
 - Low-level RF system requires beam phase accuracy of a few degrees, which will be from the same source.
SPM Requirements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Requirement</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity</td>
<td>~22,000 X,Y BPM’s</td>
<td>in X-band linacs</td>
</tr>
<tr>
<td></td>
<td>~ 700 X,Y BPM’s</td>
<td>in S-band linacs</td>
</tr>
<tr>
<td>Resolution</td>
<td>rms = 5 μm or 10% of beam position, whichever is greater</td>
<td>single bunch of 3×10^9 e$, for at least one mode near each end</td>
</tr>
<tr>
<td>Position Dynamic Range</td>
<td>$R < 3$ mm</td>
<td>single bunch or low current multibunch</td>
</tr>
<tr>
<td></td>
<td>$R < 0.5$ mm</td>
<td>full current, multibunch</td>
</tr>
<tr>
<td>Stability of Center</td>
<td><1 μm over 30 minutes</td>
<td></td>
</tr>
<tr>
<td>Survival</td>
<td>90 bunches @ 1.5×10^{10} at 3 mm radius</td>
<td>Must not damage receiver</td>
</tr>
</tbody>
</table>
Comparison of rf structure relative cell positions measured by dipole-mode BPM (points) and Coordinate Measuring Machine (line). Dashed lines show NLC rms structure alignment tolerance.
Structure Position Monitor

- Looks promising
- Have not developed even prototype electronics
- R&D needed on integrated RF module
- Large system, it must be:
 - high performance
 - reliable
 - cheap
Multi-Bunch BPMs

- Bandwidth frontier (300 MHz bandwidth)
- Stripline pickups
- Report position of every bunch in bunch train
- Used to program broadband kickers to straighten out bunch train

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Conditions & Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>300 nm rms</td>
<td>for bunch-bunch displacement frequencies below 300 MHz</td>
</tr>
<tr>
<td></td>
<td>At 0.6×10^{10} e$^-$ / bunch</td>
<td></td>
</tr>
<tr>
<td>Position Range</td>
<td>± 2 mm</td>
<td></td>
</tr>
<tr>
<td>Bunch spacing</td>
<td>2.8 ns or 1.4 ns</td>
<td></td>
</tr>
<tr>
<td>Number of Bunches</td>
<td>1 - 190</td>
<td>@ 1.4 ns</td>
</tr>
<tr>
<td>Beam current dynamic range</td>
<td>1×10^9 to 1.4×10^{10}</td>
<td>Particles / bunch</td>
</tr>
<tr>
<td>Number of BPMs</td>
<td>278</td>
<td></td>
</tr>
</tbody>
</table>
Multi-Bunch BPM Electronics

• Model
 – Preprocess using matched filters, sum-difference hybrids
 – Digitize waveform from stripline using either
 • fast ADC’s
 • Sampling chip followed by slow ADC
 – Deconvolute bunch-bunch response from multibunch using impulse response measured with single bunch

• R&D
 – Demonstrate concept
 – Develop switched capacitor analog memory chip
 • Save
 – cost
 – space
 – power
• Sampling Chip development
 – In house
 – Ohio State

• Proofs of Principle
 – Measuring bunchtrains at KEK-ATF
 – Digital receiver algorithm for Q-BPM, DR-BPM
 • test in linac, PEP-II

• Test promising parts on eval boards

• Prototype
Multi-Bunch BPM

Block Diagram

BPM

Front End Box

Front End Box

Tek 3054
ATF Bunch Current

Bunch Current Mod Revolution Frequency

Time (ns)

October 2002
Damping Ring BPMs

- Button pickups in rings
- Cables to holes in tunnel wall
- Quantity 486 total in three rings
 - Two main damping rings & e\(^+\) Pre-damping ring
- Process signals in digital receiver
 - Measure amplitude in \(\sim 10\) MHz bandwidth about 714 MHz
- Differences from PEP BPM:
 - Slightly higher resolution
 - smaller signal
 - smaller beam duct
 - High peak readout rate (once per turn \(\sim\)MHz)
DR-BPM Requirements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Requirement</th>
<th>Conditions & Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duct radius</td>
<td>17.5 mm in arcs, up to 31 mm in straights</td>
<td>PEP-II is 33 mm in arcs, 45 mm in straights</td>
</tr>
<tr>
<td>Button Diameter</td>
<td>8 mm</td>
<td>PEP-II is 15 mm</td>
</tr>
<tr>
<td>Button Transfer Impedance</td>
<td>~ 0.2 Ohm</td>
<td>@ 714 MHz</td>
</tr>
<tr>
<td>Time resolution</td>
<td>Average over 20 bunches</td>
<td>Can we average over train?</td>
</tr>
<tr>
<td>Measurement Rate</td>
<td>Read every turn, (1.4 MHz in preDR)</td>
<td>PEP-II ADC runs at 136 kHz</td>
</tr>
<tr>
<td>Onboard processing</td>
<td>Multi-turn logging, Multi-turn averaging, Sine fit to turn-by-turn data</td>
<td>Several 14-bit ADCs @ 65 MHz</td>
</tr>
<tr>
<td>Resolution for train of > 20 bunches</td>
<td>$\sigma \leq 1 \mu m \cdot \sqrt{1 + \left(\frac{500mA}{I_{train}} \right)^2}$</td>
<td></td>
</tr>
<tr>
<td>Resolution for single bunch</td>
<td>$\sigma_{\text{Single}} \leq 5 \cdot \mu m$</td>
<td>For $Q_s > 10^{10}$ electrons</td>
</tr>
<tr>
<td>Initial accuracy</td>
<td>TBD</td>
<td>Before beam-based-alignment</td>
</tr>
<tr>
<td>Stability wrt time</td>
<td>1μm, 10μm</td>
<td>over a few hours, over 24 hours</td>
</tr>
<tr>
<td>Stability wrt fill pattern</td>
<td><10μm shift, single bunch to full train</td>
<td></td>
</tr>
</tbody>
</table>
Intra-pulse Feedback

