

Steve Smith
SLAC
October 23, 2002

What's novel, extreme, or challenging? Next Linear Collider

- Push resolution frontier
 - Novel cavity BPM design for high resolution, stability
 - Push well beyond NLC requirements
- Push bandwidth frontier
 - Stripline BPM with very high bandwidth and resolution
- Pickup-less BPM
 - HOM-Damped RF structures as position monitors
- Low propagation delay BPM
 - Feedback within bunch-train crossing time (250 ns)

NLC Linac BPMs

- "Quad" BPM (QBPM)
 - In every quadrupole (Quantity ~3000)
 - Function: align quads to straight line
 - Measures average position of bunch train
 - Resolution required: 300 nm rms in a single shot
- Structure Position Monitor (SPM)
 - Measure phase and amplitude of HOMs in accelerating cavities
 - Minimize transverse wakefields
 - Align each RF structure to the beam
 - 22 k devices in two linacs
- "Multi-Bunch" BPM (MBBPM)
 - Measure bunch-to-bunch transverse displacement
 - Compensate residual wakefields
 - Measure every bunch, 1.4 ns apart
 - Requires high bandwidth (300 MHz), high resolution (300 nm)
 - Line up entire bunch train by steering, compensating kickers

Other NLC BPMs

- Damping Ring
 - Button pickups
 - Rather conventional, like 3rd generation light sources
 - But higher readout rate (~MHz)
- Interaction Point Intra-Train Deflection Feedback
 - Correct beam-beam mis-steering within time of train crossing
 - Low propagation delay!

NLC "QBPM"

- Mainstream workhorse BPM
- In every quadrupole +
- Requires high resolution 300 nm
- Stability
- Single bunch to 180 bunches
- Stripline vs. cavity pickup?
- Cavity with novel coupler

QBPM Requirements

Parameter	Value	Conditions	
Resolution	300 nm rms	@ 10 ¹⁰ e ⁻ single bunch	
Position Stability	1 μm	over 24 hours (!)	
Position Accuracy	200 μm	With respect to the quad magnetic center	
Position Dynamic Range	±2 mm		
Charge Dynamic Range	5×10 ⁸ to 1.5×10 ¹⁰ e ⁻ per bunch		
Number of bunches	1 - 190	Singlebunch - multibunch	
Bunch spacing	1.4 ns		

- Electronics in tunnel enclosure
- Signal amplitudes in a ~30 MHz band around 714 MHz are demodulated and digitized
- Critical elements:
 - Front-end hybrid
 - Calibration signals
 - Sampler / digitizer choices:
 - Direct analog sampling chip + slow, high resolution ADC?
 - IF downconversion + fast, high resolution ADC?
 - Digital receiver algorithms for amplitude reconstruction
 - bandpass filter
 - digital downconversion
 - low pass filter
 - Position proportional to ratio of amplitude difference/sum

- Achieves single bunch resolution of $\sim 1.2 \mu m \text{ rms}$ @ 9 x 109 e-
- Algorithm: low pass filter, sample, digitize
- − Bandwidth ~30 MHz
- Micron resolution is a few dB above thermal noise floor

NLC Q-BPM

- Beam pipe radius is factor of two smaller
- Process signal where it is big, i.e. 714 MHz instead of 32 MHz
- Noise floor is not an issue
- Must control systematics

What's wrong with striplines?

- Striplines are difficult to fit into limited quad ID
- Accuracy hard to establish
 - Works on small differences of large numbers
- Position accuracy / stability requires precision of many elements
 - Internal elements
 - Stripline position
 - Feedthroughs
 - Termination
 - External elements
 - Cables
 - Connections
 - Processor

QBPMs Should be Cavities!

- Cavity BPM features:
 - Signal is proportional to position
 - Less common-mode subtraction than for strips
 - Simpler geometry
 - Accuracy of center better, more stable
 - Pickup compact in Z dimension
- Cavity Drawbacks:
 - Higher processing frequency
 - Are wakefields tolerable?

Cavity BPM

- Pick a basic design and evaluate characteristics
- Pillbox cavity, for example
- Choose frequency, processing scheme
- Calculate
 - Dimensions
 - Sensitivity
 - Noise figure budget
 - Common-mode rejection
 - Wake fields

Operating Frequency

- Sensitivity increases with frequency
- Size decreases with frequency
- Cable loss increases
- Cost of electronics increases
- Should be multiple of 714 MHz bunch spacing
- Possible operating frequencies:
 - 2856 MHz (cavities are too big!)
 - 5712 MHz (inexpensive commercial parts)
 - 11.424 GHz (share phase cavity with LLRF)
 - 14.280 GHz (integrate position cavities with RF structure)
- Example: 11.424 GHz

Cavity BPM Parameters

Parameter	Value	Comments	
Dipole frequency	11.4 GHz		
Monopole frequency	7.2 GHz		
Cavity Radius	16 mm		
Wall Q	~4000	Ignoring beam duct, etc	
Cavity coupling	β = 3		
Loaded Q	1000		
Bandwidth	11 MHz		
Beam aperture radius	6 mm		
Sensitivity	7 mV/nC/μm	(too much signal!)	
Bunch charge	0.7 x 10 ¹⁰ e ⁻	Per bunch	
Signal power @ 1μm	- 29 dBm	Peak power	
Decay time	28 ns		
Required resolution	σ = 200 nm		
Required Noise Figure	57 dB	For σ = 100 nm, thermal only	
Wakefield Kick	0.3 volt/pC/mm	Long range	
Structure wakefield kick	~2 volt/pC/mm	Per structure	
Short-range wakefield	~1/200 th of structure		

Common Mode

How much does monopole mode leak into dipole mode frequency?

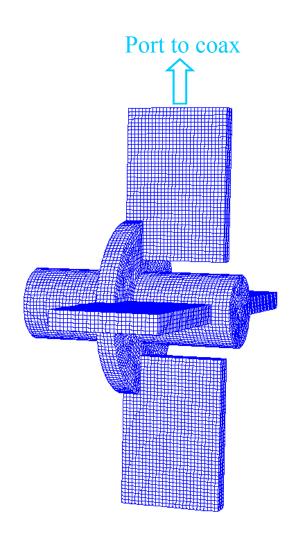
This creates an apparent beam centering offset.

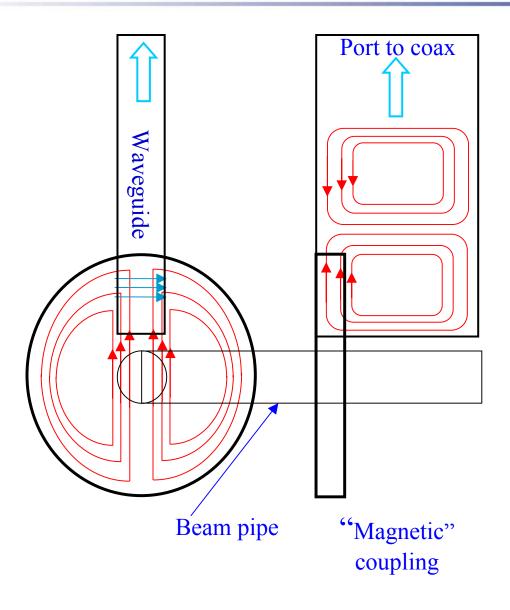
But processor looks only at dipole-mode frequency

And uses odd-mode coupler to eliminate even-symmetry mode

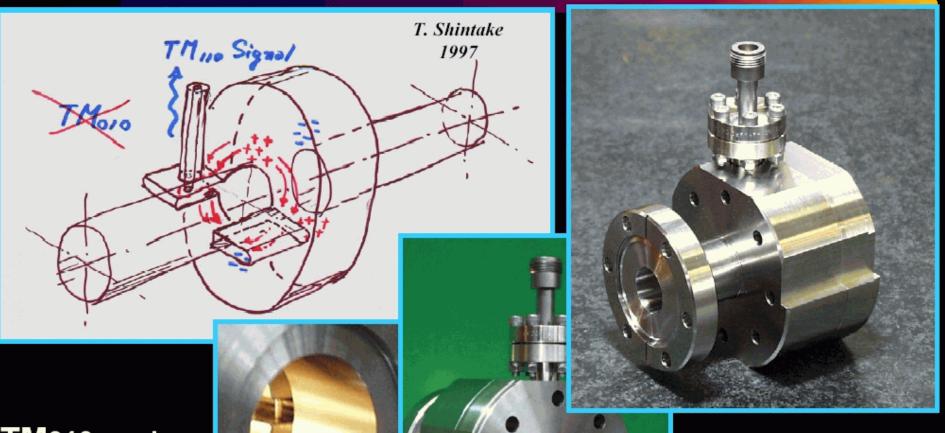
Comparison	Voltage	Ratio
Ratio of monopole mode voltage to dipole mode voltage due		
to 1 mm beam offset, measured at outer radius of pillbox	4200	72 dB
Tail of monopole mode at dipole-mode frequency	3.5	11 dB
Coupler rejection of monopole mode (-30dB)	0.1	-19 dB

So the common-mode leakage is negligible.


