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What’s novel, extreme, or challenging?

• Push resolution frontier
– Novel cavity BPM design for high resolution, stability
– Push well beyond NLC requirements

• Push bandwidth frontier
– Stripline BPM with very high bandwidth and resolution

• Pickup-less BPM
– HOM-Damped RF structures as position monitors

• Low propagation delay BPM
– Feedback within bunch-train crossing time (250 ns)
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NLC Linac BPMs

• “Quad” BPM (QBPM) 
– In every quadrupole (Quantity ~3000)
– Function: align quads to straight line
– Measures average position of bunch train
– Resolution required: 300 nm rms in a single shot

• Structure Position Monitor (SPM)
– Measure phase and amplitude of HOMs in accelerating cavities
– Minimize transverse wakefields
– Align each RF structure to the beam
– 22 k devices in two linacs

• “Multi-Bunch” BPM (MBBPM) 
– Measure bunch-to-bunch transverse displacement 
– Compensate residual wakefields
– Measure every bunch, 1.4 ns apart
– Requires high bandwidth (300 MHz), high resolution (300 nm)
– Line up entire bunch train by steering, compensating kickers
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Other NLC BPMs

• Damping Ring
– Button pickups
– Rather conventional, like 3rd generation light sources
– But higher readout rate (~MHz)

• Interaction Point Intra-Train Deflection Feedback
– Correct beam-beam mis-steering within time of train crossing
– Low propagation delay!
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NLC “QBPM”

• Mainstream workhorse BPM
• In every quadrupole +
• Requires high resolution 300 nm
• Stability
• Single bunch to 180 bunches
• Stripline vs. cavity pickup?
• Cavity with novel coupler



Author Name
Date

Slide #

Next LinearNext Linear ColliderCollider

Steve Smith   October 2002

QBPM Requirements

Parameter Value Conditions 
Resolution 300 nm rms @ 1010 e- single bunch 

Position Stability 1 µm over 24 hours (!) 
Position Accuracy 200 µm With respect to the quad 

magnetic center 
Position Dynamic 

Range 
±2 mm  

Charge Dynamic 
Range 

5×108 to 1.5×1010 e- 
per bunch 

 

Number of bunches 1 - 190 Singlebunch - multibunch 
Bunch spacing 1.4 ns  
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Use Striplines for Q BPM?

• Electronics in tunnel enclosure 
• Signal amplitudes in a ~30 MHz band around 714 MHz are 

demodulated and digitized 
• Critical elements:

– Front-end hybrid
– Calibration signals 
– Sampler / digitizer choices:

• Direct analog sampling chip + slow, high resolution ADC?
• IF downconversion + fast, high resolution ADC?

– Digital receiver algorithms for amplitude reconstruction
• bandpass filter
• digital downconversion
• low pass filter

– Position proportional to ratio of amplitude difference/sum 
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Can we achieve 300 nm resolution?

• Example: Final Focus Test Beam Position Monitor
– Achieves single bunch resolution of ~1.2 µm rms @ 9 x 109 e-
– Algorithm: low pass filter, sample, digitize
– Bandwidth ~30 MHz
– Micron resolution is a few dB above thermal noise floor

• NLC Q-BPM
– Beam pipe radius is factor of two smaller
– Process signal where it is big, i.e. 714 MHz instead of 32 MHz
– Noise floor is not an issue
– Must control systematics
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What’s wrong with striplines?

• Striplines are difficult to fit into limited quad ID
• Accuracy hard to establish

– Works on small differences of large numbers

• Position accuracy / stability requires precision of many elements
– Internal elements

• Stripline position
• Feedthroughs
• Termination

– External elements
• Cables
• Connections
• Processor 
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QBPMs Should be Cavities!