Ground Motion at NLC IP

- Differential ground motion between opposing final lenses may be comparable to the beam sizes
- Several solutions possible:
 - Optical anchor stabilization
 - Inertial stabilization (geophone feedback)
 - Pulse-to-pulse beam-beam alignment feedback
- Can we use beam-beam deflection within the crossing time a single bunch train?
NLC Interaction Point Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Stage 1</th>
<th>Stage 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS Energy (GeV)</td>
<td>490</td>
<td>888</td>
</tr>
<tr>
<td>Luminosity (\times 10^{33})</td>
<td>22</td>
<td>34</td>
</tr>
<tr>
<td>Repetition Rate (Hz)</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Bunch Charge (\times 10^{10})</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>Bunches/RF Pulse</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td>Bunch Separation (ns)</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Eff. Gradient (\text{MV/m})</td>
<td>50.2</td>
<td>50.2</td>
</tr>
<tr>
<td>Injected (\gamma \varepsilon_x / \gamma \varepsilon_y) (\times 10^{-8})</td>
<td>300 / 2</td>
<td>300 / 2</td>
</tr>
<tr>
<td>(\gamma \varepsilon_x) at IP (\times 10^{-8}) m-rad</td>
<td>360</td>
<td>360</td>
</tr>
<tr>
<td>(\gamma \varepsilon_y) at IP (\times 10^{-8}) m-rad</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>(\beta_x / \beta_y) at IP (mm)</td>
<td>8 / 0.10</td>
<td>10 / 0.12</td>
</tr>
<tr>
<td>(\sigma_x / \sigma_y) at IP (nm)</td>
<td>245 / 2.7</td>
<td>200 / 2.2</td>
</tr>
<tr>
<td>(\sigma_z) at IP (um)</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>(\gamma \text{ave})</td>
<td>0.11</td>
<td>0.26</td>
</tr>
<tr>
<td>Pinch Enhancement</td>
<td>1.43</td>
<td>1.49</td>
</tr>
<tr>
<td>Beamstrahlung (\delta B) (%)</td>
<td>4.6</td>
<td>8.8</td>
</tr>
<tr>
<td>Photons per e+/e-</td>
<td>1.17</td>
<td>1.33</td>
</tr>
<tr>
<td>Two Linac Length (km)</td>
<td>5.4</td>
<td>9.9</td>
</tr>
</tbody>
</table>
Beam-Beam Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_y</td>
<td>2.65 nm</td>
<td>(!)</td>
</tr>
<tr>
<td>σ_x</td>
<td>245 nm</td>
<td></td>
</tr>
<tr>
<td>σ_z</td>
<td>110 (\mu)m</td>
<td></td>
</tr>
<tr>
<td>Disruption Parameter</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Deflection slope</td>
<td>25 (\mu)radian / nm</td>
<td>At origin</td>
</tr>
<tr>
<td>Displacement slope</td>
<td>100 (\mu)m/nm</td>
<td>At BPM</td>
</tr>
</tbody>
</table>
Intra-pulse Feedback

• Fix interaction point jitter within the crossing time of a single bunch train (266 ns)

• BPM measures beam-beam deflection on outgoing beam
 – Fast (few ns rise time)
 – Precise (≈micron resolution ⇒ ≪ 1nm beam offset resolution)
 – Close (∼4 meters from IP)

• Kicker steers incoming beam
 – Close to IP (∼4 meters)
 – Close to BPM (minimal cable delay)
 – Fast rise-time amplifier

• Feedback algorithm is complicated by:
 – round-trip propagation delay to interaction point in the feedback loop.
 – transfer function non-linearity
Intra-Pulse Feedback