(Even if the offset were tens of microns, its just a fixed offset)

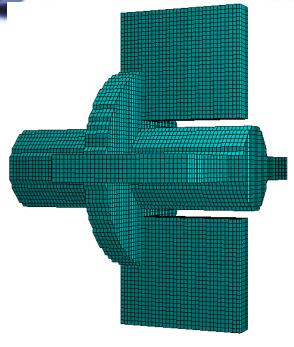

BPM Cavity

with TM₁₁₀ Couplers

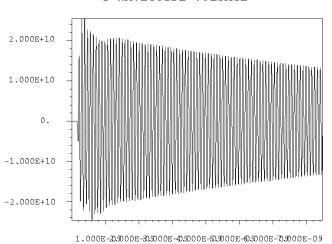

- Dipole frequency: 11.424 GHz
- Dipole mode: TM11
- Coupling to waveguide: magnetic
- Beam x-offset couple to "y" port
- Sensitivity: 1.6mV/nC/\mu m $(1.6 \times 10^9 \text{V/C/mm})$
- Couple to dipole (TM11) only
- Does not couple to TM01
 - May need to damp TM01
 - OR, use stainless steel to lower Q
- Compact
- · Low wakefield

TM₁₁₀ Mode Coupler

COM-Free BPM



TM010 mode does not couple out to pickup antenna.


will be used for C-band Accelerator Alignment

Waveguide Signal With Beam Excitation

Next Linear Collider

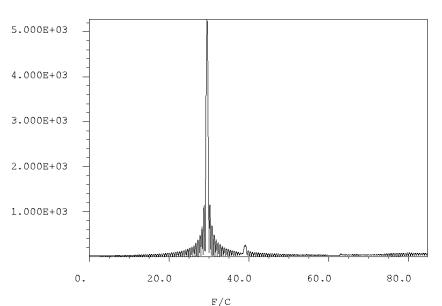
Y WAVEGUIDE VOLTAGE

Τ

Y WAVEGUIDE VOLTAGE SPECTRUM

60.0

40.0

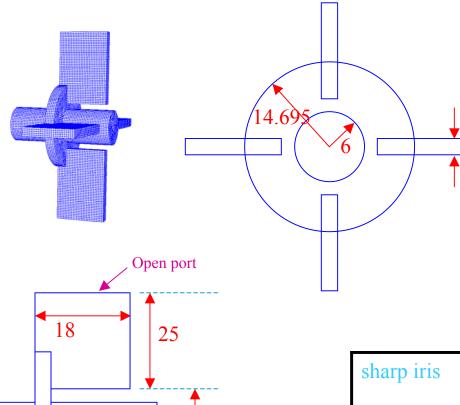

20.0

10.0

5.000E+09 1.000E+10 1.500E+10 2.000E+10

F [HZ]

IMPEDANCE SPECTRUM



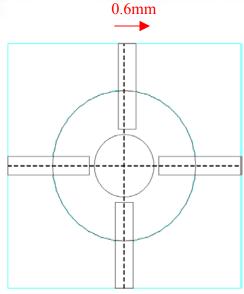
36

3

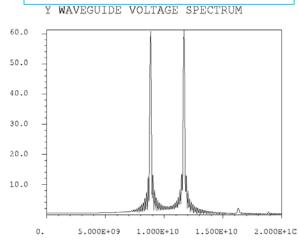
Cavity Dimensions

Next Linear Collider

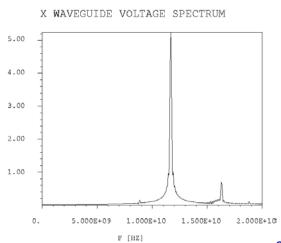
Cavity sensitivity (?)


- dF/db: -0.78 MHz/ μ m
- dF/da: +0.022 MHz/ μ m
- dF/dL:+0.042 MHz/ μm

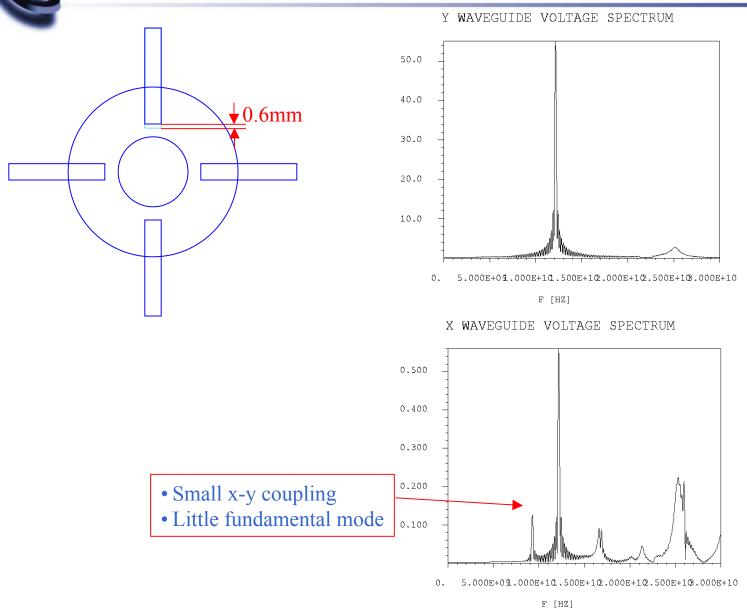
sharp iris	MAFIA	Omega2	Omega2 prediction
r _{cav (mm)}	14.2	14.2	14.695
F ₁ (with guide)	12.17413		11.424
F ₁ (no guide)	12.30448	11.96617	11.55435
ΔF_1	0.13035		


Azimuthal Misalignment

Next Linear Collider


- Monopole modes sensitivity to displaced coupler:
 - $dx'/dx \sim 2$ in power ratio
 - <0.01 monopole mode measured at dipole mode frequency
- We do get X-Y coupling

Beam offset: 1.2mm TM01+TM11 in misaligned port

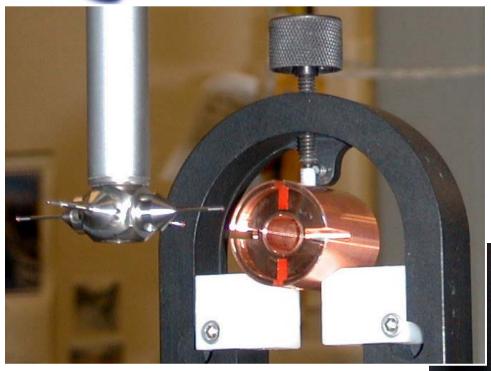


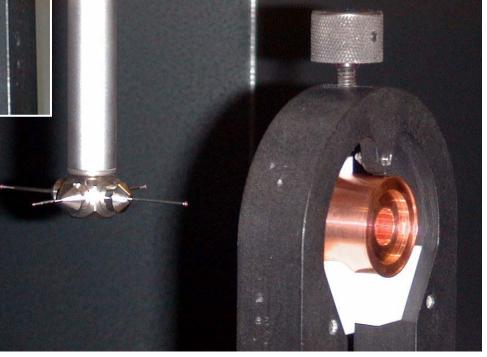
F [HZ]