• Cavity BPM features:
– Signal is proportional to position
– Less common-mode subtraction than for strips
– Simpler geometry
– Accuracy of center better, more stable
– Pickup compact in Z dimension

• Cavity Drawbacks:
• Higher processing frequency
• Are wakefields tolerable?
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Cavity BPM

• Pick a basic design and evaluate characteristics
• Pillbox cavity, for example
• Choose frequency, processing scheme
• Calculate 

– Dimensions
– Sensitivity
– Noise figure budget
– Common-mode rejection
– Wake fields
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Operating Frequency

• Sensitivity increases with frequency
• Size decreases with frequency
• Cable loss increases
• Cost of electronics increases
• Should be multiple of 714 MHz bunch spacing
• Possible operating frequencies:

– 2856 MHz    (cavities are too big!)
– 5712 MHz    (inexpensive commercial parts)
– 11.424 GHz (share phase cavity with LLRF)
– 14.280 GHz (integrate position cavities with RF structure)

• Example: 11.424 GHz
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Cavity BPM Parameters

Parameter Value Comments
Dipole frequency 11.4 GHz

Monopole frequency 7.2 GHz

Cavity Radius 16 mm

Wall Q ~4000 Ignoring beam duct, etc

Cavity coupling β = 3

Loaded Q 1000

Bandwidth 11 MHz

Beam aperture radius 6 mm

Sensitivity 7 mV/nC/µm (too much signal!)

Bunch charge 0.7 x 1010 e- Per bunch

Signal power @ 1µm - 29 dBm Peak power

Decay time 28 ns

Required resolution σ = 200 nm

Required Noise Figure 57 dB For σ = 100 nm, thermal only

Wakefield Kick 0.3 volt/pC/mm Long range

Structure wakefield kick ~2 volt/pC/mm Per structure

Short-range wakefield ~1/200th of structure
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Common Mode

How much does monopole mode leak into dipole mode frequency?
This creates an apparent beam centering offset. 
But processor looks only at dipole-mode frequency
And uses odd-mode coupler to eliminate even-symmetry mode

Comparison                                     Voltage  Ratio
Ratio of monopole mode voltage to dipole mode voltage due
to 1 mm beam offset, measured at outer radius of pillbox 4200 72 dB

Tail of monopole mode at dipole-mode frequency 3.5 11 dB

Coupler rejection of monopole mode (-30dB) 0.1 -19 dB

So the common-mode leakage is negligible.
(Even if the offset were tens of microns, its just a fixed offset)
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• Dipole frequency: 11.424 GHz
• Dipole mode: TM11
• Coupling to waveguide: magnetic
• Beam x-offset couple to “y” port

• Sensitivity: 1.6mV/nC/µm
(1.6×109V/C/mm)

• Couple to dipole (TM11) only
• Does not couple to TM01

– May need to damp TM01
– OR, use stainless steel to lower Q

• Compact
• Low wakefield

Port to coax

BPM Cavity
with TM110 Couplers

Zenghai Li
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TM110 Mode Coupler

W
aveguide

Beam pipe “Magnetic”
coupling

Port to coax

Zenghai Li
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Waveguide Signal With Beam Excitation

Zenghai Li
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Cavity Dimensions

2518

8

3

36

Open port

6
14.695 3

0.13035∆F1

11.5543511.9661712.30448F1 (no guide)

11.42412.17413F1 (with guide)

14.69514.214.2rcav (mm)

Omega2 
prediction

Omega2MAFIAsharp iris

Cavity sensitivity (?)
• dF/db: -0.78 MHz/µm
• dF/da: +0.022 MHz/µm
• dF/dL:+0.042 MHz/ µm

Zenghai Li
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Azimuthal Misalignment
0.6mm Beam offset: 1.2mm

TM01+TM11 in misaligned port

X-Y Coupling

Zenghai Li

• Monopole modes sensitivity to 
displaced coupler:
– dx’/dx ~ 2 in power ratio
– <0.01 monopole mode measured at dipole 

mode frequency

• We do get X-Y coupling
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Radial Misalignment