Next Linear Collider

IP

Kicker

Amp

Round Trip Delay

BPM Processor

BPM
Beam Position Monitor

- **Stripline BPM**
 - 50 Ohm
 - 6 mm radius
 - 10 cm long
 - 7% angular coverage
 - 4 m from IP
 - Process at 714 MHz
 - Downconvert to baseband
 - need to phase BPM
 - Wideband: 200 MHz at baseband
 - Analog response with < 3ns propagation delay (plus cable lengths)
Fast BPM Processor

Fast BPM Processor Block Diagram

- **Top Stripline**
 - RF Hybrid
- **Bottom Stripline**
 - RF Hybrid
- **Timing System**
 - 714 MHz Phase Reference
- **Bandpass filter**
 - Bessel 4-pole 714 MHz 360 MHz BW
- **MIXER**
- **Lowpass filter**
 - Bessel 3-pole 200 MHz
- **Programable Attenuator**
 - MPS Network
 - Normalize BPM to Bunch Charge
 - (Bunch Charge)
- **Kicker Drive**

Author Name: Steve Smith
Date: October 2002
Simulated BPM Processor Signals

BPM Pickup (blue)
Bandpass filter (green)
and BPM analog output (red)
• Position monitor processor looks like the simulation
Stripline Kicker

- **Baseband Kicker**
 - Parallel plate approximation $\Theta = 2eVL/pwc$
 - (half the kick comes from electric field, half from magnetic)
 - 2 strips
 - 75 cm long
 - 50 Ohm / strip
 - 6 mm half-gap
 - 4 m from IP
 - Deflection angle $\Theta = eVL/pwc = 1$ nr/volt
 - Displacement at IP $d = 4$ nm/volt
 - Voltage required to move beam 1 σ (3 nm) 0.75 volts (10 mW)
 - 100 nm correction requires 12.5 Watts drive per strip
 - Drive amp needs bandwidth from 100 kHz to 100 MHz
Capture Transient

Capture transient from 2σ initial offset
Limits to Beam-Beam Feedback

• Must close loop fast
 – Propagation delays are painful
• Beam-Beam deflection response is non-linear
 – slope flattens within 1 \(\sigma \)
• Linear feedback converges too slowly beyond \(\sim 10 \sigma \) to recover most of lost luminosity.
• Should be able to fix misalignments of 100 nm with modest kicker amplifiers.
 – Amplifier power goes like square of misalignment.
Non-linear Response Challenges Feedback

• Beam-beam deflection non-linearity limits:
 – Limits useful (timely) range of convergence
 – Limits stability in collision
Non-linear Response Challenges Feedback

Optimize gain for small initial offset:

Then convergence is poor from far out:

Set gain for good convergence, then high gain at origin causes oscillation when near center:
Linearize Feedback

• Can we compensate non-linearity?
 – Fast?
 • Bandwidth
 • propagation delay
 – Accurately?

• Yes!

• Add compensation amplifier
 – Op-amp
 – Diodes to introduce desired non-linearity.
 – Bias adjust (knee or breakpoint)
Measured Transfer Function

Transfer Function

Output (Volts) vs. Input (Volts)
Large Signal Waveform

1 V step
Full BW

Settles to DC response in several ns
Simulink Model

Next Linear Collider

Simulink Model Diagram
Non-Linear Feedback Simulation

Full luminosity recovered in one round-trip time for 10 σ initial offset.
Linearizer Conclusions

- Simple op-amp based non-linear amp is sufficient to improve:
 - Stability
 - Convergence speed \(\Leftrightarrow \) capture range
 - Programmable linearity compensation

- Low propagation delay: \(\sim 1 \text{ ns} \)
- High bandwidth > 200 MHz

- Sufficient to achieve:
 - Single round-trip convergence to \(< 1 \sigma \) from \(10 \sigma \) initial offset.
 - Two-cycle convergence to \(< 0.1 \sigma \) from \(10 \sigma \) initial offset.
 - Limited by dynamic range of present op-amp, not by accuracy of compensation
 - Fix with another amplifier or tune diode bias

- Breadboard prototype slightly peaky for small signals
 - Likely to be fixed with chip diodes in real layout
 - Ideally would make large signal response as peaky as small-signal response
 - (to compensate kicker fill time)

Steve Smith October 2002
Intra-Pulse Feedback
Intra-Pulse Feedback
(with Beam-Beam Scan & Diagnostics)

Steve Smith October 2002
Beam-Beam Scan

Beam bunches at IP: blue points
BPM analog response: green line
Conclusions

• **Q BPMs**
 – Need cavity BPMs
 • Accuracy
 • Stability
 • Compact

• **Damping Ring BPM**
 – Small evolution of current practice

• **Structure Position Monitors**
 – Electronically more like Direct Satellite TV receiver
 – New to us, but similar objects are commercially available

• **Multi-Bunch BPMs**
 – High resolution
 – High bandwidth
 – Beyond state of the art
 – Achievable based on reasonable extrapolation of technology
Extensions

- Beyond NLC machine requirements:
- Bunch tiltmeter
- Nanometer resolution BPM’s