X-Y Coupling

Radial Misalignment

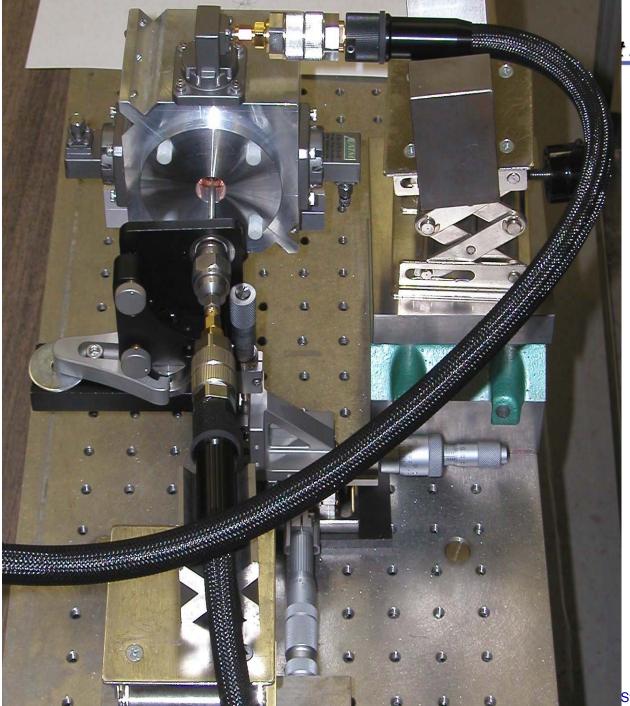
Excellent Performance (in simulation)


- Relatively easy to fabricate
- Tolerant of errors
- Strong signal
- Good centering
- Small wakefields
- \Rightarrow Build prototypes

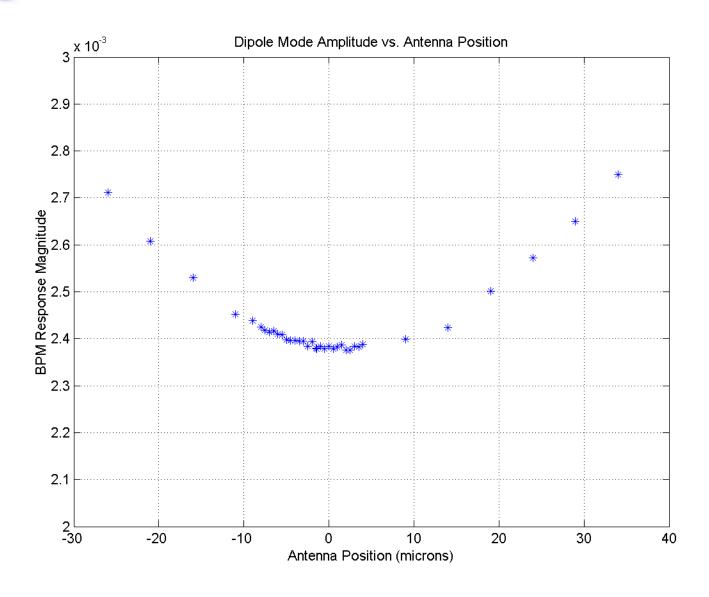


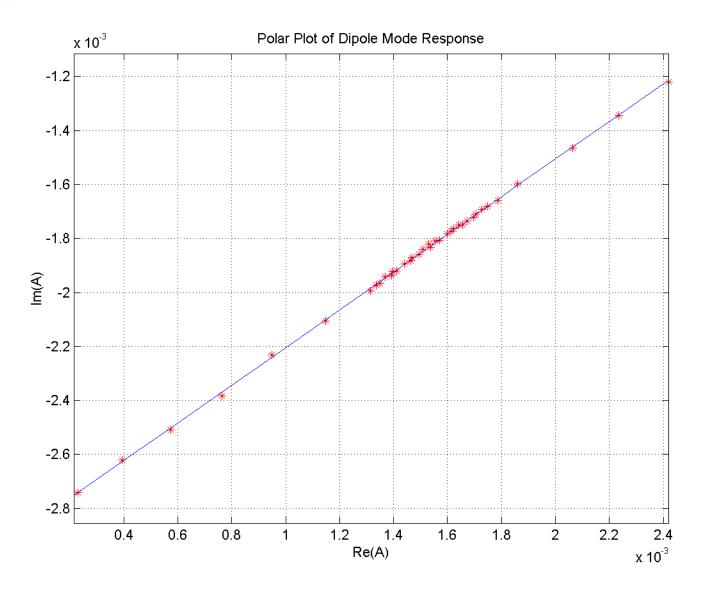
Develop Cavity BPM Prototype Next Linear Collider


- Team:
 - Ron Johnson, Zenghai Li, Takashi Naito, Jeff Rifkin, S. Smith
- Frequency: 11.424 GHz
- Axially symmetric X-Y cavity
- TM₁₁₀ mode couplers designed by Z. Li
- Two couplers per mode for prototype cavity
- Integrate fundamental mode phase reference cavity in same block.
- Measure on bench
- In beam

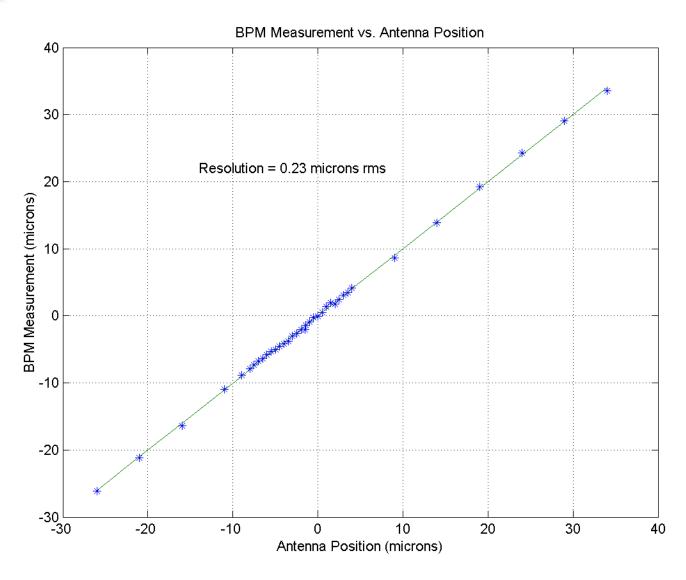


Steve Smith October 2002

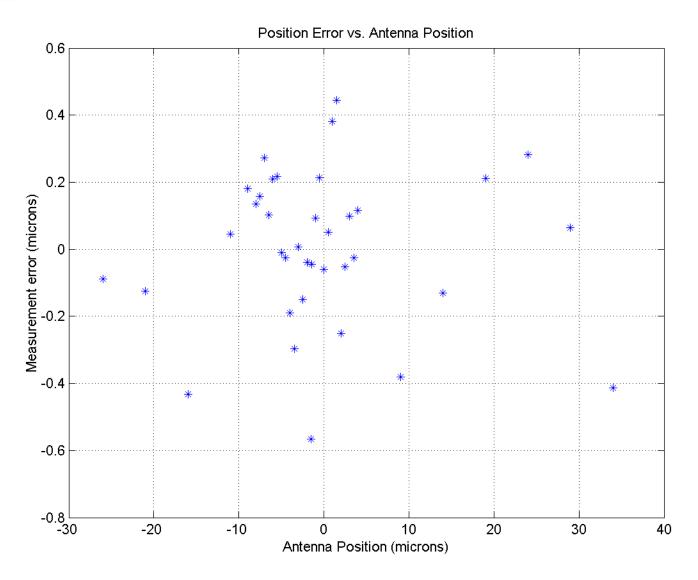




Cavity Antenna Test



Antenna Test – Phasor Response Next Linear Collider



Antenna Position

Antenna Test –Residual Plot

Prototype Cavity Conclusions

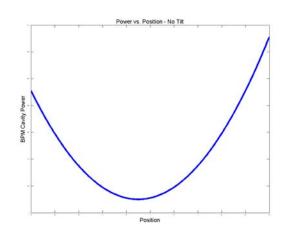
- Excellent position response.
- Linear across null.
- Resolution is 230 nm rms.
- Resolution may be dominated by micrometer stage