0.6mm

• Small x-y coupling
• Little fundamental mode

Zenghai Li
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Excellent Performance
(in simulation)

• Relatively easy to fabricate
• Tolerant of errors
• Strong signal
• Good centering
• Small wakefields

• ⇒ Build prototypes
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Develop Cavity BPM Prototype

• Team:
– Ron Johnson, Zenghai Li, Takashi Naito, Jeff Rifkin, S. Smith

• Frequency: 11.424 GHz
• Axially symmetric X-Y cavity
• TM110 mode couplers designed by Z. Li
• Two couplers per mode for prototype cavity
• Integrate fundamental mode phase reference cavity in same 

block.
• Measure on bench
• In beam
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Cavity Body 



Author Name
Date

Slide #

Next LinearNext Linear ColliderCollider

Steve Smith   October 2002



Author Name
Date

Slide #

Next LinearNext Linear ColliderCollider

Steve Smith   October 2002



Author Name
Date

Slide #

Next LinearNext Linear ColliderCollider

Steve Smith   October 2002

Cavity Antenna Test
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Antenna Test – Phasor Response
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Antenna Position
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Antenna Test –Residual Plot
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Prototype Cavity Conclusions

• Excellent position response.
• Linear across null.
• Resolution is 230 nm rms.
• Resolution may be dominated by micrometer stage
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Cavity Q-BPM Conclusions

• It is easy to get signal
• Resolution can be much better than required
• Signal is proportional to displacement
• Accurate centering is much easier than for striplines
• Common-mode is not a problem
• Wake fields are OK
• Requires microwave processing
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Limits of Cavity BPM  

• How far can you push cavity BPM technology?
• Way beyond NLC machine requirements!

– QBPM designed for low Q, low coupling 

• Signal to thermal noise limit for resolution-optimized cavity
– σ = 0.1 nm for 11 GHz pillbox cavity and 1010 e- in a single bunch.

• Is a nanometer resolution BPM useful?
• Ground isn’t stable at this level
• Active stabilization needed.

– But is available, and demands beam tests!
• Passive isolation
• Geophone feedback
• Optical anchor (interferometer)
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Nanometer Resolution BPMs

• Push cavity BPM technology to its limits
• Push existing C-band cavities to 1nm at ATF (KEK)
• Harder at 5.7 GHz than 11.4 GHz !
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Bunch Tiltmeter

• NLC alignment tolerances and diagnostic requirements derive 
from wakefield emittance dilution.

• Transverse wakefields cause head-tail displacement
• Can we measure this directly, rather than by position of the 

mean charge of the bunch?
• Observation at ASSET:

– BPM Cavity power vs. beam position has minimum which depends on 
bunch tilt

– Tilt signal is in quadrature with position signal
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Response of BPM to Tilted Bunch
Centered in Cavity
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Tilted bunch

• Point charge offset by δ

• Centered, extended bunch 
tilted at slope δ/σt

• Tilt signal is in quadrature to 
displacement

• The amplitude due to a tilt of 
δ/σ is down by a factor of:
with respect to that of a 
displacement of δ
(~bunch length / Cavity 
Period )
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Example

• Bunch length σt = 200 µm/c = 0.67 ps 
• Tilt tolerance d = 200 nm
• Cavity Frequency F = 11.424 GHz
• Ratio of tilt to position sensitivity ½πfσt = 0.012
• A bunch tilt of 200 nm / 200 µm yields as much signal as a 

beam offset of 0.012 * 200 nm = 2.4nm
• Need BPM resolution of ~ 2 nm to measure this tilt

• Challenging!
– Getting resolution
– Separating tilt from position

• Use higher cavity frequency?
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Position-Tilt Discrimination

• Phase-sensitive detection
• Position jitter or dithering measures phase of position signal
• Quadrature part of signal is tilt + background

– One phase of residual common mode
– RF interference/leakage

• The higher the frequency the better!
• Tiltmeter also sensitive to beam tilt / cavity tilt
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Tiltmeter R&D Plans

• Test with C-Band cavity BPMs at ATF (KEK)
– First test done, cavity tilt dominates
– Put more cavities on goniometers
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NLC RF Structure

• Use dipole modes in accelerating cavities to measure beam 
position.

• Align each RF structure to the beam
• Minimize transverse wakefields
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Transverse Modes in Structure

• Transverse modes contain position information
• Modes associated with z position along structure.
• Tunable receiver can measure position along 

structure.
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Structure Position Monitor

• Damped, Detuned RF structures (DDS)
– Damped: 4 HOM manifolds conduct transverse modes to load
– Detuned: HOM mode frequency depends on z-position in structure
– Two of the manifolds, have coax couplers which sample a fraction of the 

HOM power

• BPM measures amplitude and phase of transverse modes at load.
• Tune over 14 – 16 GHz to see position from one end to the other.
• Use to align structures to beam.
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SPM Receiver

• Tunable across dipole band
– Frequency selects z-coordinate of position measurement

• Receiver is phase-sensitive :
– Reduces noise
– Provides sign of offset.

• Beam phase reference provided by nearby cavity BPM 
– needs phase accuracy of only ± 90° in order to extract the sign of the beam 

direction. 
– Noise performance improves slightly with better phase reference
– Low-level RF system requires beam phase accuracy of a few degrees, 

which will be from the same source.
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SPM Requirements

 
 

Parameter Requirement Comments 
Quantity ~22,000 X,Y BPM’s 

~ 700 X,Y BPM’s 
in X-band linacs 
in S-band linacs 

Resolution rms = 5 µm or 10% of beam 
position, whichever is greater 

single bunch of 3 × 109 e-, for at least 
one mode near each end 

Position Dynamic 
Range 

R < 3 mm 
R < 0.5 mm 

single bunch or low current multibunch 
full current, multibunch 

Stability of Center <1 µm over 30 minutes  
Survival 90 bunches @ 1.5 ×1010 at 3 

mm radius 
Must not damage receiver 
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Cell Offset vs. HOM Minimum
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Structure Position Monitor

• Looks promising
• Have not developed even prototype electronics
• R&D needed on integrated RF module
• Large system, it must be:

– high performance
– reliable
– cheap
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Multi-Bunch BPMs

• Bandwidth frontier (300 MHz bandwidth)
• Stripline pickups 
• Report position of every bunch in bunch train
• Used to program broadband kickers to straighten out bunch train

Parameter Value Conditions & Comments 

Resolution 300 nm rms 
At 0.6 x 1010 e- / bunch 

for bunch-bunch diplacement 
frequencies below 300 MHz 

Position Range ±2 mm  

Bunch spacing 2.8 ns or 1.4 ns  

Number of Bunches 1 - 190 @ 1.4 ns 

Beam current 
dynamic range 1×109 to 1.4 × 1010 Particles / bunch 

Number of BPMs 278 
  

 



Author Name
Date

Slide #

Next LinearNext Linear ColliderCollider

Steve Smith   October 2002

Multi-Bunch BPM Electronics

• Model 
– Preprocess using matched filters, sum-difference hybrids
– Digitize waveform from stripline using either

• fast ADC’s
• Sampling chip followed by slow ADC

– Deconvolute bunch-bunch response from multibunch using impulse 
response measured with single bunch

• R&D
– Demonstrate concept
– Develop switched capacitor analog memory chip

• Save
– cost
– space
– power
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R&D

• Sampling Chip development
– In house
– Ohio State

• Proofs of Principle
– Measuring bunchtrains at KEK-ATF 
– Digital receiver algorithm for Q-BPM, DR-BPM

• test in linac, PEP-II
• Test promising parts on eval boards
• Prototype
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Multi-Bunch BPM

Block Diagram

BPM

Front End Box

Front End Box

Tek 3054
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ATF Bunch Current
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Damping Ring BPMs