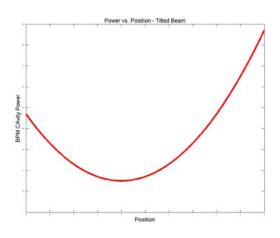
Cavity Q-BPM Conclusions

- It is easy to get signal
- Resolution can be much better than required
- Signal is proportional to displacement
- Accurate centering is much easier than for striplines
- Common-mode is not a problem
- Wake fields are OK
- Requires microwave processing

Limits of Cavity BPM

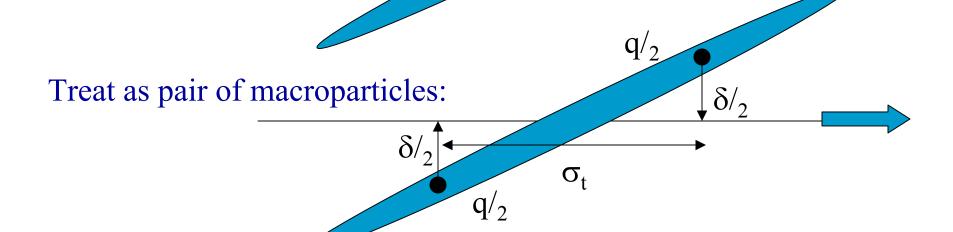
- How far can you push cavity BPM technology?
- Way beyond NLC machine requirements!
 - QBPM designed for low Q, low coupling
- Signal to thermal noise limit for resolution-optimized cavity
 - $-\sigma = 0.1$ nm for 11 GHz pillbox cavity and 10^{10} e⁻ in a single bunch.
- Is a nanometer resolution BPM useful?
- Ground isn't stable at this level
- Active stabilization needed.
 - But is available, and demands beam tests!
 - Passive isolation
 - Geophone feedback
 - Optical anchor (interferometer)


Nanometer Resolution BPMs


- Push cavity BPM technology to its limits
- Push existing C-band cavities to 1nm at ATF (KEK)
- Harder at 5.7 GHz than 11.4 GHz!

NLC

Bunch Tiltmeter


- NLC alignment tolerances and diagnostic requirements derive from wakefield emittance dilution.
- Transverse wakefields cause head-tail displacement
- Can we measure this directly, rather than by position of the mean charge of the bunch?
- Observation at ASSET:
 - BPM Cavity power vs. beam position has minimum which depends on bunch tilt
 - Tilt signal is in quadrature with position signal

Response of BPM to Tilted Bunch Next Linear Collider

 $V(t) = a\frac{q}{2}\frac{\delta}{2}\sin\omega(t - \frac{\sigma_t}{2}) - a\frac{q}{2}\frac{\delta}{2}\sin\omega(t + \frac{\sigma_t}{2}) = \frac{a\delta q}{2}\cos\omega t\sin\frac{\omega\sigma_t}{2}$

- Point charge offset by δ
- Centered, extended bunch tilted at slope δ/σ_t
- Tilt signal is in quadrature to displacement
- The amplitude due to a tilt of δ/σ is down by a factor of:
 with respect to that of a displacement of δ
 (~bunch length / Cavity Period)

$$V_{v}(t) = aq\delta\sin(\omega t)$$

$$V_t(t) = \frac{a\delta q}{2}\cos\omega t\sin\frac{\omega\sigma_t}{2}$$

$$V_t/V_v = \frac{\omega\sigma_t}{4} = \frac{\pi\sigma_t}{2T}$$

Example

Bunch length

$$\sigma_{\rm t} = 200 \ \mu {\rm m/c} = 0.67 \ {\rm ps}$$

• Tilt tolerance

$$d = 200 \text{ nm}$$

Cavity Frequency

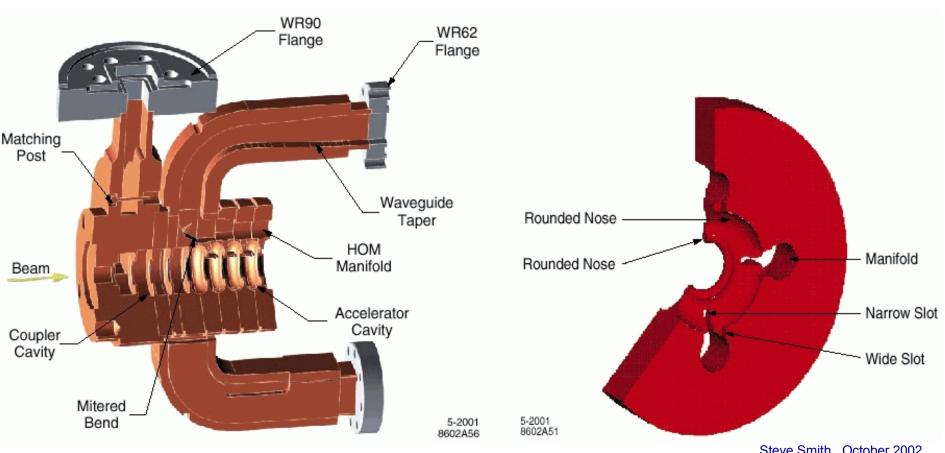
$$F = 11.424 \text{ GHz}$$

• Ratio of tilt to position sensitivity $\frac{1}{2}\pi f \sigma_t = 0.012$

- A bunch tilt of 200 nm / 200 μ m yields as much signal as a beam offset of 0.012 * 200 nm = 2.4nm
- Need BPM resolution of ~ 2 nm to measure this tilt
- Challenging!
 - Getting resolution
 - Separating tilt from position
- Use higher cavity frequency?

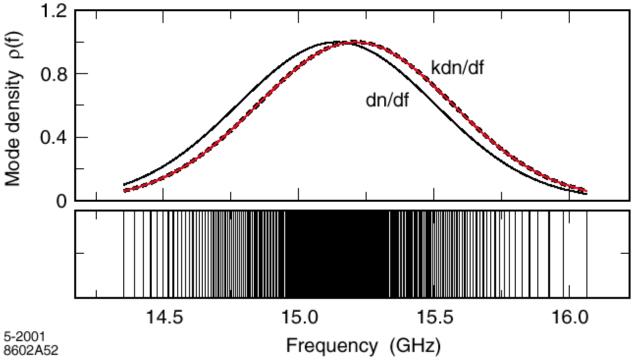
Position-Tilt Discrimination

- Phase-sensitive detection
- Position jitter or dithering measures phase of position signal
- Quadrature part of signal is tilt + background
 - One phase of residual common mode
 - RF interference/leakage
- The higher the frequency the better!
- Tiltmeter also sensitive to beam tilt / cavity tilt



Tiltmeter R&D Plans

- Test with C-Band cavity BPMs at ATF (KEK)
 - First test done, cavity tilt dominates
 - Put more cavities on goniometers


- Use dipole modes in accelerating cavities to measure beam position.
- Align each RF structure to the beam
- Minimize transverse wakefields

Transverse Modes in Structure

Next Linear Collider

RDDS1 dipole mode frequency distributions: dn/df is the mode density and kdn/df is the density weighted by the mode kick factors (k).

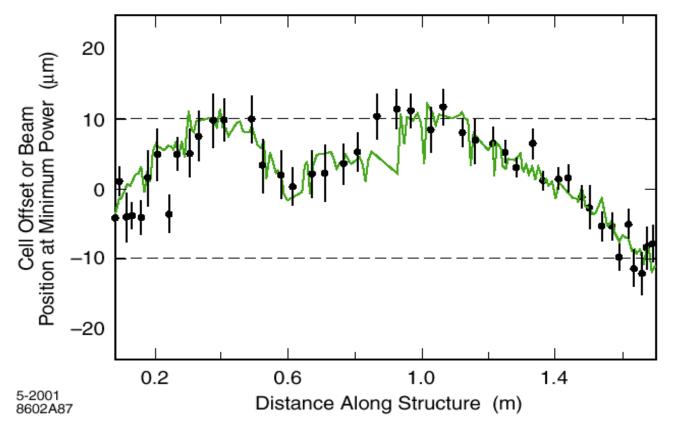
- Transverse modes contain position information
- Modes associated with z position along structure.
- Tunable receiver can measure position along structure.