• Button pickups in rings
• Cables to holes in tunnel wall
• Quantity 486 total in three rings

– Two main damping rings & e+ Pre-damping ring
• Process signals in digital receiver

– Measure amplitude in ~10 MHz bandwidth about 714 MHz
• Differences from PEP BPM:

– Slightly higher resolution 
• smaller signal
• smaller beam duct

– High peak readout rate (once per turn ~MHz)
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DR-BPM Requirements

Parameter Requirement Conditions & Comments

Duct radius 17.5 mm in arcs
up to 31 mm in straights

PEP-II is 33 mm in arcs,
45 mm in straights

Button Diameter 8 mm PEP-II is 15 mm

Button Transfer
Impedance

~ 0.2 Ohm @ 714 MHz

Time resolution Average over 20 bunches Can we average over train?

Measurement Rate Read every turn
(1.4 MHz in preDR)

PEP-II ADC runs at 136 kHz
Several 14-bit ADCs @ 65 MHz

Onboard processing Multi-turn logging
Multi-turn averaging

Sine fit to turn-by-turn data

Resolution for train of
 > 20 bunches

2
50011 








+•≤

train
x I

mAmµσ

Resolution for single
bunch

mSingle µσ ⋅≤ 5 For Qb > 1010  electrons

Initial accuracy TBD Before beam-based-alignment

Stability wrt time 1µm

10µm

over a few hours
over 24 hours

Stability wrt fill pattern <10µm shift, single bunch to full train
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Intra-pulse Feedback

• Differential ground motion between opposing final lenses 
may be comparable to the beam sizes

• Several solutions possible:
– Optical anchor stabilization
– Inertial stabilization (geophone feedback) 
– Pulse-to-pulse beam-beam alignment feedback

• Can we use beam-beam deflection within the crossing time 
a single bunch train?

Ground Motion at NLC IP
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NLC Interaction Point Parameters



Author Name
Date

Slide #

Next LinearNext Linear ColliderCollider

Steve Smith   October 2002

Beam-Beam Parameters 

14Disruption Parameter

At origin25 µradian / nmDeflection slope

At BPM100 µm/nmDisplacement slope

110 µmσz

245 nmσx

(!)2.65 nmσy

CommentsValueParameter
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Intra-pulse Feedback

• Fix interaction point jitter within the crossing time of a single 
bunch train (266 ns)

• BPM measures beam-beam deflection on outgoing beam
– Fast (few ns rise time) 
– Precise (~micron resolution ⇒ << 1nm beam offset resolution)
– Close (~4 meters from IP)

• Kicker steers incoming beam
– Close to IP (~4 meters)
– Close to BPM (minimal cable delay)
– Fast rise-time amplifier

• Feedback algorithm is complicated by:
– round-trip propagation delay to interaction point in the feedback loop. 
– transfer function non-linearity
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Intra-Pulse Feedback

Amp

BPM

Kicker

BPM
Processor

IP      Round
      Trip
     Delay

+

 Amp
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Beam Position Monitor

• Stripline BPM
– 50 Ohm
– 6 mm radius
– 10 cm long
– 7%  angular coverage
– 4 m from IP
– Process at 714 MHz

• Downconvert to baseband
• need to phase BPM
• Wideband: 200 MHz at baseband
• Analog response with < 3ns propagation delay (plus cable 

lengths)
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Fast BPM Processor

Top
Stripline

Bottom
Stipline

RF
Hybrid

Bandpass
filter

Lowpass
filter

Timing
System

Programable
Attenuator

MPS
Network

MIXER

Bessel
4-pole

714 M Hz
360 M Hz BW

Bessel
3-pole

200 M Hz

(Bunch Charge)

Normalize
BPM  to

Bunch Charge

714 M Hz
Phase Reference

K
icker

D
rive

Fast BPM  Processor Block Diagram
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Simulated BPM Processor Signals