Structure Position Monitor

- Damped, Detuned RF structures (DDS)
 - Damped: 4 HOM manifolds conduct transverse modes to load
 - Detuned: HOM mode frequency depends on z-position in structure
 - Two of the manifolds, have coax couplers which sample a fraction of the HOM power
- BPM measures amplitude and phase of transverse modes at load.
- Tune over 14 16 GHz to see position from one end to the other.
- Use to align structures to beam.

SPM Receiver

- Tunable across dipole band
 - Frequency selects z-coordinate of position measurement
- Receiver is phase-sensitive :
 - Reduces noise
 - Provides sign of offset.
- Beam phase reference provided by nearby cavity BPM
 - needs phase accuracy of only \pm 90° in order to extract the sign of the beam direction.
 - Noise performance improves slightly with better phase reference
 - Low-level RF system requires beam phase accuracy of a few degrees, which will be from the same source.


SPM Requirements

Parameter	Requirement	Comments	
Quantity	~22,000 X,Y BPM's	in X-band linacs	
	~ 700 X,Y BPM's	in S-band linacs	
Resolution	rms = 5 μm or 10% of beam	single bunch of 3×10^9 e ⁻ , for at least	
	position, whichever is greater	one mode near each end	
Position Dynamic	R < 3 mm	single bunch or low current multibunch	
Range	R < 0.5 mm	full current, multibunch	
Stability of Center	<1 µm over 30 minutes		
Survival	90 bunches @ 1.5 ×10 ¹⁰ at 3	Must not damage receiver	
	mm radius		

Cell Offset vs. HOM Minimum

Next Linear Collider

Comparison of rf structure relative cell positions measured by dipole-mode BPM (points) and Coordinate Measuring Machine (line). Dashed lines show NLC rms structure alignment tolerance.

Structure Position Monitor

- Looks promising
- Have not developed even prototype electronics
- R&D needed on integrated RF module
- Large system, it must be:
 - high performance
 - reliable
 - cheap

Multi-Bunch BPMs

- Bandwidth frontier (300 MHz bandwidth)
- Stripline pickups
- Report position of every bunch in bunch train
- Used to program broadband kickers to straighten out bunch train

Parameter	Value	Conditions & Comments
Resolution	300 nm rms At 0.6 x 10 ¹⁰ e⁻ / bunch	for bunch-bunch diplacement frequencies below 300 MHz
Position Range	±2 mm	
Bunch spacing	2.8 ns or 1.4 ns	
Number of Bunches	1 - 190	@ 1.4 ns
Beam current dynamic range	1×10^9 to 1.4×10^{10}	Particles / bunch
Number of BPMs	278	

Multi-Bunch BPM Electronics

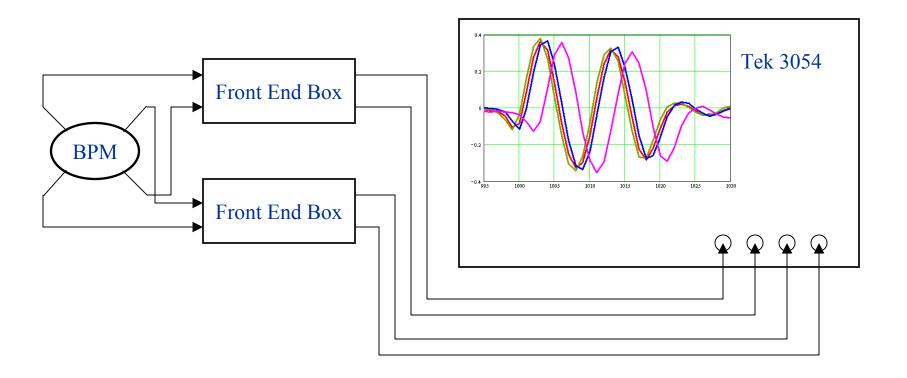
Next Linear Collider

Model

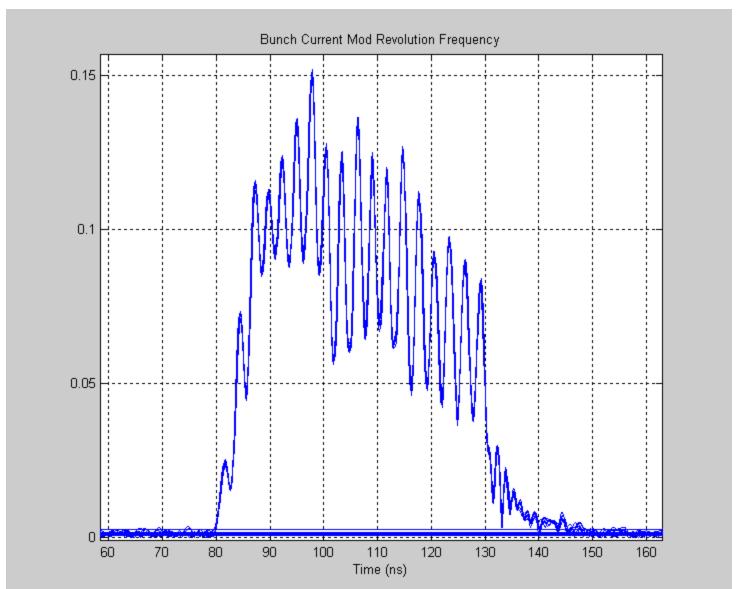
- Preprocess using matched filters, sum-difference hybrids
- Digitize waveform from stripline using either
 - fast ADC's
 - Sampling chip followed by slow ADC
- Deconvolute bunch-bunch response from multibunch using impulse response measured with single bunch

• R&D

- Demonstrate concept
- Develop switched capacitor analog memory chip
 - Save
 - cost
 - space
 - power



- Sampling Chip development
 - In house
 - Ohio State
- Proofs of Principle
 - Measuring bunchtrains at KEK-ATF
 - Digital receiver algorithm for Q-BPM, DR-BPM
 - test in linac, PEP-II
- Test promising parts on eval boards
- Prototype



Block Diagram

ATF Bunch Current

- Button pickups in rings
- Cables to holes in tunnel wall
- Quantity 486 total in three rings
 - Two main damping rings & e⁺ Pre-damping ring
- Process signals in digital receiver
 - Measure amplitude in ~10 MHz bandwidth about 714 MHz
- Differences from PEP BPM:
 - Slightly higher resolution
 - smaller signal
 - smaller beam duct
 - High peak readout rate (once per turn ~MHz)

DR-BPM Requirements

Parameter	Requirement	Conditions & Comments	
Duct radius	17.5 mm in arcs	PEP-II is 33 mm in arcs,	
	up to 31 mm in straights	45 mm in straights	
Button Diameter	8 mm PEP-II is 15 mm		
Button Transfer Impedance	~ 0.2 Ohm @ 714 MHz		
Time resolution	Average over 20 bunches	Can we average over train?	
Measurement Rate	Read every turn	PEP-II ADC runs at 136 kHz	
	(1.4 MHz in preDR)	Several 14-bit ADCs @ 65 MHz	
Onboard processing	Multi-turn logging Multi-turn averaging Sine fit to turn-by-turn data		
Resolution for train of > 20 bunches	$\sigma_{x} \leq 1 \mu m \bullet \sqrt{1 + \left(\frac{500 mA}{I_{train}}\right)^{2}}$		
Resolution for single bunch	$\sigma_{Single} \leq 5 \cdot \mu m$	For Q _b > 10 ¹⁰ electrons	
Initial accuracy	TBD	Before beam-based-alignment	
Stability wrt time	1μm	over a few hours	
	10μm	over 24 hours	
Stability wrt fill pattern	<10µm shift, single bunch to full train		

Intra-pulse Feedback

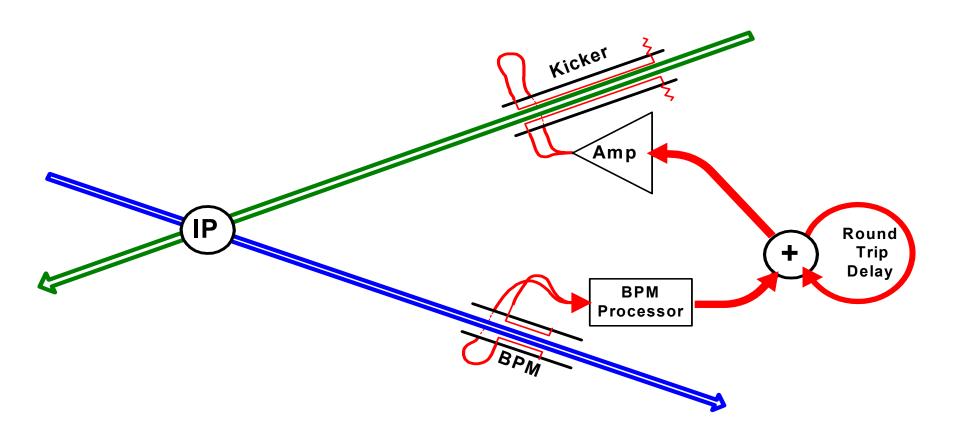
Ground Motion at NLC IP

- Differential ground motion between opposing final lenses may be comparable to the beam sizes
- Several solutions possible:
 - Optical anchor stabilization
 - Inertial stabilization (geophone feedback)
 - Pulse-to-pulse beam-beam alignment feedback
- Can we use beam-beam deflection within the crossing time a single bunch train?

NLC Interaction Point Parameters

High E IP Parameters (2/00)			
	Stage 1	Stage 2	
CMS Energy (GeV)	490	888	
Luminosity (10 ³³)	22	34	
Repetition Rate (Hz)	120	120	
Bunch Charge (10 ¹⁰)	0.75	0.75	
Bunches/RF Pulse	190	190	
Bunch Separation (ns)	1.4	1.4	
Eff. Gradient (MV/m)	50.2	50.2	
Injected $\gamma \epsilon_{\rm x}$ / $\gamma \epsilon_{\rm y}$ (10 ⁻⁸)	300 / 2	300 / 2	
$\gamma \varepsilon_{ m x}$ at IP (10 ⁻⁸ m-rad)	360	360	
$\gamma \epsilon_{ m y}$ at IP (10 $^{ ext{-8}}$ m-rad)	3.5	3.5	
β_x / β_y at IP (mm)	8 / 0.10	10 / 0.12	
σ_x / σ_y at IP (nm)	245 / 2.7	200 / 2.2	
σ_z at IP (um)	110	110	
Yave	0.11	0.26	
Pinch Enhancement	1.43	1.49	
Beamstrahlung δ B (%)	4.6	8.8	
Photons per e+/e-	1.17	1.33	
Two Linac Length (km)	5.4	9.9	

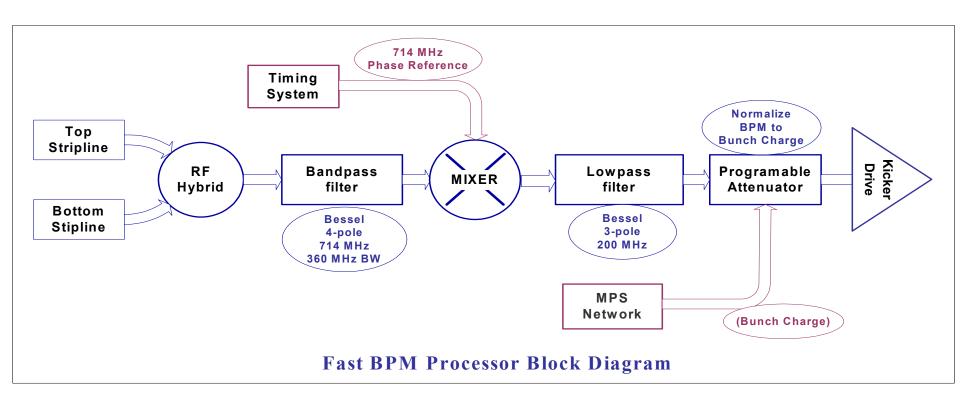
Beam-Beam Parameters


Parameter	Value	Comments
$\sigma_{ m y}$	2.65 nm	(!)
$\sigma_{_{\scriptscriptstyle X}}$	245 nm	
$\sigma_{\rm z}$	110 μm	
Disruption Parameter	14	
Deflection slope	25 μradian / nm	At origin
Displacement slope	100 μm/nm	At BPM

Intra-pulse Feedback

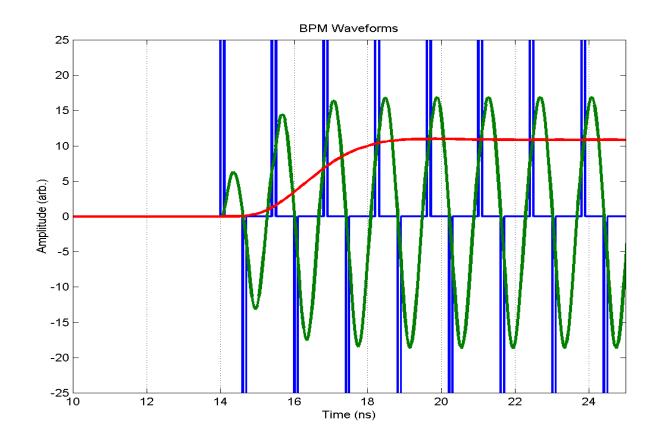
- Fix interaction point jitter within the crossing time of a single bunch train (266 ns)
- BPM measures beam-beam deflection on outgoing beam
 - Fast (few ns rise time)
 - Precise (~micron resolution ⇒ << 1nm beam offset resolution)
 - − Close (~4 meters from IP)
- Kicker steers incoming beam
 - Close to IP (~4 meters)
 - Close to BPM (minimal cable delay)
 - Fast rise-time amplifier
- Feedback algorithm is complicated by:
 - round-trip propagation delay to interaction point in the feedback loop.
 - transfer function non-linearity

Intra-Pulse Feedback



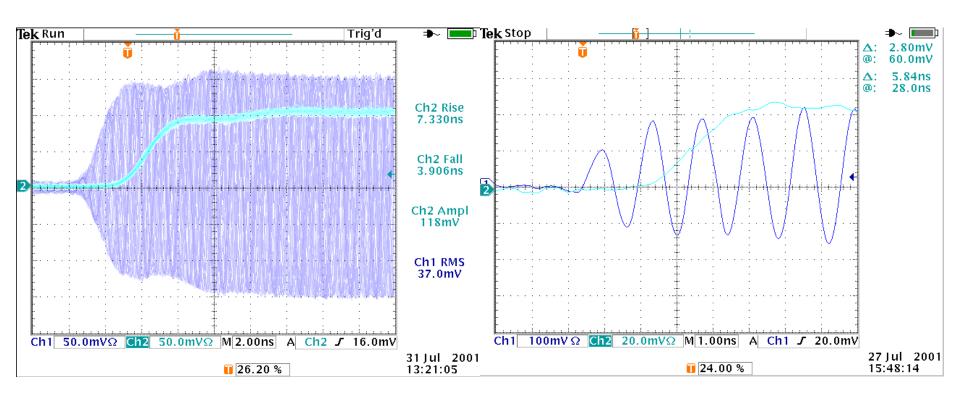
Beam Position Monitor

- Stripline BPM
 - 50 Ohm
 - 6 mm radius
 - 10 cm long
 - 7% angular coverage
 - 4 m from IP
 - Process at 714 MHz
 - Downconvert to baseband
 - need to phase BPM
 - Wideband: 200 MHz at baseband
 - Analog response with < 3ns propagation delay (plus cable lengths)



Fast BPM Processor

Simulated BPM Processor Signals



BPM Pickup (blue)
Bandpass filter (green)
and BPM analog output (red)