BPM Pickup (blue)
Bandpass filter (green)
and BPM analog output (red)
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Prototype Hardware

• Position monitor processor looks like the simulation
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Stripline Kicker

• Baseband Kicker
– Parallel plate approximation Θ = 2eVL/pwc 

• (half the kick comes from electric field, half from magnetic) 
– 2 strips
– 75 cm long
– 50 Ohm / strip
– 6 mm half-gap
– 4 m from IP
– Deflection angle     Θ = eVL/pwc = 1 nr/volt
– Displacement at IP d = 4 nm/volt
– Voltage required to move beam 1 σ (3 nm)  0.75 volts (10 mW)
– 100 nm correction requires 12.5 Watts drive per strip
– Drive amp needs bandwidth from 100 kHz to 100 MHz



Author Name
Date

Slide #

Next LinearNext Linear ColliderCollider

Steve Smith   October 2002

Capture Transient

Capture transient from 2 σ initial offset
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Limits to Beam-Beam Feedback

• Must close loop fast
– Propagation delays are painful

• Beam-Beam deflection response is non-linear
– slope flattens within 1 σ

• Linear feedback converges too slowly beyond ~ 10 σ to 
recover most of lost luminosity.

• Should be able to fix misalignments of 100 nm with 
modest kicker amplifiers.
– Amplifier power goes like square of misalignment.
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Non-linear Response Challenges Feedback

• Beam-beam deflection non-linearity limits:
– Limits useful (timely) range of convergence
– Limits stability in collision
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Optimize gain for small 
initial offset:

Then convergence is poor 
from far out:

Set gain for good 
convergence, then high 
gain at origin causes 
oscillation when near 
center:

Non-linear Response Challenges Feedback
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Linearize Feedback

• Can we compensate non-linearity?
– Fast? 

• Bandwidth
• propagation delay

– Accurately?

• Yes!

• Add compensation amplifier
– Op-amp
– Diodes to introduce desired non-linearity.
– Bias adjust (knee or breakpoint)
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Schematic



Author Name
Date

Slide #

Next LinearNext Linear ColliderCollider

Steve Smith   October 2002

Measured Transfer Function
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Large Signal Waveform

1 V step

Full BW

Settles to DC response in several ns
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Simulink Model

10 mV step

150 MHz BW
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Non-Linear Feedback Simulation

Compensated

Uncompensated

Full luminosity recovered in one round-trip time

for 10 σ initial offset.
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Linearizer Conclusions

• Simple op-amp based non-linear amp is sufficient to improve:
– Stability
– Convergence speed capture range 
– Programmable linearity compensation

• Low propagation delay: ~ 1 ns
• High bandwidth > 200 MHz
• Sufficient to achieve:

– Single round-trip convergence to  < 1 σ from 10 σ initial offset.
– Two-cycle convergence to < 0.1 σ from 10 σ initial offset.

• Limited by dynamic range of present op-amp, not by accuracy of 
compensation

– Fix with another amplifier or tune diode bias

• Breadboard prototype slightly peaky for small signals
– Likely to be fixed with chip diodes in real layout
– Ideally would make large signal response as peaky as small-signal response
– (to compensate kicker fill time)
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Intra-Pulse Feedback
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Intra-Pulse Feedback
(with Beam-Beam Scan & Diagnostics)
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Beam-Beam Scan

Beam bunches at IP: blue points
BPM analog response: green line
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Conclusions

• Q BPMs
– Need cavity BPMs

• Accuracy
• Stability
• Compact

• Damping Ring BPM
– Small evolution of current practice

• Structure Position Monitors
– Electronically more like Direct Sattelite TV receiver
– New to us, but similar objects are commercially available

• Multi-Bunch BPMs
– High resolution
– High bandwidth
– Beyond state of the art
– Achievable based on reasonable extrapolation of technology
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Extensions

• Beyond NLC machine requirements:
• Bunch tiltmeter
• Nanometer resolution BPM’s