Prototype Hardware

Next Linear Collider

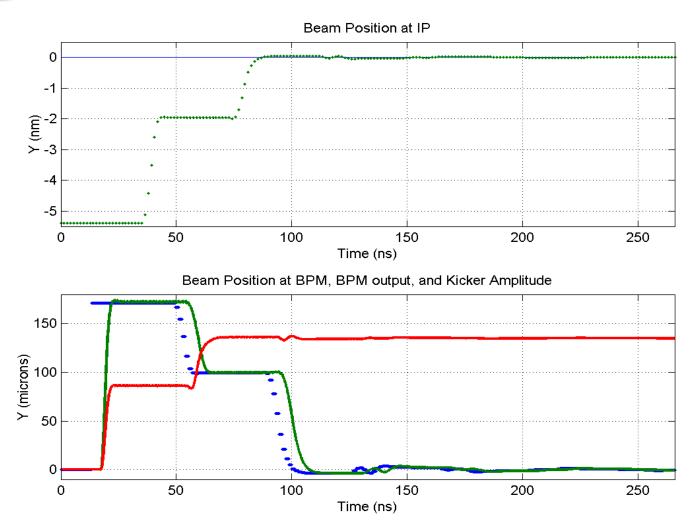
Position monitor processor looks like the simulation

Stripline Kicker

Baseband Kicker

- Parallel plate approximation $\Theta = 2eVL/pwc$

 - (half the kick comes from electric field, half from magnetic)
- 2 strips
- 75 cm long
- 50 Ohm / strip
- 6 mm half-gap
- 4 m from IP
- Deflection angle

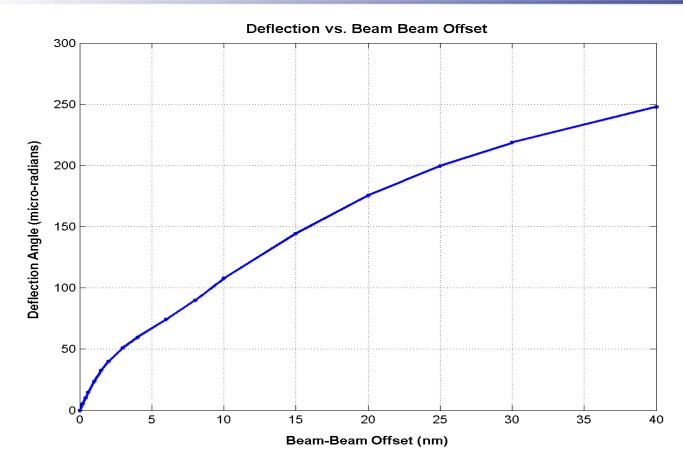

 $\Theta = eVL/pwc = 1 nr/volt$

Displacement at IP

d = 4 nm/volt

- Voltage required to move beam 1 σ (3 nm) 0.75 volts (10 mW)
- 100 nm correction requires 12.5 Watts drive per strip
- Drive amp needs bandwidth from 100 kHz to 100 MHz

Capture Transient

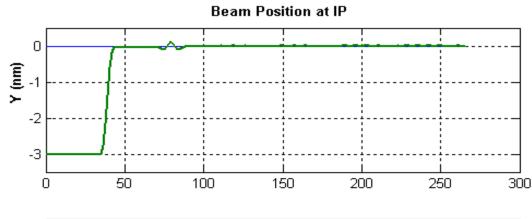


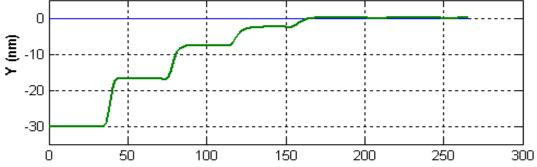
Capture transient from 2 σ initial offset

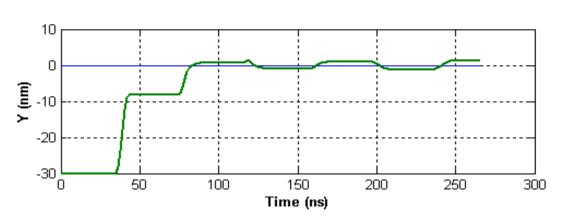
Limits to Beam-Beam Feedback Next Linear Collider

- Must close loop <u>fast</u>
 - Propagation delays are painful
- Beam-Beam deflection response is non-linear
 - slope flattens within 1 σ
- Linear feedback converges too slowly beyond $\sim 10 \ \sigma$ to recover most of lost luminosity.
- Should be able to fix misalignments of 100 nm with modest kicker amplifiers.
 - Amplifier power goes like square of misalignment.

- Beam-beam deflection non-linearity limits:
 - Limits useful (timely) range of convergence
 - Limits stability in collision

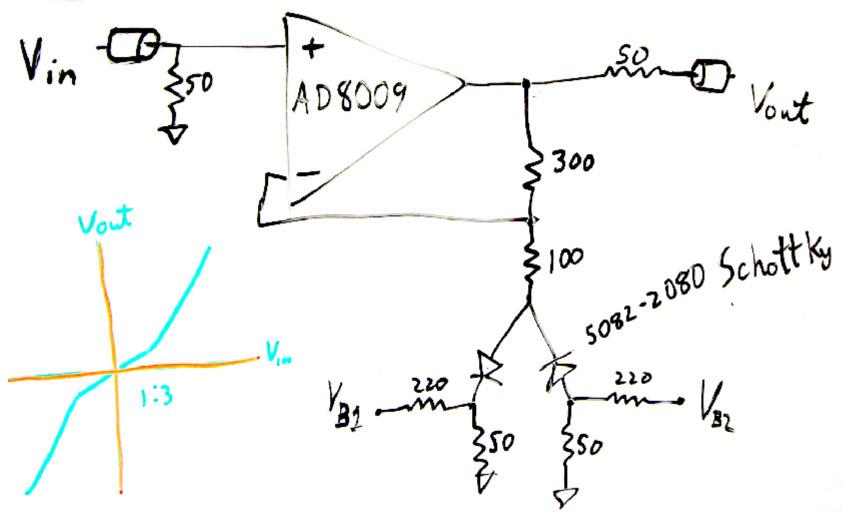

Non-linear Response Challenges Feedback


Next Linear Collider


Optimize gain for small initial offset:

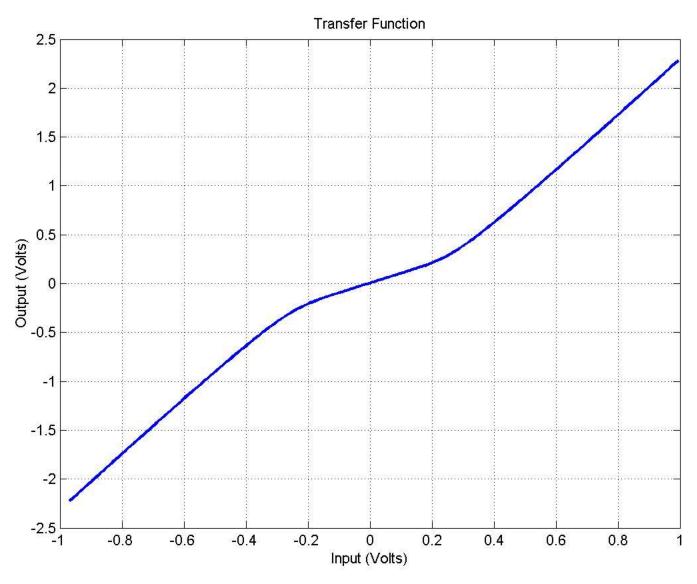
Then convergence is poor from far out:

Set gain for good convergence, then high gain at origin causes oscillation when near center:

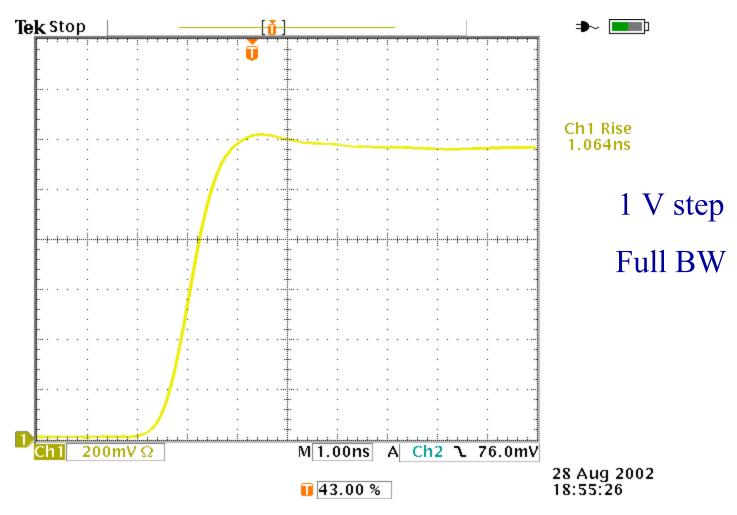


Linearize Feedback

- Can we compensate non-linearity?
 - Fast?
 - Bandwidth
 - propagation delay
 - Accurately?
- Yes!
- Add compensation amplifier
 - Op-amp
 - Diodes to introduce desired non-linearity.
 - Bias adjust (knee or breakpoint)



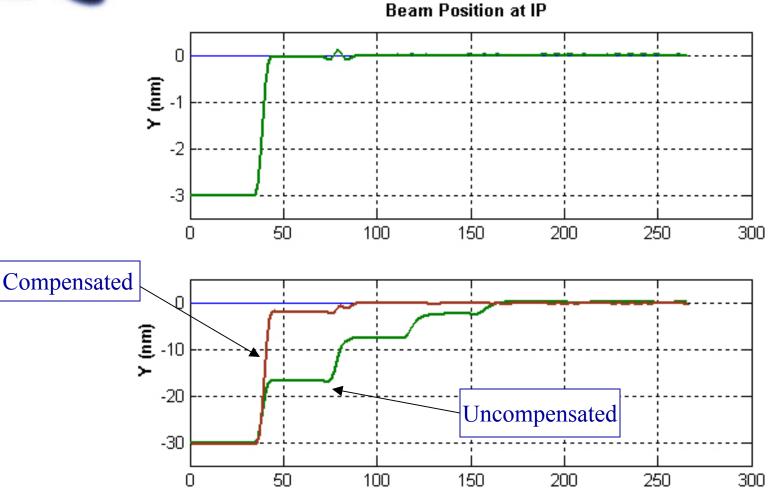
Schematic



Measured Transfer Function

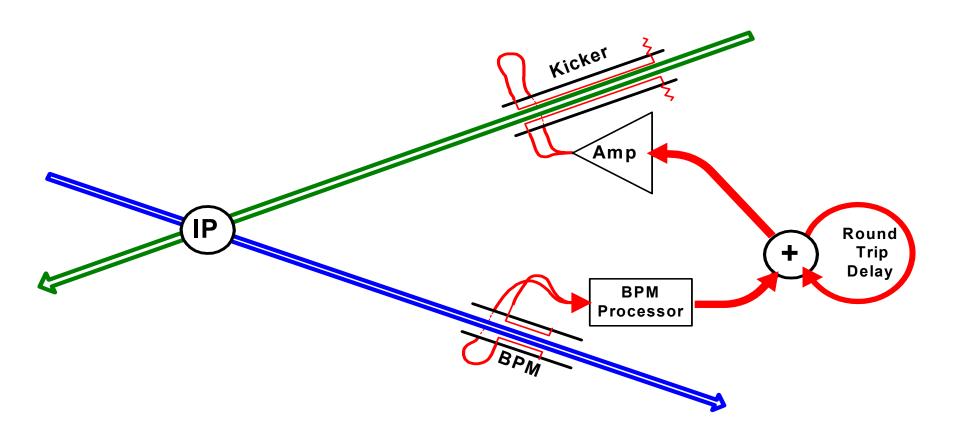


Large Signal Waveform


Settles to DC response in several ns

Simulink Model

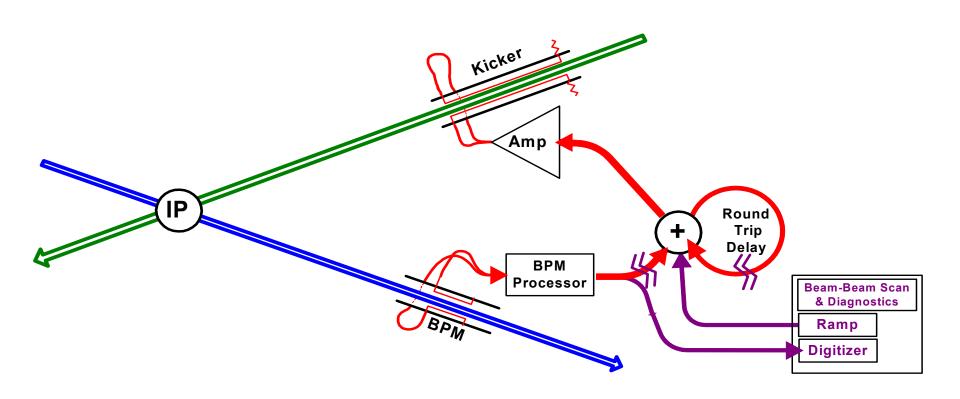
Non-Linear Feedback Simulation

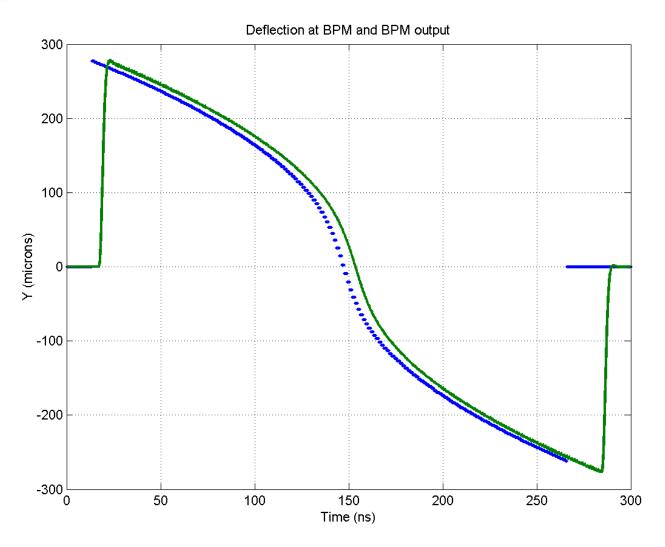

Full luminosity recovered in one round-trip time for 10σ initial offset.

Linearizer Conclusions

- Simple op-amp based non-linear amp is sufficient to improve:
 - Stability
 - Convergence speed ⇔ capture range
 - Programmable linearity compensation
- Low propagation delay: $\sim 1 \text{ ns}$
- High bandwidth > 200 MHz
- Sufficient to achieve:
 - Single round-trip convergence to $< 1 \sigma$ from 10 σ initial offset.
 - Two-cycle convergence to $< 0.1 \sigma$ from 10 σ initial offset.
 - Limited by dynamic range of present op-amp, not by accuracy of compensation
 - Fix with another amplifier or tune diode bias
- Breadboard prototype slightly peaky for small signals
 - Likely to be fixed with chip diodes in real layout
 - Ideally would make large signal response as peaky as small-signal response
 - (to compensate kicker fill time)

Intra-Pulse Feedback




Intra-Pulse Feedback

Next Linear Collider

(with Beam-Beam Scan & Diagnostics)

Beam-Beam Scan

Beam bunches at IP: blue points

BPM analog response: green line

Conclusions

- Q BPMs
 - Need cavity BPMs
 - Accuracy
 - Stability
 - Compact
- Damping Ring BPM
 - Small evolution of current practice
- Structure Position Monitors
 - Electronically more like Direct Sattelite TV receiver
 - New to us, but similar objects are commercially available
- Multi-Bunch BPMs
 - High resolution
 - High bandwidth
 - Beyond state of the art
 - Achievable based on reasonable extrapolation of technology

Extensions

- Beyond NLC machine requirements:
- Bunch tiltmeter
- Nanometer resolution BPM's